ALGEBRAIC TOPOLOGY, EXERCISE SHEET 2, 24.09.2014

Exercise 1. Let X and Y be pointed spaces and let $i_X : X \to X \lor Y$ and $i_Y : Y \to X \lor Y$ be the canonical inclusions.

(1) Given two further pointed maps $f: X \to W$ and $g: Y \to W$ then there is a unique pointed map $(f,g): X \lor Y \to W$ such that:

$$(f,g) \circ i_X = f$$
 and $(f,g) \circ i_Y = g$

(2) Use (1) to conclude that the wedge product is associative. More precisely, show that if X, Y, and Z are pointed spaces then there is a unique pointed homeomorphism

$$(X \lor Y) \lor Z \xrightarrow{\cong} X \lor (Y \lor Z)$$

which is compatible with the inclusions.

Exercise 2. Show that for a Hausdorff space X the following are equivalent:

- (1) Every point of X has a compact neighbourhood.
- (2) Every point of X has a local base of compact neighbourhoods.

A space satisfying one of these equivalent conditions is called a **locally compact Hausdorff space**.

Exercise 3. In the notes there is a proof of the following statement. Let K, X, and Y be spaces and let K be compact and Hausdorff. Then there is a bijective correspondence between maps

$$Y \xrightarrow{J} X^K$$
 and maps $Y \times K \xrightarrow{g} X$.

Show that the same proof also applies under the weaker additional assumption on K to be locally compact Hausdorff.

Exercise 4. Let X, Y, and Z be spaces and let $f: X \to Y$ be a map.

(1) Show that the maps

$$f^* \colon Z^Y \to Z^X \colon g \mapsto g \circ f$$
 and $f_* \colon X^Z \to Y^Z \colon h \mapsto f \circ h$

are continuous. Conclude that for every $K \in \mathsf{Top}$ there is a **mapping space functor**:

$$(-)^K \colon \mathsf{Top} \to \mathsf{Top} \colon X \mapsto X^K$$

(2) Let Y be a locally compact Hausdorff space. Show that the composition map

$$\circ \colon Z^Y \times Y^X \to Z^X \colon (g, f) \mapsto g \circ f$$

is continuous.

(3) Prove a similar result for pointed spaces. More precisely, construct a **pointed mapping space functor**

$$(-)^{(X,x_0)}$$
: Top_{*} \rightarrow Top_{*}

for every pointed space (X, x_0) . This includes, in particular, the construction of a loop space functor $\Omega: \mathsf{Top}_* \to \mathsf{Top}_*$.

Exercise 5. Let K, X, and Y be pointed spaces and assume that K is locally compact Hausdorff.

(1) Show that the function

$$\mathsf{Top}_*(X,Y^K) \to \mathsf{Top}_*(X \land K,Y) \colon f \mapsto g$$

defined by

$$g([x,k]) = f(x)(k), \quad x \in X, \quad k \in K,$$

is a bijection.

- (2) Can you give sense to the following slogan 'the bijections in (1) are nicely behaved with respect to maps $X \to X'$, $K \to K'$, and $Y \to Y'$? (Hint: Given, say, such a map $X \to X'$ is there a precise sense in which the bijections for X and X' are compatible?)
- (3) Try to prove that the function defined in (1) induces a bijection of homotopy classes:

$$[X, Y^K] \cong [X \land K, Y]$$

(Hint: Consider the cylinder construction $(-) \times I$ on spaces and use results similar to the ones of (2) but in Top. Note that for a space W there are two natural maps $W \to W \times I$ – the inclusion at the 'top' and at the 'bottom'. What properties of the product construction are you using?)