ALGEBRAIC TOPOLOGY, EXERCISE SHEET 2, 24.09.2014

Exercise 1. Let X and Y be pointed spaces and let $i_{X}: X \rightarrow X \vee Y$ and $i_{Y}: Y \rightarrow X \vee Y$ be the canonical inclusions.
(1) Given two further pointed maps $f: X \rightarrow W$ and $g: Y \rightarrow W$ then there is a unique pointed map $(f, g): X \vee Y \rightarrow W$ such that:

$$
(f, g) \circ i_{X}=f \quad \text { and } \quad(f, g) \circ i_{Y}=g
$$

(2) Use (1) to conclude that the wedge product is associative. More precisely, show that if X, Y, and Z are pointed spaces then there is a unique pointed homeomorphism

$$
(X \vee Y) \vee Z \cong(Y \vee \underset{\rightrightarrows}{\cong}
$$

which is compatible with the inclusions.
Exercise 2. Show that for a Hausdorff space X the following are equivalent:
(1) Every point of X has a compact neighbourhood.
(2) Every point of X has a local base of compact neighbourhoods.

A space satisfying one of these equivalent conditions is called a locally compact Hausdorff space.

Exercise 3. In the notes there is a proof of the following statement. Let K, X, and Y be spaces and let K be compact and Hausdorff. Then there is a bijective correspondence between maps

$$
Y \xrightarrow{f} X^{K} \quad \text { and maps } \quad Y \times K \xrightarrow{g} X
$$

Show that the same proof also applies under the weaker additional assumption on K to be locally compact Hausdorff.
Exercise 4. Let X, Y, and Z be spaces and let $f: X \rightarrow Y$ be a map.
(1) Show that the maps

$$
f^{*}: Z^{Y} \rightarrow Z^{X}: g \mapsto g \circ f \quad \text { and } \quad f_{*}: X^{Z} \rightarrow Y^{Z}: h \mapsto f \circ h
$$

are continuous. Conclude that for every $K \in$ Top there is a mapping space functor:

$$
(-)^{K}: \text { Top } \rightarrow \text { Top }: X \mapsto X^{K}
$$

(2) Let Y be a locally compact Hausdorff space. Show that the composition map

$$
\circ: Z^{Y} \times Y^{X} \rightarrow Z^{X}:(g, f) \mapsto g \circ f
$$

is continuous.
(3) Prove a similar result for pointed spaces. More precisely, construct a pointed mapping space functor

$$
(-)^{\left(X, x_{0}\right)}: \operatorname{Top}_{*} \rightarrow \operatorname{Top}_{*}
$$

for every pointed space $\left(X, x_{0}\right)$. This includes, in particular, the construction of a loop space functor Ω : Top $*$ Top $_{*}$.

Exercise 5. Let K, X, and Y be pointed spaces and assume that K is locally compact Hausdorff. (1) Show that the function

$$
\operatorname{Top}_{*}\left(X, Y^{K}\right) \rightarrow \operatorname{Top}_{*}(X \wedge K, Y): f \mapsto g
$$

defined by

$$
g([x, k])=f(x)(k), \quad x \in X, \quad k \in K
$$

is a bijection.
(2) Can you give sense to the following slogan 'the bijections in (1) are nicely behaved with respect to maps $X \rightarrow X^{\prime}, K \rightarrow K^{\prime}$, and $Y \rightarrow Y^{\prime}$? (Hint: Given, say, such a map $X \rightarrow X^{\prime}$ is there a precise sense in which the bijections for X and X^{\prime} are compatible?)
(3) Try to prove that the function defined in (1) induces a bijection of homotopy classes:

$$
\left[X, Y^{K}\right] \cong[X \wedge K, Y]
$$

(Hint: Consider the cylinder construction $(-) \times I$ on spaces and use results similar to the ones of (2) but in Top. Note that for a space W there are two natural maps $W \rightarrow W \times I-$ the inclusion at the 'top' and at the 'bottom'. What properties of the product construction are you using?)

