ALGEBRAIC TOPOLOGY, EXERCISE SHEET 3, 01.10.2014

Exercise 1. For $(X, x_0) \in \mathsf{Top}_*$ we recall the definition of the Moore loop space $M(X, x_0)$ given in the lecture. Its points are pairs (t, α) with $t \in \mathbb{R}$ and a map $\alpha \in \mathsf{Top}([0, t], X)$ satisfying $\alpha(0) = \alpha(t) = x_0$. We can topologize this set as a subspace of $\mathbb{R} \times X^{[0,\infty)}$ identifying a path $\alpha: [0, t] \to X$ with the map $[0, \infty) \to X$ which coincides with α on [0, t] and is constant on $[t, \infty)$. The base point of $M(X, x_0)$ is $(0, \kappa_{x_0})$, where $\kappa_{x_0}(0) = x_0$.

(1) Show that the function

•:
$$M(X, x_0) \times M(X, x_0) \longrightarrow M(X, x_0)$$

($(t, \beta), (s, \alpha)$) $\mapsto (t + s, \beta *_M \alpha)$

where

$$(\beta *_M \alpha)(r) = \begin{cases} \alpha(r), & 0 \le r \le s \\ \beta(r-s), & s \le r \le t+s \end{cases}$$

is continuous and defines a strictly associative and unital multiplication on $M(X, x_0)$.

(2) Given an inclusion of spaces $i: A \hookrightarrow X$, recall that A is a **deformation retract** of X if and only if there exists a map $r: X \to A$ (called the retraction map) such that $r \circ i = id_A$ and $i \circ r \simeq id_X$.

Show that $\Omega(X, x_0)$ is a deformation retract of $M(X, x_0)$ by using the retraction map $\varphi \colon M(X, x_0) \to \Omega(X, x_0)$ defined by the formula:

$$\varphi(t,\alpha)(r) = \alpha(tr), \qquad 0 \le r \le 1$$

Exercise 2. Define the notion of a **commutative H-space** and a **commutative H-group**. We know already that the loop space $\Omega(X, x_0)$ of a pointed space (X, x_0) is an H-group. Is this H-group also commutative?

Exercise 3. Let G be an (associative) H-space and let X be a space which is homotopy equivalent to G. Use this homotopy equivalence to show that X has the structure of an H-space as well. If G is a (commutative) H-group, show that X is a (commutative) H-group.

Let us now introduce one more concept from category theory which was already implicit in the lectures. Let \mathcal{C}, \mathcal{D} be two categories and let $F, G: \mathcal{C} \to \mathcal{D}$ be functors between them. A **natural transformation** $\eta: F \to G$ from F to G is a collection of morphisms in \mathcal{D} ,

$$\eta_C \colon F(C) \to G(C), \qquad C \in \mathfrak{C},$$

such that for every morphism $f: X \to Y$ in \mathcal{C} the diagram

$$F(X) \xrightarrow{\eta_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow^{G(f)}$$

$$F(Y) \xrightarrow{\eta_Y} G(Y)$$

is commutative, i.e., we have $G(f) \circ \eta_X = \eta_Y \circ F(f)$.

Exercise 4. Let Ring be the category of commutative rings and ring homomorphisms.

(1) Given a commutative ring R then we can assign to it the group of units R^{\times} and the group $GL_n(R)$ of invertible $(n \times n)$ -matrices with coefficients in R. Show that these two assignments can be extended to functors:

 $(-)^{\times}$: Ring \rightarrow Grp and GL_n : Ring \rightarrow Grp

Show that the determinant operations $\det_R : GL_n(R) \to R^{\times}$ assemble into a natural transformation $\det : GL_n \to (-)^{\times}$.

- (2) Try to find examples of natural transformations in the notes of the first three lectures. Do you know other examples?
- (3) Check the details of the proof omitted in the lecture that π_n actually defines a functor

$$\pi_n \colon \mathsf{Top}_* \to \mathsf{Grp}, \qquad n \ge 1.$$

Show that the natural transformations from π_n to π_m are in bijective correspondence with elements of $\pi_m(S^n, *)$. (Hint: Given such a natural transformation, consider its component at S^n and apply it to $[id_{S^n}]$.)