ALGEBRAIC TOPOLOGY, EXERCISE SHEET 9, 19.11.2014

Exercise 1. Let X and Y be CW complexes and recall from Lecture 7 that the product $X \times Y$ has a natural CW structure as well.

(1) Endow [0,1] with a nice CW structure and decide which of the maps

are cellular. (The maps i_t are the inclusions $x \mapsto (x, t)$ and p is the projection $(x, t) \mapsto x$.)

- (2) Let $i: (X^{(n)}, *) \to (X, *)$ be the (pointed) inclusion of the *n*-skeleton. Show that the induced map at the level of homotopy groups $\pi_k(X^{(n)}, *) \to \pi_k(X, *)$ is surjective for $k \leq n$ and injective for k < n. Thus, it is an isomorphism in dimensions k < n.
- (3) Let X and Y be CW complexes with no (n+1)-cells. If X and Y are homotopy equivalent, show that $X^{(n)}$ and $Y^{(n)}$ are homotopy equivalent as well.

Exercise 2.

- (1) Let (X, A) be a pair of spaces and let $n \ge 0$. Then the following are equivalent:

 - (a) Every map $(D^n, S^{n-1}) \to (X, A)$ is homotopic relative to S^{n-1} to a map $D^n \to A$. (b) Every map $(D^n, S^{n-1}) \to (X, A)$ is homotopic through such maps to a map $D^n \to A$.
 - (c) Every map $(D^n, S^{n-1}) \to (X, A)$ is homotopic through such maps to a constant map.
 - (d) We have $\pi_n(X, A, a_0) = \pi_n(X, A) \cong 0$ for all $a_0 \in A$.
- (2) Let (X, A) be a CW pair such that the *m*-cells of A and X are the same for all $m \leq n$. Show that $\pi_m(X, A, a_0) = \pi_m(X, A) \cong 0$ for all $a_0 \in A$ and $m \leq n$.

Exercise 3. For each $n \ge 0$, consider the embedding

$$S^n \to S^{n+1}; x \mapsto (x,0)$$

realizing the *n*-sphere as the 'equator' of the (n+1)-sphere. Let $S^{\infty} = \bigcup_{n \geq 0} S^n$ be the union of all spheres, equipped with the weak topology.

- (1) Show that S^{∞} has a natural CW structure and that all inclusions $S^n \to S^{\infty}$ are cellular maps.
- (2) Show that S^{∞} is weakly contractible: for any $x \in S^{\infty}$ and any $n \geq 0$ we have that $\pi_n(S^\infty, x) = 0.$

Exercise 4. Construct a CW complex X with a 0-cell x(n) for each natural number $n \ge 0$ and a 1-cell D_n^1 , $n \ge 1$, which is glued to x(0) at one end and to x(n) on the other. For each natural number $n \geq 1$, let us also consider the segment

$$I_n = \{ t \cdot e^{2\pi i/n}, \quad 0 \le t \le 1 \} \quad \subseteq \quad \mathbb{C} \cong \mathbb{R}^2$$

which has boundary points 0 and $e^{2\pi i/n}$. From these we form the space $Y = \bigcup_{n \ge 1} I_n \subseteq \mathbb{C} \cong \mathbb{R}^2$ endowed with the subspace topology.

- (1) Give a sketch proof of the fact that Y is a closed subspace of \mathbb{C} . Thus, Y is a compact space.
- (2) Construct the obvious map $\psi: X \to Y = \bigcup_{n \ge 1} I_n$ which sends x(0) to the origin $0 \in \mathbb{C}$ and x(n) to $e^{2\pi i/n}$.
- (3) Show that the map ψ is not a homeomorphism.