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Introduction For the course “Computer Algebra” that was taught by Wieb Bosma on the Radboud
University Nijmegen in the spring of 2020, I studied Leinster groups: Finite groups such that the
orders of its normal subgroups sum to twice its group order. Here, I summarize my results I could
not find in the literature. All computations were performed in Magma [1]. From here on, all groups
are assumed to be finite.

The notation D(G) :=
∑

NEG |N | is used to denote the sum of the orders of the normal subgroups

of a group G, and δ(G) for its quotient, that is D(G)
|G| . So a group G is Leinster if and only if δ(G) = 2.

In [4], it was proven that both D and δ are multiplicative with respect to direct products of two

groups with disjoint Jordan-Hölder decompositions. Similarly, D(n) :=
∑

d|n d and δ(n) := D(n)
n .

Odd Leinster groups There is one known Leinster group of odd order [2] and is due to François
Brunault in reply to Tom Leinster’s question on the existence of such groups [5]. The group is
(C127 o C7)× C34·112·192·113 and is of order 355433039577. I found another example:

(C7 o C32)× (C192 o C5)× C112·197 ∼= SmallGroup(63, 1)× SmallGroup(1805, 2)× C23837.

It is Leinster due to the multiplicative property of δ and as

δ(C7 o C32)δ(C192 o C5)δ(C112·197) =
95

63
· 2167

1805
· 133

121
· 198

197
=

5 · 19

32 · 7
· 11 · 197

5 · 192
· 7 · 19

112
· 2 · 32 · 11

197
= 2.

This group is of order 2710624455 and thus more than 100 times smaller than the known example.
Here, SmallGroup(a, b) denotes the bth group of order a according to the database of GAP [3].

ZM-groups Assume one wants to construct a Leinster group from a group G such that δ(G) < 2.
Then, due to δ’s multiplicativity, one can keep taking direct products with cleverly chosen groups
until a Leinster group is reached. Cyclic groups of prime power order are a good choice as they have
few normal subgroups and are easy to enumerate. In [4], this method was first performed and in [2]
implemented in an algorithm: the Cyclic Extension Method. In [2], extending Zassenhaus Metacyclic
groups (ZM-groups) of the form ZM(m, 2t, 91) with m odd and t > 0 tended to be the most successful.
According to [2, Corollary 5.10],

δ
(
ZM(m, 2t, 91)

)
= 1 + δ(m)

(
1− 1

2t

)
,

which simplifies to 1 + δ(m2t−1)/2. Now, if G and ZM(m, 2t, 91) have a disjoint Jordan-Hölder
decomposition and ZM(m, 2t, 91)×G is Leinster, then

δ(m2t−1)
D(G)

2|G| −D(G)
= 2. (0.1)

For a given group G, one can use the Cyclic Extension Method to find an n = m2t−1 and connect
this to the correct ZM-group, inducing a Leinster group.



In [2], it was noted that for many ZM-groups, the order of the cyclic group found by the Cyclic
Extension Method has a few small prime factors and is much smaller than the order of the ZM-group,
and in the dihedral case, often is a single, relatively small prime. Hence, I performed the algorithm
for G = Cp with p prime and n = m2t−1, for which 0.1 simplifies to

δ(n)
p+ 1

p− 1
= 2. (0.2)

Using this, with p < 6 · 108 prime, I found 1086 Leinster groups of which most did not appear in
the lists of [2]. For example, ZM(5927826491151546028703364802241613297, 1, 91)×C458752001. Note
that for some p, multiple n satisfy 0.2, inducing distinct Leinster groups.

Recursion One can also construct Leinster groups of the form ZM(m, 2t, 91)×Cp recursively. Let
n and k be positive integers satisfying 0.2: δ(n)k+1

k−1 = 2. Then this formula can be rewritten into
4n

2n−D(n) = (k + 1), so
(
2n−D(n)

)
|4n. New solutions can be obtained by replacing n with n · q for a

suitable prime q. So
(
2nq −D(nq)

)
=
(
q(2n−D(n))−D(n)

)
|4nq, and

q :=
d+D(n)

2n−D(n)
,

where d|4n and q is prime, suffices. This only produces a solution to δ(n)k+1
k−1 = 2, and for a Leinster

group, k = 4nq
d − 1 needs to be a prime too. So, if for a given n and a divisor d of 4n, q is prime then

that solution can be saved and used as a new n to find Leinster groups. The only expensive steps are
factorizing the initial n and the primality testing of q and k.

Taking 2t with t > 0 as initial n implies that q is always an integer in the first step as 2n−D(n) = 1.
I applied this algorithm recursively for all n = 2t with t = 1, . . . , 250, q < 10100 and k < 10150 to find
a total of 381 Leinster groups including many new examples. For example, ZM(5, 4, 91)×C19,ZM(5 ·
11, 4, 91)× C109,ZM(5 · 11 · 59, 4, 91)× C1297,ZM(5 · 11 · 59 · 659, 4, 91)× C77761,ZM(5 · 11 · 59 · 659 ·
77761, 4, 91)× C155521, and ZM(5 · 11 · 59 · 659 · 77761 · 155521, 4, 91)× C311041 are all Leinster.

Perfect Groups Finally, I applied the cyclic extension method on perfect groups, groups that
equal their commutator subgroup. Note that these are not the Leinster groups as described in [4].
As Leinster groups are uncommon, it surprised me that with the 493 perfect groups of order at most
50000 in Magma’s perfect group database [1], I found 293 Leinster groups with the Cyclic Extension
Method. Again, for some groups, multiple extensions exist.
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