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1. Introduction

An old problem adressed by Khintchin [15] deals with the behaviour of the continued
fraction expansion of algebraic real numbers of degree at least three. In particular, it is
asked whether such numbers have or not arbitrarily large partial quotients in their con-
tinued fraction expansion. Although almost nothing has been proved yet in this direction,
some more general speculations are due to Lang [16], including the fact that algebraic
numbers of degree at least three should behave like most of the numbers with respect to
the Gauss–Khintchin–Kuzmin–Lévy laws. A preliminary step consists in providing explicit
examples of transcendental continued fractions. The first result of this type is due to Li-
ouville [17], who constructed real numbers whose sequence of partial quotients grows very
fast, too fast for being algebraic. Subsequently, various authors used deeper transcendence
criteria from Diophantine approximation to construct other classes of transcendental con-
tinued fractions. Of particular interest is the work of Maillet [18] (see also Section 34 of
Perron [19]), who was the first to give examples of transcendental continued fractions with
bounded partial quotients. Further examples were provided by A. Baker [8, 9], Davison
[11], Queffélec [20], Allouche et al. [7], Adamczewski and Bugeaud [1, 5], and Adamczewski
et al. [6], among others. A common feature of all these results is that they apply to real
numbers whose continued fraction expansion is ‘quasi-periodic’ in the sense that it contains
arbitrarily long blocks of partial quotients which occur precociously at least twice.

Continued fractions beginning with arbitrarily large palindromes appear in several
recent papers [21, 22, 10, 13, 2]. Motivated by this and the general problematic mentioned
above, we ask whether precocious occurrences of some symmetric patterns in the continued
fraction expansion of an irrational real number do imply that the latter is either quadratic,
or transcendental. We obtain three new transendence criteria that apply to a broad class
of continued fraction expansions, including expansions with unbounded partial quotients.
These results provide the exact counterpart of [1] (see also Theorem 3.1 from [6]), with
periodic patterns being replaced by symmetric ones. Like in [1], their proofs heavily depend
on the Schmidt Subspace Theorem [24]. As already mentioned, there is a long tradition in
using an excess of periodicity to prove the transcendence of some continued fractions. This
is indeed very natural: if the continued fraction expansion of the real number ξ begins with,
say, the periodic pattern ABBB (here, A, B denote two finite blocks of partial quotients),
then ξ is ‘very close’ to the quadratic irrational real number having the eventually periodic
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continued fraction expansion with preperiod A and period B. The fact that occurrences of
symmetric patterns can actually give rise to transcendence statements is more surprising
and completely new, though it is already underlying in [22]. It essentially relies on an
elementary identity for continued fractions (see Lemma 1 in Section 4).

The present paper is organized as follows. Our transcendence criteria are stated in
Section 2 and proved in Sections 5 and 6. In Section 3, we provide an application of one
of the transcendence criteria to the explicit construction of transcendental numbers with
sharp properties of approximation by rational numbers. All the auxiliary statements are
gathered in Section 4.

A previous version of this paper including an application of our results to the tran-
scendence of Maillet–Baker’s continued fractions is available on the arXiv at:

http://arxiv.org/abs/math.NT/0512014.

This part is removed from the present version since the corresponding results were strongly
improved in [5].

2. Main results

Throughout the present work, A denotes a given set, not necessarily finite. We identify
any sequence a = (aℓ)ℓ≥1 of elements from A with the infinite word a1a2 . . . aℓ . . . Recall
that a finite word a1a2 . . . an on A is called a palindrome if aj = an+1−j for j = 1, . . . , n.

Our first transcendence criterion can be stated as follows.

Theorem 1. Let a = (aℓ)ℓ≥1 be a sequence of positive integers. If the word a begins
in arbitrarily long palindromes, then the real number α := [0; a1, a2, . . . , aℓ, . . .] is either
quadratic irrational or transcendental.

We point out that there is no assumption on the growth of the sequence (aℓ)ℓ≥1 in
Theorem 1, unlike in Theorems 2 and 3 below. This specificity of Theorem 1 is used
in Section 3 to construct transcendental continued fractions with a prescribed order of
approximation by rational numbers.

Various examples of classical continued fractions turn out to satisfy the assumption
of Theorem 1. We display two of them. As shown in [4], if a and b are two distinct
positive integers, Theorem 1 provides a short proof of the transcendence of the real number
[a0; a1, a2, . . . ...], whose sequence of partial quotients is the Thue–Morse sequence on the
alphabet {a, b}, that is, with an = a (resp. an = b) if the sum of the binary digits of n is odd
(resp. even). This result is originally due to Queffélec [20]. Other interesting examples of
continued fractions beginning with arbitrarily large palindromes are the standard Sturmian
continued fractions. Given a real number θ with 0 < θ < 1 and two distinct positive
integers a and b, the standard Sturmian continued fraction of slope θ on the alphabet
{a, b} is defined by ξθ := [0; a1, a2, . . .], where an = a if ⌊(n+1)θ⌋−⌊nθ⌋ = 0 and an = b if
⌊(n+1)θ⌋−⌊nθ⌋ = 1. Here, ⌊·⌋ denotes the integer part function. The Fibonacci continued
fraction ξ(

√
5−1)/2 occurs in the important work of Roy [21, 22]. The reader is directed to

[10, 12, 13] for a detailled study of the standard Sturmian continued fractions, which were
proved to be transcendental in [7]. Theorem 1 provides an alternative and much shorter
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proof of the latter result.
Furthermore, it is very easy to construct continued fractions that satisfy the assump-

tion of Theorem 1 and we present now a general and elementary process to do this. Denote
the mirror image of a finite word W := a1 . . . an by W := an . . . a1. In particular, W is a
palindrome if and only if W = W . Given an arbitrary sequence u = (Un)n≥0 of nonempty
finite words whose letters are positive integers, we define a sequence of finite words (An)n≥0

by setting A0 = U0 and An+1 = AnUn+1AnUn+1, for n ≥ 0. Thus, An+1 begins with An

and the sequence of finite words (An)n≥0 converges to an infinite word a = a1a2 . . . aℓ . . .
Actually, every sequence beginning with arbitrarily large palindromes can be constructed
in this way. In particular, Theorem 1 can be reformulated as follows.

Corollary 1. Keep the above notation. If (aℓ)ℓ≥1 is not eventually periodic, then the real
number

ξu := [0; a1, a2, . . . , aℓ, . . .]

is transcendental.

Before stating our next theorems, we need to introduce some more notation. The
length of a finite word W on the alphabet A, that is, the number of letters composing
W , is denoted by |W |. Recall that a palindrome is a finite word invariant under mirror
symmetry (i. e., W = W ). In order to relax this property of symmetry, we introduce the
notion of quasi-palindrome. For two finite words U and V , the word UV U is called a quasi-
palindrome of order at most w, where w = |V |/|U |. Clearly, the larger w is, the weaker is
the property of symmetry. In our next transcendence criterion, we replace the occurrences
of aritrarily large palindromes by the ones of arbitrarily large quasi-palindromes of bounded
order. However, this weakening of our assumption has a cost, namely, an extra assumption
on the growth of the partial quotients is then needed. Fortunately, the latter assumption
is not very restrictive. In particular, it is always satisfied by real numbers with bounded
partial quotients.

Let a = (aℓ)ℓ≥1 be a sequence of elements from A. We say that a satisfies Condition
(∗) if a is not eventually periodic and if there exist two sequences of finite words (Un)n≥1

and (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded;

(iii) The sequence (|Un|)n≥1 is increasing.

We complement Theorem 1 in the following way.

Theorem 2. Let a = (aℓ)ℓ≥1 be a sequence of positive integers. Let (pℓ/qℓ)ℓ≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , aℓ, . . .].

Assume that the sequence (q
1/ℓ
ℓ )ℓ≥1 is bounded, which is in particular the case when the

sequence a is bounded. If a satisfies Condition (∗), then α is transcendental.

In the statements of Theorems 1 and 2 the palindromes or the quasi-palindromes must
appear at the very beginning of the continued fraction under consideration. Fortunately,
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the ideas used in their proofs allow us to deal also with the more general situation where
arbitrarily long quasi-palindromes occur not too far from the beginning.

Let w be a real number. We say that a satisfies Condition (∗)w if a is not eventually
periodic and if there exist three sequences of finite words (Un)n≥1, (Vn)n≥1 and (Wn)n≥1

such that:

(i) For any n ≥ 1, the word WnUnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded;

(iii) The sequence (|Un|/|Wn|)n≥1 is bounded from below by w;

(iv) The sequence (|Un|)n≥1 is increasing.

We are now ready to complement Theorems 1 and 2 as follows.

Theorem 3. Let a = (aℓ)ℓ≥1 be a sequence of positive integers. Let (pℓ/qℓ)ℓ≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , aℓ, . . .].

Assume that the sequence (q
1/ℓ
ℓ )ℓ≥1 is bounded and set M = lim supℓ→+∞ q

1/ℓ
ℓ and m =

lim infℓ→+∞ q
1/ℓ
ℓ . Let w be a real number such that

w > 2
log M

log m
− 1. (2.1)

If a satisfies Condition (∗)w, then α is transcendental.

We display an immediate consequence of Theorem 3.

Corollary 2. Let a = (aℓ)ℓ≥1 be a sequence of positive integers. Let (pℓ/qℓ)ℓ≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , aℓ, . . .].

Assume that the sequence (q
1/ℓ
ℓ )ℓ≥1 converges. If a satisfies Condition (∗)w for some w > 1,

then α is transcendental.

Theorems 1 to 3 provide the exact counterparts of Theorems 1 and 2 from [1], with
periodic patterns being replaced by symmetric ones. It would be desirable to replace the
assumption (2.1) by the weaker one w > 0. The statements of Theorems 2 and 3 show
that weakening the combinatorial assumption of Theorem 1 needs further assumptions on
the size of the partial quotients.

Theorem 2 from [1] was slightly improved in [6], where the following statement was
established. Keep the above notation and say that a satisfies Condition (∗∗)w if a is not
eventually periodic and if there exist three sequences of finite words (Un)n≥1, (Vn)n≥1 and
(Wn)n≥1 such that we have (ii), (iii), (iv) above, together with

(i’) For any n ≥ 1, the word WnUnVnUn is a prefix of the word a.

4



Precisely, Theorem 3.1 from [6] (which slightly improves upon theorem 2 from [1])
asserts that Theorem 3 still holds when a satisfies Condition (∗∗)w. This shows that the
results obtained when repeated patterns occur are exactly of the same strength as those
obtained when symmetric patters occur.

3. Transcendental numbers with prescribed order of approximation

In Satz 6 of [14], Jarńık used the continued fraction theory to prove the existence of real
numbers with prescribed order of approximation by rational numbers. Let ϕ : R≥1 → R>0

be a positive function. We say that a real number α is ‘approximable at order ϕ’ if there
exist infinitely many rational numbers p/q with q > 0 and |α−p/q| < ϕ(q). Jarńık’s result
can then be stated as follows.

Theorem J. Let ϕ : R≥1 → R>0 be a non-increasing function such that ϕ(x) = o(x−2)
as x tends to infinity. Then, there are real numbers α which are approximable at order ϕ
but which are not approximable at any order c ϕ, with 0 < c < 1.

In his proof, Jarńık constructed inductively the sequence of partial quotients of α.
Actually, he showed that there are uncountably many real numbers α with the required
property, thus, in particular, transcendental numbers. However, his construction did not
provide any explicit example of such a transcendental α.

In the present Section, we apply our Theorem 1 to get, under an extra assumption on
the function ϕ, explicit examples of transcendental numbers satisfying the conclusion of
Theorem J.

Theorem 4. Let ϕ : R≥1 → R>0 be such that x 7→ x2 ϕ(x) is non-increasing and tends
to 0 as x tends to infinity. Then, we can construct explicit examples of transcendental
numbers α which are approximable at order ϕ but which are not approximable at any
order c ϕ, with 0 < c < 1.

Proof. Throughout the proof, for any real number x, we denote by ⌈x⌉ the smallest
integer greater than or equal to x. We will construct inductively the sequence (bn)n≥1 of
partial quotients of a suitable real number α. Denoting by (pn/qn)n≥0 the sequence of
convergents to α, it follows from the continued fraction theory that, for any n ≥ 1, we
have

1

q2
n−1(bn + 2)

<

∣

∣

∣

∣

α − pn−1

qn−1

∣

∣

∣

∣

<
1

q2
n−1bn

. (3.1)

Recall that qn ≥ (3/2)n for any n ≥ 5. For any x ≥ 1, set Ψ(x) = x2 ϕ(x). Let n1 ≥ 6 be
such that Ψ((3/2)n) ≤ 10−1 for any n ≥ n1 − 1. Then, set b1 = . . . = bn1−1 = 1 and bn1

=
⌈1/Ψ(qn1−1)⌉. Observe that bn1

≥ 10. Let n2 > n1 be such that Ψ((3/2)n) ≤ (10bn1
)−1

for any n ≥ n2 − 1. Then, set bn1+1 = . . . = bn2−1 = 1 and bn2
= ⌈1/Ψ(qn2−1)⌉. Observe

that bn2
≥ 10bn1

.
At this step, we have

α = [0; 1
n1−1

, bn1
, 1

n2−n1−1
, bn2

, . . .],
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where, as in the previous Section, we denote by 1
m

a sequence of m consecutive partial
quotients equal to 1. Then, we complete by symmetry, in such a way that the continued
fraction expansion of α begins with a palindrome:

α = [0; 1
n1−1

, bn1
, 1

n2−n1−1
, bn2

, 1
n2−n1−1

, bn1
, 1

n1−1
, . . .].

At this stage, we have constructed the first 2n2−1 partial quotients of α. Let n3 > 2n2 be
such that Ψ((3/2)n) ≤ (10bn2

)−1 for any n ≥ n3−1. Then, set b2n2
= . . . = bn3−1 = 1 and

bn3
= ⌈1/Ψ(qn3−1)⌉. Observe that bn3

≥ 10bn2
. Then, we again complete by symmetry,

and we repeat our process in order to define n4, bn4
, and so on.

Clearly, the real number constructed in this way begins with infinitely many palin-
dromes, thus it is either quadratic or transcendental by Theorem 1. Moreover, the assump-
tion on the function ϕ implies that α has unbounded partial quotients. It thus follows that
it is transcendental. It remains for us to prove that it has the required property of approx-
imation.

By (3.1), for any j ≥ 1, we have

ϕ(qnj−1)

1 + 3 q2
nj−1 ϕ(qnj−1)

<

∣

∣

∣

∣

α − pnj−1

qnj−1

∣

∣

∣

∣

< ϕ(qnj−1). (3.2)

Let pn/qn with n ≥ n2 be a convergent to α not in the subsequence (pnj−1/qnj−1)j≥1, and
let k be the integer defined by nk − 1 < n < nk+1 − 1. Then, by combining (3.1) with
bn+1 ≤ bnk−1

, we have
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

>
1

q2
n(bn+1 + 2)

≥ 1

q2
n(bnk−1

+ 2)

≥ 1

3q2
n bnk−1

≥ ϕ(qn)

3q2
nk−1 ϕ(qnk−1) bnk−1

,

(3.3)

since x 7→ x2ϕ(x) is non-increasing. We then infer from (3.3) and

bnk−1
≤ bnk

10
≤ 11

100
· 1

q2
nk−1 ϕ(qnk−1)

that
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

≥ 3 ϕ(qn). (3.4)

To conclude, we observe that it follows from (3.2) that α is approximable at order ϕ,
and from (3.2), (3.4) and the fact that ϕ is non-increasing that α is not approximable at
any order cϕ with 0 < c < 1. The proof of Theorem 4 is complete.

4. Auxiliary results

The proofs of Theorems 2 and 3 depend on a deep result from Diophantine approx-
imation, namely the powerful Schmidt Subspace Theorem, stated as Theorem B below.
However, we do not need the full force of this theorem to prove our Theorem 1: the
transcendence criterion given by Theorem A is sufficient for our purpose.
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Theorem A. (W. M. Schmidt). Let α be a real number, which is neither rational,
nor quadratic. If there exist a real number w > 3/2 and infinitely many triples of integers
(p, q, r) with q > 0 such that

max

{
∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

,

∣

∣

∣

∣

α2 − r

q

∣

∣

∣

∣

}

<
1

qw
,

then α is transcendental.

Proof : See [23].

Theorem B. (W. M. Schmidt). Let m ≥ 2 be an integer. Let L1, . . . , Lm be linearly
independent linear forms in x = (x1, . . . , xm) with algebraic coefficients. Let ε be a positive
real number. Then, the set of solutions x = (x1, . . . , xm) in Zm to the inequality

|L1(x) . . .Lm(x)| ≤ (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

Proof : See e.g. [24] or [25].

For the reader convenience, we further recall some well-known results from the theory
of continued fractions, whose proofs can be found e.g. in the book of Perron [19]. The
seemingly innocent Lemma 1 appears to be crucial in the proofs of Theorems 2 to 4.

Lemma 1. Let α = [0; a1, a2, . . .] be a real number with convergents (pℓ/qℓ)ℓ≥1. Then,
for any ℓ ≥ 2, we have

qℓ−1

qℓ
= [0; aℓ, aℓ−1, . . . , a1].

Lemma 2. Let α = [0; a1, a2, . . .] and β = [0; b1, b2, . . .] be real numbers. Let n ≥ 1 such
that ai = bi for any i = 1, . . . , n. We then have |α − β| ≤ q−2

n , where qn denotes the
denominator of the n-th convergent to α.

Lemma 3. Let n ≥ 2 be an integer. For any positive integers a1, . . . , an, the denominator
of the rational number [0; a1, . . . , an] is at least equal to (

√
2)n.

For positive integers a1, . . . , am, we denote by Km(a1, . . . , am) the denominator of the
rational number [0; a1, . . . , am]. It is commonly called a continuant.

Lemma 4. For any positive integers a1, . . . , am and any integer k with 1 ≤ k ≤ m − 1,
we have

Km(a1, . . . , am) = Km(am, . . . , a1)

and

Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2 Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am).
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5. Proof of Theorem 1

Let n be a positive integer. Denote by pn/qn the n-th convergent to α, that is,
pn/qn = [0; a1, a2, . . . , an]. By the theory of continued fraction, we have

Mn :=

(

qn qn−1

pn pn−1

)

=

(

a1 1
1 0

) (

a2 1
1 0

)

. . .

(

an 1
1 0

)

.

Since such a decomposition is unique, the matrix Mn is symmetrical if and only if the word
a1a2 . . . an is a palindrome. Assume that this is case. Then, we have pn = qn−1. Recalling
that

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

<
1

q2
n

and

∣

∣

∣

∣

α − pn−1

qn−1

∣

∣

∣

∣

<
1

q2
n−1

,

we infer from 0 < α < 1, a1 = an, |pnqn−1 − pn−1qn| = 1 and qn ≤ (an + 1)qn−1 that

∣

∣

∣

∣

α2 − pn−1

qn

∣

∣

∣

∣

≤
∣

∣

∣

∣

α2 − pn−1

qn−1
· pn

qn

∣

∣

∣

∣

≤
∣

∣

∣

∣

α +
pn−1

qn−1

∣

∣

∣

∣

·
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

+
1

qnqn−1

≤ 2

∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

+
1

qnqn−1
<

a1 + 3

q2
n

,

whence

max

{
∣

∣

∣

∣

α − pn

qn

∣

∣

∣

∣

,

∣

∣

∣

∣

α2 − pn−1

qn

∣

∣

∣

∣

}

<
a1 + 3

q2
n

. (5.1)

Consequently, if the sequence of the partial quotients of α begins in arbitrarily long palin-
dromes, then (5.1) is satisfied for infinitely many integer triples (pn, qn, pn−1). By Theorem
A, this shows that α is either quadratic or transcendental.

6. Proofs of Theorems 2 and 3

Throughout the proofs of Theorems 2 and 3, for any finite word U = u1 . . . un on Z≥1,
we denote by [0; U ] the rational number [0; u1, . . . , un].

Proof of Theorem 2. Keep the notation and the hypothesis of this theorem. Let (Un)n≥1

and (Vn)n≥1 be the sequences occurring in the definition of Condition (∗). Set rn = |Un|
and sn = |UnVnUn|, for any n ≥ 1. We want to prove that the real number

α := [0; a1, a2, . . .]

is transcendental. By assumption, we already know that α is irrational and not quadratic.
Therefore, we assume that α is algebraic of degree at least three and we aim at deriving a
contradiction.
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Let (pℓ/qℓ)ℓ≥1 denote the sequence of convergents to α. The key fact for the proof of
Theorem 2 is the equality

qℓ−1

qℓ
= [0; aℓ, aℓ−1, . . . , a1],

given by Lemma 1. In other words, if Wℓ denotes the prefix of length ℓ of the sequence a,
then qℓ−1/qℓ = [0; Wℓ]. Since, by assumption, we have

psn

qsn

= [0; UnVnUn],

we get that
qsn−1

qsn

= [0; UnVn Un],

and it follows from Lemma 2 that

|qsn
α − qsn−1| < qsn

q−2
rn

. (6.1)

This shows in particular that

lim
n→+∞

qsn−1

qsn

= α. (6.2)

Furthermore, we clearly have

|qsn
α − psn

| < q−1
sn

and |qsn−1α − psn−1| < q−1
sn

. (6.3)

Consider now the four linearly independent linear forms with algebraic coefficients:

L1(X1, X2, X3, X4) =αX1 − X3,

L2(X1, X2, X3, X4) =αX2 − X4,

L3(X1, X2, X3, X4) =αX1 − X2,

L4(X1, X2, X3, X4) =X2.

Evaluating them on the quadruple (qsn
, qsn−1, psn

, psn−1), it follows from (6.1) and (6.3)
that

∏

1≤j≤4

|Lj(qsn
, qsn−1, psn

, psn−1)| < q−2
rn

. (6.4)

Our assumption and Lemma 3 imply that there exists a real number M such that

√
2 ≤ q

1/ℓ
ℓ ≤ M

for any integer ℓ ≥ 3. Thus, for any integer n ≥ 3, we have

qrn
≥

√
2

rn

= (M sn)(rn log
√

2)/(sn log M) ≥ q(rn log
√

2)/(sn log M)
sn
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and we infer from (6.4) and from (ii) of Condition (∗) that

∏

1≤j≤4

|Lj(qsn
, qsn−1, psn

, psn−1)| < q−ε
sn

holds with
ε = (2 log M)−1 · (2 + lim sup

n→+∞
|Vn|/|Un|)−1

for every sufficiently large n.
It then follows from Theorem B that the points (qsn

, qsn−1, psn
, psn−1) lie in a fi-

nite number of proper subspaces of Q4. Thus, there exist a non-zero integer quadruple
(x1, x2, x3, x4) and an infinite set of distinct positive integers N1 such that

x1qsn
+ x2qsn−1 + x3psn

+ x4psn−1 = 0, (6.5)

for any n in N1. Dividing (6.5) by qsn
, we obtain

x1 + x2
qsn−1

qsn

+ x3
psn

qsn

+ x4
psn−1

qsn−1
· qsn−1

qsn

= 0. (6.6)

By letting n tend to infinity along N1 in (6.6), it follows from (6.2) that

x1 + (x2 + x3)α + x4α
2 = 0.

Since, by assumption, α is not a quadratic number, we have x1 = x4 = 0 and x2 = −x3.
Then, (6.5) implies that

qsn−1 = psn
. (6.7)

Consider now the three linearly independent linear forms with algebraic coefficients:

L′
1(Y1, Y2, Y3) = αY1 − Y2, L′

2(Y1, Y2, Y3) = αY2 − Y3, L′
3(Y1, Y2, Y3) = Y1.

Evaluating them on the triple (qsn
, psn

, psn−1), we infer from (6.3) and (6.7) that

∏

1≤j≤3

|L′
j(qsn

, psn
, psn−1)| < q−1

sn
.

It then follows from Theorem B that the points (qsn
, psn

, psn−1) with n in N1 lie in
a finite number of proper subspaces of Q3. Thus, there exist a non-zero integer triple
(y1, y2, y3) and an infinite set of distinct positive integers N2 such that

y1qsn
+ y2psn

+ y3psn−1 = 0, (6.8)

for any n in N2. Dividing (6.8) by qsn
, we get

y1 + y2
psn

qsn

+ y3
psn−1

qsn−1
· qsn−1

qsn

= 0. (6.9)

10



By letting n tend to infinity along N2, it thus follows from (6.7) and (6.9) that

y1 + y2α + y3α
2 = 0.

Since (y1, y2, y3) is a non-zero triple of integers, we have reached a contradiction. Conse-
quently, the real number α is transcendental. This completes the proof of the theorem.

Proof of Theorem 3. Keep the notation and the hypothesis of this theorem. Assume
that the parameter w is fixed, as well as the sequences (Un)n≥1, (Vn)n≥1 and (Wn)n≥1.
Set also rn = |Wn|, sn = |WnUn| and tn = |WnUnVnUn|, for any n ≥ 1. We want to prove
that the real number

α := [0; a1, a2, . . .]

is transcendental. By assumption, we already know that α is irrational and not quadratic.
Therefore, we assume that α is algebraic of degree at least three and we aim at deriving
a contradiction. Throughout this Section, the constants implied by ≪ depend only on α.
In view of Theorem 2, we may assume that rn ≥ 1 for any n.

The key idea for our proof is to consider, for any positive integer n, the rational Pn/Qn

defined by
Pn

Qn
:= [0; WnUnVnUn Wn]

and to use the fact that the word WnUnVnUn Wn is a quasi-palindrome. Let P ′
n/Q′

n denote
the last convergent to Pn/Qn and different from Pn/Qn. By assumption we have

ptn

qtn

= [0; WnUnVnUn]

and it thus follows from Lemma 2 that

|Qnα − Pn| < Qnq−2
tn

(6.10)

and
|Q′

nα − P ′
n| < Q′

nq−2
tn

, (6.11)

since Wn has at least one letter. Furthermore, Lemma 1 implies that

Q′
n

Qn
= [0; WnUnVn Un Wn],

and we get from Lemma 2 that

|Qnα − Q′
n| < Qnq−2

sn
. (6.12)

This shows in particular that

lim
n→+∞

Q′
n

Qn
= α. (6.13)

11



Consider now the following four linearly independent linear forms with algebraic co-
efficients:

L1(X1, X2, X3, X4) =αX1 − X3,

L2(X1, X2, X3, X4) =αX2 − X4,

L3(X1, X2, X3, X4) =αX1 − X2,

L4(X1, X2, X3, X4) =X2.

Evaluating them on the quadruple (Qn, Q′
n, Pn, P ′

n), it follows from (6.10), (6.11) and
(6.12) that

∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| < Q4
nq−4

tn
q−2
sn

. (6.14)

We infer from Lemma 4 that

qtn
qrn

≤ Qn ≤ 2qtn
qrn

and q2
sn

≤ Qn ≤ q2
tn

, (6.15)

and thus (6.14) gives
∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| ≪ q4
rn

q−2
sn

. (6.16)

Moreover, by our assumption (2.1), there exists η > 0 such that, for any n large enough,
we have

|Un| ≥
(

2
log M

log m
· 1 + η

1 − η
− 1

)

|Wn|,

thus

sn ≥ 2(1 + η)(log M)

(1 − η)(log m)
rn.

Consequently, assuming that n is sufficiently large, we get

m(1−η)sn ≥ M2(1+η)rn

and
qsn

≥ q2+η′

rn
,

for some positive real number η′. It then follows from (6.16) that

∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| ≪ q−2η′/(2+η′)
sn

. (6.17)

Our assumption and Lemma 3 imply that we have

√
2 ≤ q

1/ℓ
ℓ ≤ 2M,

for any ℓ large enough. Thus, for any integer n large enough, we have

qsn
≥

√
2

sn

= ((2M)tn)(sn log
√

2)/(tn log 2M) ≥ q
(sn log

√
2)/(tn log 2M)

tn

≥ Q(sn log
√

2)/(2tn log 2M)
n ,

12



by (6.15). We then infer from (6.17) and from (ii) of Condition (∗)w that

∏

1≤j≤4

|Lj(Qn, Q′
n, Pn, P ′

n)| ≪ Q−ε
n (6.18)

holds for some positive ε.
It then follows from Theorem B that the points (Qn, Q′

n, Pn, P ′
n) lie in a finite number

of proper subspaces of Q4. Thus, there exist a non-zero integer quadruple (x1, x2, x3, x4)
and an infinite set of distinct positive integers N3 such that

x1Qn + x2Q
′
n + x3Pn + x4P

′
n = 0, (6.19)

for any n in N3. Dividing by Qn, we obtain

x1 + x2
Q′

n

Qn
+ x3

Pn

Qn
+ x4

P ′
n

Q′
n

· Q′
n

Qn
= 0.

By letting n tend to infinity along N3, we infer from (6.13) that

x1 + (x2 + x3)α + x4α
2 = 0.

Since (x1, x2, x3, x4) 6= (0, 0, 0, 0) and since α is irrational and not quadratic, we have
x1 = x4 = 0 and x2 = −x3. Then, (6.19) implies that

Q′
n = Pn. (6.20)

Consider now the following three linearly independent linear forms with algebraic coeffi-
cients:

L′
1(Y1, Y2, Y3) = αY1 − Y2, L′

2(Y1, Y2, Y3) = αY2 − Y3, L′
3(Y1, Y2, Y3) = Y1.

Evaluating them on the quadruple (Qn, Pn, P ′
n), it follows from (6.10), (6.11), (6.15) and

(6.20) that

∏

1≤j≤3

|Lj(Qn, Pn, P ′
n)| ≪ Q3

nq−4
tn

≪ q4
rn

Q−1
n ≪ q4

rn
q−2
sn

≪ Q−ε
n ,

with the same ε as in (6.18). It then follows from Theorem B that the points (Qn, Pn, P ′
n)

lie in a finite number of proper subspaces of Q3. Thus, there exist a non-zero integer triple
(y1, y2, y3) and an infinite set of distinct positive integers N4 such that

y1Qn + y2Pn + y3P
′
n = 0,

for any n in N4. We then proceed exactly as at the end of the proof of Theorem 2 to reach
a contradiction. This finishes the proof of our theorem.
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7. Conclusion

As already mentioned in Section 2, the transcendence criteria obtained in the present
paper by making use of symmetric patterns in continued fractions are analogous to those
derived thanks to repetitive patterns in [1, 6]. Moreover, all these results rely on a common
tool: the Subspace Theorem. This naturally leads us to ask whether it would be possible to
derive some results of the present paper from [1, 6] or vice-versa; or more generally whether
there is a strong link between occurrences of repetitive patterns and those of symmetric
ones in continued fractions. We shall now show that, in general, such a link fails.

Let us consider the free monoid generated by the alphabet {1, 2, 3} and the morhism
σ mapping 1 on 123, 2 on 123 and 3 on 1. Iterating this morphism from the letter 1 gives
rise to an infinite sequence and then to the following continued fraction

[0; 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, ...].

This continued fraction contains a lot of large repetitive patterns. In particular, it begins
with arbitrarily long squares (blocks of the form AA), so that it is transcendental by virtue
of Theorem 1 of [1]. On the other hand, it contains no large symmetric pattern since the
pattern 3, 2 does not occur at all. Hence, there is no reason that occurrences of repetitive
patterns do imply those of symmetric ones.

Now, let us have a look on the converse situation which is more delicate. For every
positive integers n < m, let us denote by X[n,m] the pattern n, n + 1, n + 2, . . . , m. We
then define the continued fraction

ξ := [0, X[1,2], X[1,2], X[3,8], X[3,8], X[9,64], X[9,64], . . . , X[8n+1,8n+1], X[8n+1,8n+1], . . .].

The transcendence of ξ follows from the proof of our Theorem 3 thanks to the precocious
occurrences of large palindromes, namely X[8n+1,8n+1], X[8n+1,8n+1]. To see this, for any
integer n ≥ 2, set

Wn = X[1,2]X[1,2], X[3,8]X[3,8]X[9,64]X[9,64], . . . , X[8n−1+1,8n], X[8n−1+1,8n],

Un = X[8n+1,8n+1], Vn = 0,

and define sn, Qn as in the proof of Theorem 3. We infer from Lemma 4 that qsn
≫ Q

1/2
n ,

thus (6.18) holds for some positive ε. Continuing exactly as in the proof of Theorem 3,
we get that ξ is transcendental. We point out that the continued fraction expansion of ξ
has no large repetitive pattern, so that occurrences of symmetric patterns do not imply in
general those of repetitive ones.

Despite of the previous example, there is an important case where “symmetry implies
periodicity”. In more concrete terms, the following statement holds. Let us assume that
a is a bounded sequence of positive integers beginning with arbitrarily large palindromes
Wn. If we add the condition that a has a positive palindrome density, that is, if

lim sup
n→+∞

|Wn+1|
|Wn|

< +∞,

14



then the sequence a contains arbitrarily large initial repetitions, in the sense that it satisfies
the condition (∗)w of Theorem 1 of [1] for some real number w > 1. Such relation is for
instance used in the proof of Theorem 4 of [3].

Acknowledgements: We are very grateful to the referee for his careful reading and for
several remarks that helped us to improve the presentation of the paper.
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Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39–66.

[8] A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962),
1–8.

[9] A. Baker, On Mahler’s classification of transcendental numbers, Acta Math. 111
(1964), 97–120.

[10] Y. Bugeaud & M. Laurent, Exponents of Diophantine and Sturmian continued frac-
tions, Ann. Inst. Fourier 55 (2005) 773–804.

[11] J. L. Davison, A class of transcendental numbers with bounded partial quotients, in
Number Theory and Applications, R. A. Mollin, ed., Kluwer Academic Publishers,
1989, pp. 365–371.

[12] S. Fischler, Palindromic Prefixes and Episturmian Words, J. Combin. Theory, Ser.
A 113 (2006), 1281–1304

15



[13] S. Fischler, Palindromic Prefixes and Diophantine Approximation, Monatsh. Math.,
to appear.
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Bât. Braconnier, 21 avenue Claude Bernard 7, rue René Descartes
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