
HOMOTOPY EXCISION AND THE FREUDENTHAL SUSPENSION

THEOREM

The homotopy excision theorem is a result about relative homotopy groups, or homotopy groups
of pairs. Recall that for a pair (X,A), we defined πi(X,A) as the set of homotopy classes of
maps Ii → X which send the top face Ii−1 × {1} to A and the rest of the boundary J i−1 =
Ii−1×{0} ∪ ∂Ii−1× I to the base point x0 (which we will consistently omit from the notation). In
other words,

πi(X,A) = [(Ii, ∂Ii, J i−1), (X,A, x0)].

This is a pointed set for i = 1, a group for i = 2, and an abelian group for i ≥ 3. Moreover, these
groups fit into a long exact sequence

. . .→ πi(A)→ πi(X)→ πi(X,A)
∂→ πi−1(A)→ . . .

We didn’t define π0(X,A), but we can set π0(X,A) = cok(π0(A)→ π0(X)) so that the long exact
sequence can be prolonged so as to end as . . .→ π0(A)→ π0(X)→ π0(X,A)→ 0.

Recall that the pair (X,A) is n-connected if πi(X,A) = 0, i ≤ n. By the long exact sequence,
this is the same as asking that πi(A) → πi(X) is an isomorphism for i < n and a surjection for
i = n (in other words, that the inclusion A→ X is an n-equivalence). Recall further that the pair
(X,A) is called a relative CW complex if X is obtained from A by successively attaching cells.

The first part of the title refers to the following statement in which we consider a situation as
depicted in the following diagram

C //

��

B

��

A // X.

Theorem 1. (Homotopy excision theorem)
Let C be any space, and let (A,C) and (B,C) be relative CW complexes. Write X = A ∪C B for
the union of A and B (the pushout under C). If (A,C) is m-connected and (B,C) is n-connected,
then

πi(A,C)→ πi(X,B)

is an isomorphism for i < m+ n, and a surjection for i = m+ n.

To put it differently, if C → A is an m-equivalence and C → B an n-equivalence, then the
induced map of pairs (A,C) → (X,B) is an (m + n)-equivalence. The proof of this theorem will
occupy this lecture and part of the next. But before we go into the proof, we will mention the
following important application. Recall the suspension functor Σ(X) = X ∧ S1 which can also
described by the following pushout

X //

��

C ′X

��

CX // ΣX
1
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where CX and C ′X are two copies of the (reduced) cone of X. In the special case of X = Sp, we
have Σ(Sp) ∼= Sp+1 so that the suspension induces a suspension homomorphism (see also Lecture 4)

S : πi(X)→ πi+1(ΣX).

Theorem 2. (Freudenthal suspension theorem)
Let (X,x0) be an (n− 1)-connected CW complex. Then the suspension homomorphism

S : πi(X)→ πi+1(ΣX)

is an isomorphism for i < 2n− 1, and a surjection for i = 2n− 1.

Proof. Notice that the long exact sequence of the pair (Y,A) gives an isomorphism πi(Y )→ πi(Y,A)
for any i if A is contractible, and an isomorphism ∂ : πi+1(Y,A)→ πi(A) if Y is contractible. Now
consider the square:

πi+1(CX,X)

∂∼=
��

// πi+1(ΣX,C ′X)
OO

∼=

πi(X) // πi+1(ΣX)

Since the two copies CX and C ′X of the cone are contractible, we have the two vertical isomorphisms
which are induced by the respective long exact sequences. The upper horizontal map is induced by
the inclusion (CX,X) → (ΣX,C ′X) while the bottom horizontal map can be identified with the
suspension homomorphism, the map showing up in the statement of the theorem. We leave it as an
exercise to verify that the diagram commutes. To prove the theorem, it thus suffices to check that
the upper map is an isomorphism in an appropriate range of i’s. To this end, apply the excision
theorem to Σ(X) = CX ∪X C ′X. Indeed, since CX is contractible, the long exact sequence of the
pair (CX,X) shows that (CX,X) is n-connected if X is (n−1)-connected. So the upper horizontal
map is an isomorphism for i + 1 < 2n, and a surjection for i + 1 = 2n, exactly as stated in the
theorem. �

Example 3. The n-sphere Sn is a CW complex with one 0-cell and one n-cell (n > 0), so is
surely (n− 1)-connected by the cellular approximation theorem. So by the Freudenthal suspension
theorem,

S : πi(S
n)→ πi+1(Sn+1)

is an isomorphism for i < 2n− 1. In particular,

S : πn(Sn)→ πn+1(Sn+1)

is an isomorphism if n < 2n − 1, i.e. if n ≥ 2. We already know that π1(S1) ∼= Z, while the long
exact sequence of the Hopf fibration

S1 → S3 → S2

together with the fact that πi(S
3) = 0 for i < 3 readily shows that ∂ : π2(S2) → π1(S1) is an

isomorphism. Thus,

πn(Sn) ∼= Z, for all n ≥ 1.

Perspective 4. For an arbitrary pointed CW complex X, the Freudenthal suspension theorem
and the connectivity of ΣX give that ΣnX is always (n− 1)-connected. Thus, the map

S : πi(Σ
nX)→ πi+1(Σn+1X)
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is an isomorphism for i < 2n− 1. This implies that for a fixed value of k, the maps in the sequence

πk(X)→ πk+1(ΣX)→ πk+2(Σ2X)→ . . .→ πk+i(Σ
iX)→ πk+i+1(Σi+1X)→ . . .

eventually become isomorphisms. (More precisely, πk+i(Σ
iX) → πk+i+1(Σi+1X) is certainly an

isomorphism for k+ i < 2i− 1, or k+ 1 < i.) The eventual value of this sequence is called the k-th
stable homotopy group of X, denoted

πsk(X).

These (abelian) stable homotopy groups are still extremely informative, while being more com-
putable than the ordinary (‘unstable’) ones. In a sense, they sit between the unstable homotopy
groups and the homology groups and form a central subject of study in algebraic topology.

More generally, given a sequence of pointed spaces X0, X1, X2, . . . related by structure maps
σk : ΣXk → Xk+1, one can form a sequence

πk(X0)→ πk+1(X1)→ πk+2(X2)→ . . .→ πk+i(Xi)→ πk+i+1(Xi+1)→ . . .

(by using the suspension homomorphisms together with the homomorphism induced by the struc-
ture maps). Such sequences of spaces, called spectra, are the main objects of ‘stable homotopy
theory’. Any pointed space X gives rise to a spectrum by taking Xn = ΣnX, the suspension
spectrum Σ∞X of X. In a specific sense, the passage to the (homotopy) category of spectra is a
good approximation of the (homotopy) category of spaces, which has more structure and is more
tractable.

We will now turn to the proof of the excision theorem, and start with a few reductions to simpler
cases. The first one is concerned with the dimension of the cells to be added to C in an m-connected
pair (A,C). Notice that if A is obtained from C by attaching cells of dimension larger than m only,
then the pair (A,C) is automatically m-connected (see an earlier lecture). In fact, the proof of the
CW approximation theorem shows that the converse is also true as the following lemma shows.

Lemma 5. Let i : C → A be an inclusion defining an n-connected pair of spaces (A,C). Then
there is a relative CW complex i′ : C → A′ and a weak homotopy equivalence e : A′ → A for which
ei′ = i, and where A′ is obtained from C by attaching cells of dimension > n only.

Proof. We follow the same strategy as in the CW approximation theorem, and build up a CW
complex by adding cells which represent elements of πi(A) respectively kill elements which should

not be there. Now all of πi(A) for i < n is already represented by maps Si → C since πi(C)
∼=→

πi(A) for i < n, so the first step in this process consists of killing the kernel of the surjection
πn(C)→ πn(A) by attaching cells to A. This gives an extension

C → Ā′n+1

by (n+ 1)-cells, together with a map Ā′n+1 → A making the diagram

C //

��

Ā′n+1

}}
A

commute. In the next step, we attach (n + 1)-cells to the base point of Ā′n+1 to represent all

elements (or a set of generators) of πn+1(A), giving a space A′n+1 ⊇ Ā′n+1 and an extension of the
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diagram by a map:

C //

��

Ā′n+1

ww

// A′n+1

ssA

Next, we attach (n + 2)-cells to A′n+1 to kill the kernel of πn+1(A′n+1) → πn+1(A), giving an

extension Ā′n+2 together with a map to A. Continuing like this, we obtain a sequence

C //

��

Ā′n+1

ww

// A′n+1

ss

// Ā′n+2

qq

// A′n+2

qq

// . . .

A

and we let A′ be the union (colimit) of this sequence with the weak topology. This space A′ together
with the induced maps C → A′ → A verifies the assertion in the lemma. �

If in Lemma ?? we start with a relative CW complex C → A, then by the relative version of
the Whitehead Theorem, there exists a map e′ : A→ A′ with e′i = i′ and homotopies relative to C
between ee′ and 1A, and between e′e and 1A′ . Thus, if we apply Lemma ?? to both C → A and
C → B as in the statement of the excision theorem, we get homotopy equivalences e, e′ and f, f ′

relative to C,

C

=

  

//

��

B′

��

��

C //

��

B

��

EE

A //

xx

X

��

A′

88

// X ′

YY

and hence for X ′ = A′ ∪C B′ well-defined homotopy equivalences

X

e′∪f ′
((

X ′.

e∪f

ee

Thus we conclude:

Reduction 1. It suffices to prove the excision theorem for extensions C → A by cells of di-
mension larger than m and C → B by cells of dimension larger than n.

The next reduction concerns the number of cells one attaches to C to obtain A and B respec-
tively. Let us say that a pair of extensions C → A and C → B as in Reduction 1 is of size (p, q)
if A is obtained by attaching p cells (of dimension > m) to C, and B by attaching q cells (of
dimension > n).
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Reduction 2. If the excision theorem holds for extensions of size (1, 1), then it holds for ex-
tensions of arbitrary size (p, q) with p, q ≥ 1.

Proof. Let us show by induction that the excision theorem holds for all extensions of type (p, 1).
Given such an extension with p > 1 let us write

A = A′ ∪ e, X ′ = A′ ∪C B
so that we have two pushout squares

C //

��

B

��

A′ //

��

X ′

��

A // X

in which the upper square is an extension of size (p − 1, 1) and the lower one an extension of
size (1, 1). By induction assumption the two maps of pairs (A′, C)→ (X ′, B) and (A,A′)→ (X,X ′)
are (m+n)-equivalences and we want to conclude the same for (A,C)→ (X,B). The above diagram
gives us a map of triples (A,A′, C) → (X,X ′, B) so that we obtain by Lemma ?? the following
diagram

πi+1(A,A′)
∂ //

α

��

πi(A
′, C)

i∗ //

β

��

πi(A,C)
j∗ //

γ

��

πi(A,A
′)

∂ //

δ

��

πi−1(A′, C)

ε

��

πi+1(X,X ′)
∂
// πi(X

′, B)
u∗
// πi(X,B)

v∗
// πi(X,X

′)
∂
// πi−1(X ′, B).

(Note that we needed the naturality statement of that lemma to get this commutative ladder.) To
show that γ is an isomorphism in dimensions i < n + m it suffices to observe that our induction
assumption guarantees that β, δ and ε are isomorphisms while α is surjective. Thus, by the 5-
Lemma (Lemma ??), we conclude that γ is an isomorphisms. Similarly, for i = m+n our induction
assumption implies that β and δ are surjective and that ε is an isomorphism. Thus, again by the
5-Lemma, also the map γ is surjective and the map (A,C)→ (X,B) is hence an (m+n)-equivalence.

By a second induction over q we can now show that the excision theorem holds for all extensions
of size (p, q). In fact, if q > 1 then let us write

A = B′ ∪ e, X ′′ = A ∪C B′

so that we have two pushout squares

C //

��

B′ //

��

B

��

A // X ′′ // X.

The map (A,C)→ (X,B) factors as (A,C)→ (X ′′, B′)→ (X,B). By induction assumption, both
maps are (m+ n)-equivalences so that the same is the case for (A,C)→ (X,B). �

Lemma 6. For pointed inclusions of subspaces A ⊆ B ⊆ X the sequence of inclusions of pairs

(B,A)
k→ (X,A)

l→ (X,B)
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induces a long exact sequence

. . .→ πi(B,A)
k∗→ πi(X,A)

l∗→ πi(X,B)
∂→ πi−1(B,A)

k∗→ . . .

with ∂ being defined by πi(X,B)
∂→ πi−1(B) → πi−1(B,A). The connecting homomorphism is

natural in maps of triples in the obvious sense.

Proof. We will just prove exactness at πi(X,A), and leave the other cases and the naturality as
exercise. Also, we will write the proof for abelian groups, and leave as an exercise that the lemma
also holds in those low degrees where one just has groups or even pointed sets (exercises!). It is
clear that the composition

πi(B,A)
k∗→ πi(X,A)

l∗→ πi(X,B)

is the zero map. To prove that ker(l∗) ⊆ im(k∗), expand the diagram to

πi(B)
i∗ //

w∗

��

πi(X)
v∗ //

u∗

��

πi(X,B)

=

��

πi(B,A)
k∗ //

d

��

πi(X,A)

∂

��

l∗ // πi(X,B)

∂

��

πi−1(A) =
// πi−1(A)

j∗
// πi−1(B)

where ∂, ∂, and d are boundary maps for pairs, while we use the following names for inclusions:

A
= //

j

��

A
j

//

=

��

B

��

B

w

��

i // X

u

��

v // (X,B)

=

��

(B,A)
k
// (X,A)

l
// (X,B)

Now suppose x ∈ πi(X,A) with l∗(x) = 0. Then j∗∂x = ∂l∗x = 0, so ∂x = d(y) for some
y ∈ πi(B,A). Then ∂(k∗(y) − x) = dy − ∂x = 0, so k∗(y) − x = u∗(z) for some z ∈ πi(X). But
then v∗z = l∗u∗z = l∗k∗y − l∗x = 0, so z = i∗t for some t ∈ πi(B). Now

x = k∗y − u∗(z) = k∗y − u∗i∗t = k∗(y − w∗t),

showing that any x ∈ ker(l∗) lies in the image of k∗. �

We refer to the sequence of Lemma ?? as the long exact sequence of the (pointed) triple
(X,B,A). Note that the definition of the connecting homomorphism of this sequence uses the
connecting homomorphism of the long exact sequence of the pair (X,B).
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Lemma 7. (5-lemma)
Consider a diagram of abelian groups (or groups) and homomorphisms with exact rows

A
f
//

α

��

B
g
//

β

��

C
h //

γ

��

D
i //

δ
��

E

ε

��

A′
f ′
// B′

g′
// C ′

h′
// D′

i′
// E′.

(1) If β and δ are surjective while ε is injective then γ is surjective.
(2) If β and δ are injective while α is surjective then γ is injective.

In particular, β and δ are isomorphisms, ε is injective, and α is surjective, then also γ is an
isomorphism.

Proof. Again, we write the proof for abelian groups and leave the verification for the relevant cases
of groups and pointed sets as an exercise.

(1) To check that γ is onto consider c′ ∈ C ′. Since δ is onto, there is a d ∈ D such that
δ(d) = h′(c′). Then ε(i(d)) = i′(δ(d)) = i′(h′(c′)) = 0. Since ε is injective it follows that
i(d) = 0, i.e., that d ∈ ker(i) = im(h). Thus, there is a c ∈ C such that h(c) = d. Now,

h′(c′ − γ(c)) = h′(c′)− δ(h(c)) = h′(c′)− δ(d) = h′(c′)− h′(c′) = 0,

hence c′ − γ(c) = g′(b′) for some b′ ∈ B′. Since β is surjective there exists b ∈ B such that
β(b) = b′. We conclude that c′ ∈ im(γ) by the final calculation

γ(c+ g(b)) = γ(c) + g′(β(b)) = γ(c) + g′(b′) = γ(c) + (c′ − γ(c)) = c′.

(2) Let c ∈ C be such that γ(c) = 0. Then h′(γ(c)) = δ(h(c)) = 0. Since δ is injective, we
deduce that h(c) = 0 and hence c = g(b) for some b ∈ B. It suffices to show that b ∈ im(f)
since then gf = 0. Now g′(β(b)) = γ(g(b)) = γ(c) = 0 tells us that β(b) = f ′(a′) for some
a′ ∈ A′. Using the surjectivity of α we conclude that a′ = α(a) for some a ∈ A. Thus, the
element f(a) satisfies β(f(a)) = f ′(α(a)) = β(b) and the injectivity of β implies f(a) = b
as intended.

Combining these two statements immediately implies the remaining claim. �

As a further special case, if the four morphisms α, β, δ, and ε are isomorphisms then so is the fifth γ.
After all these preparations, the proof of the Excision Theorem will be completed by the following

proposition.

Proposition 8. Let C be a space, and define spaces A = C ∪ e, B = C ∪ e′, and X = A ∪ B
by attaching cells of dimension > m and > m′, respectively. Then πi(A,C) → πi(X,B) is an
isomorphism for i < n+m and a surjection for i ≤ n+m.

Proof. We will only prove surjectivity for i ≤ n+m. The proof of injectivity of i < n+m proceeds
in exactly the same way, and is left as an exercise. If x ∈ e◦ and y ∈ e′◦ are points in the interior
of the cells e and e′, there is a diagram

πi(A,C) //

∼=
��

πi(X,B)

∼=
��

πi(X − {y}, X − {x, y}) // πi(X,X − {x})
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where the vertical maps are isomorphisms. Indeed, the space X − {x} is homotopy equivalent
to B because one can contract e− {x} to its boundary; and similarly for X − {y} and X − {x, y}.
Consider an arbitrary map f : Ii → X which represents an element of πi(X,B) for i ≤ m + n.
This means that f maps the top face Ii−1 × {1} into B and sends the rest of the boundary
J i−1 = Ii−1 × {0} ∪ ∂(Ii−1) × I to the base point x0. By the above diagram, it suffices to prove
that f is homotopic to a map h = h1 through a homotopy hs, s ∈ [0, 1] such that

(a) h avoids the point y, i.e., h : Ii → X − {y},
(b) in addition, for every s ∈ [0, 1], the restriction of hs to the top face of Ii avoids the point x,
(c) for each s ∈ [0, 1], hs maps J i−1 to the base point.

Let e1/2 and e′1/2 be small balls of radius 1/2 (or for that matter, any non-empty open subsets

whose closures are contained in the interior of e and e′, respectively), and let

U = f−1(e◦1/2 ∪ e
′◦
1/2).

We will now use the basic fact that any continuous map between manifolds can be approximated
by a homotopic smooth map (see e.g. the book by Bott, Tu). Since Ū is disjoint form J i−1, this
gives a map g : Ii → X such that g = f on J i−1, and the restriction of g is smooth as a map
g : U → e◦1/2 ∪ e

′◦
1/2. Moreover, by choosing g as well as the homotopy close to f , we can assume

that the restriction of g as well as that of the homotopy g ' f to the top face of Ii both avoid x.
Let us write V = g−1(e◦1/4) and V ′ = g−1(e′◦1/4). Then, since g is close to f we can assume that the

closure of V ∪ V ′ is contained in U . In other words, g is smooth over the entire preimage of these
two small balls of diameter 1/4. Also, write π : Ii = Ii−1 × I → Ii−1 for the projection away from
the last coordinate. We claim that there exist points x and y with

(1) x ∈ e◦1/4, y ∈ e′◦1/4, and πg−1(x) ∩ πg−1(y) = ∅.

Indeed, let V ×Ii−1 V ′ be the pullback along π, consisting of pairs (v, v′) with v ∈ V, v′ ∈ V ′ and
π(x) = π(v′), and consider the smooth map

(2) g × g : V ×Ii−1 V ′ → e◦1/4 ∪ e
′◦
1/4.

Then a pair of points (x, y) satisfies (??) if and only if it is not in the image of the map (??). So
we only need to check that g × g is not surjective. This is simply a matter of counting dimensions:
V ×Ii−1 V ′ is a manifold of dimension i+ 1, and since i ≤ m+ n we have

i+ 1 < (m+ 1) + (n+ 1) ≤ dim(e) + dim(e′) = dim(e◦1/4 × e
′◦
1/4).

So any regular value (x, y) of (??) cannot be in its image (cf. Guillemin-Pollack, page 21). Since
πg−1(x) and πg−1(y) are disjoint closed subsets of Ii−1, there exists a continuous (even smooth)
map θ : Ii−1 → I with

θ |πg−1(x)= 0 and θ |πg−1(y)= 1.

Now define the homotopy

hs : Ii−1 × I → X, s ∈ [0, 1],

by

hs(z, t) = g(z, t− stθ(z)).
Notice that h0 = g. We claim that hs and h1 = h satisfy requirements (a)-(c).

For (a), suppose to the contrary that h1(z, t) = y, i.e., g(z, 1− θ(z)) = y. Then z ∈ πg−1(y) so
θ(z) = 1, whence g(z, 0) = y. But g (like f) maps the bottom face of Ii = Ii−1 × I to the base
point x0 which does not lie in e′◦1/2, so this is impossible.



HOMOTOPY EXCISION AND THE FREUDENTHAL SUSPENSION THEOREM 9

For (b) we argue similarly: Suppose hs(z, 1) = x. Then z ∈ πg−1(x) so θ(z) = 0, whence
g(z, 1− sθ(z)) = g(z, 1) = x. This contradicts that g avoids x on the top face of Ii.

Finally, for (c), take (z, t) ∈ J i−1. Then either t = 0 whence hs(z, t) = g(z, t), or z ∈ ∂Ii−1, and
in both cases hs(z, t) = x0 because g agrees with f on J i−1. �


