ALGEBRAIC TOPOLOGY, EXERCISE SHEET 5, 15.10.2014

Exercise 1.

- (1) Show that compositions of Hurewitz and Serre fibrations are again Hurewitz and Serre fibrations respectively.
- (2) Let X, Y, Z be spaces and let $f: X \to Z$ and $g: Y \to Z$ be continuous functions. We define the **pullback** of f and g as the subspace $X \times Y$ of $X \times Y$ given by:

$$X \underset{Z}{\times} Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\}$$

The restrictions to $X \underset{Z}{\times} Y$ of the two projections of the product give us two continuous maps $p_1: X \underset{Z}{\times} Y \to X$ and $p_2: X \underset{Z}{\times} Y \to Y$ making the following diagram commutative:

$$\begin{array}{c} X \times Y \xrightarrow{p_1} X \\ p_2 \downarrow \qquad \qquad \downarrow f \\ Y \xrightarrow{g} Z \end{array}$$

Show that the triple $(X \times Y, p_1, p_2)$ has the following universal property: given a further triple (P, a, b) consisting of a space P and continuous maps $a: P \to X$ and $b: P \to Y$ such that fa = gb, then there exists a unique continuous map

$$h\colon P\to X\underset{Z}{\times} Y$$

such that $p_1h = a$ and $p_2h = b$ (You should draw a diagram!).

(3) Show that Hurewicz fibrations and Serre fibrations are stable under pullbacks. More precisely, in the above pullback diagram, if f is a Serre fibration then so is p_2 , and similarly for Hurewicz fibrations.

Exercise 2. Let $f: Y \to X$ be a map of spaces and let $p: P(f) \to X$ be the mapping fibration of f (see the lecture notes for more details). Prove that the map ϕ in

given by $\phi(y) = (\kappa_{f(y)}, y)$ is a homotopy equivalence which makes the diagram commute. Here, as usual, we denote by $\kappa_{f(y)}$ the constant path at f(y).

Exercise 3. Show that the long exact sequence of a pointed pair (X, A, x_0) constructed in the fourth lecture can be obtained as a special case of the long exact sequence of a fibration. More precisely, consider the mapping fibration $P(i) \to X$ associated to the inclusion $i: (A, x_0) \to (X, x_0)$. (Hint: you might want to use Exercise 1 of the last exercise sheet.)

Exercise 4. Let $p: (E, e_0) \to (X, x_0)$ be a Serre fibration with fiber (F, e_0) . Show that for every n > 1 the connecting map $\delta: \pi_n(X, x_0) \to \pi_{n-1}(F, e_0)$ is a group homomorphism. Conclude that the long exact sequence of a Serre fibration is a long exact sequence of groups (in positive degrees).

Exercise 5.

(1) Suppose we are given Serre fibrations $p: (E, e_0) \to (X, x_0)$ and $p: (E', e'_0) \to (X', x'_0)$. Let $i: (F, e_0) \to (E, e_0)$ and $i': (F', e'_0) \to (E', e'_0)$ be the inclusion of the respective fibres. Show that given two maps of pointed spaces $f: (X, x_0) \to (X', x'_0)$ and $g: (E, e_0) \to (E', e'_0)$ such that p'g = fp then there exists a unique map $h: (F, e_0) \to (F', e'_0)$ such that i'h = gi.

$$(F, e_0) \xrightarrow{i} (E, e_0) \xrightarrow{p} (X, x_0)$$
$$\downarrow^{i} \qquad \qquad \downarrow^{g} \qquad \qquad \downarrow^{f}$$
$$(F', e'_0) \xrightarrow{i'} (E', e'_0) \xrightarrow{p'} (X', x'_0)$$

- (2) Give a precise meaning to the statement 'the long exact sequence of a Serre fibration is natural in the fibration'. Use the previous part to prove this statement.
- (3) Let (X, x_0) be a pointed space. Use the long exact sequence of a Serre fibration to check that we have *natural* isomorphisms $\pi_n(X, x_0) \cong \pi_{n-1}(\Omega(X, x_0), \kappa_0)$ for every $n \ge 1$.

Exercise 6. Let $p: E \to X$ be a Hurewicz fibration, and let $\alpha: I \to X$ be a path from x to y. Use the right lifting property of $E \to X$ with respect to $p^{-1}(x) \times \{0\} \to p^{-1}(x) \times I$ to show that α induces a map $\alpha_*: p^{-1}(x) \to p^{-1}(y)$. Show that the homotopy class of α_* only depends on the homotopy class of α , and that this construction in fact defines a functor on the fundamental groupoid,

$\pi(X) \to \mathsf{Ho}(\mathsf{Top}).$

Conclude that any path $\alpha: I \to X$ induces a homotopy equivalence between the fibers over $\alpha(0)$ and $\alpha(1)$.