
LECTURE 3: HIGHER HOMOTOPY GROUPS

In this section we will introduce the main objects of study of this course, the homotopy groups

πn(X,x0)

of a pointed space (X,x0), for each natural number n ≥ 2. (Recall that the (pointed) set of
components π0(X,x0) and the fundamental group π1(X,x0) have already been defined.) One goal
of this course is to develop some techniques which will allow us to calculate these homotopy groups
in interesting examples.

1. Higher homotopy groups

We begin by introducing some notation for important spaces. Let us denote by

In = [0, 1]× . . .× [0, 1] ⊆ Rn

the n-cube and ∂In ⊆ In for its boundary. Thus,

∂In = {(t1, . . . , tn) ∈ In | at least one of the ti ∈ {0, 1}}.

Let us agree on the convention that ∂I0 = ∅ is empty. Note that the boundary satisfies (and is
completely determined by ∂I and) the Leibniz formula

∂(In × Im) = (∂In)× Im ∪ In × (∂Im).

The n-sphere is denoted by

Sn = {x ∈ Rn+1 | ‖x‖ = 1}.
Note that there are homeomorphisms In/∂In ∼= Sn; we will write [t1, . . . , tn] ∈ Sn for the image of
(t1, . . . , tn) ∈ In under the composition In → In/∂In ∼= Sn.

The definition of the underlying (pointed) set of πn(X,x0) is simple enough:

πn(X,x0) = [(In, ∂In), (X,x0)]

Thus, an element [α] of πn(X,x0) is represented by a map α : In → X sending the entire bound-
ary ∂In to the base point x0; and two such α and α′ represent the same element of πn(X,x0) if
and only if there is a homotopy H : In × I → X such that

H(∂In × I) = x0, H(−, 0) = α, and H(−, 1) = α′.

Obviously, a map f : (X,x0)→ (Y, y0) induces a function

f∗ : πn(X,x0)→ πn(Y, y0)

which in fact only depends on the homotopy class of f . Just like for the fundamental group, we
have

Proposition 3.1.

(i) For each pointed space (X,x0) and n ≥ 1, the set πn(X,x0) is a group, the n-th homotopy
group of (X,x0).
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(ii) For each map (X,x0) → (Y, y0), the induced operation πn(X,x0) → πn(Y, y0) is a group
homomorphism, defining a functor πn : Top∗ → Grp. The functor πn is homotopy invariant,
i.e., πn(f) = πn(g) for homotopic maps f ' g.

Proof. For two elements [α] and [β] in πn(X,x0), the product [β] ◦ [α] is represented by the map
β ∗ α : In → X defined by:

(β ∗ α)(t1, . . . , tn) =

{
α(2t1, t2, . . . , tn) , 0 ≤ t1 ≤ 1/2
β(2t1 − 1, t2, . . . , tn) , 1/2 ≤ t1 ≤ 1

Notice that the definition agrees with the known group structure on the fundamental group for n =
1. The proof that ◦ is well-defined and associative, that the constant map κx0

: In → X represents
a neutral element, and that each element [α] has an inverse represented by

α−1(t1, . . . , tn) = α(1− t1, t2, . . . , tn)

is exactly the same as for π1, and we leave the details as an exercise. Also the functoriality is an
exercise. �

Remark 3.2. Let X be a space and let x0, x1 ∈ X. In general, πn(X,x0) and πn(X,x1) can be
very different. In fact, homotopy groups only ‘see the path-component of the base point’. More
precisely, let (X,x0) be a pointed space and let X ′ = [x0] be the path-component of x0. Then the
inclusion i : (X ′, x0) → (X,x0) induces an isomorphism i∗ : πn(X ′, x0) → πn(X,x0) for all n ≥ 1.
This follows immediately from the fact that Sn is path-connected for n ≥ 1. We will see later that
any path between two points x0, x1 ∈ X induces an isomorphism πn(X,x0) ∼= πn(X,x1).

Remark 3.3.

(i) Of course it is not only the validity of the proposition which is important, but also the
explicit description of the product. However, it can be shown that this group structure is
unique for n ≥ 2.

(ii) We said that the proof of the group structure is analogous to the argument for π1. In fact,
there is a more formal way to see this, as we will see below.

One may object that the definition of the group structure is a bit unnatural, because the first
coordinate t1 is given a preferred rôle in the definition of the group structure. We could also define
a product as follows:

(β ∗i α)(t1, . . . , tn) =

{
α(t1, . . . , 2ti, . . . , tn) , 0 ≤ ti ≤ 1/2
β(t1, . . . , 2ti − 1, . . . , tn) , 1/2 ≤ ti ≤ 1

The explanation is that these two products induce the same operation on homotopy classes. The
proof of this fact is given by the following observation (Lemma 3.4) together with the so-called
Eckmann-Hilton argument (Proposition 3.5).

Lemma 3.4. The operation ∗ distributes over the operation ∗i in the sense that

(α ∗i β) ∗ (γ ∗i δ) = (α ∗ γ) ∗i (β ∗ δ)

for all maps α, β, γ, δ : (In, ∂In)→ (X,x0).

Proof. We only have to look at the case n = 2, i = 2. Then the expressions on the left and right
correspond to the same subdivisions of the square so define identical maps (draw the picture!). �
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Proposition 3.5. (‘Eckmann-Hilton trick’)
Let S be a set with two operations •, ◦ : S × S → S having a common unit e ∈ S. Suppose • and ◦
distribute over each other, in the sense that

(α • β) ◦ (γ • δ) = (α ◦ γ) • (β ◦ δ)
Then • and ◦ coincide, and define a commutative and associative operation on S.

Proof. Taking β = e = γ in the distributive law yields α ◦ δ = α • δ, while taking α = e = δ
yields β ◦ γ = γ • β. The associativity is obtained by taking β = e in the distributive law. �

Applying this proposition to ∗ and ∗i shows that these define the same operation on πn(X,x0)
for n ≥ 2. The proposition also shows:

Corollary 3.6. The groups πn(X,x0) are abelian for n ≥ 2.

Remark 3.7. For this reason, one often employs additive notation for the group structure on πn(X,x0),
writing:

[β] + [α] = [β ∗ α]
0 = [κx0

]
−[α] = [α−1]

There is yet another way of describing πn(X,x0).

Proposition 3.8.

(i) There is a bijection of sets natural in the pointed space (X,x0):

[(Sn, ∗), (X,x0)]
∼=→ πn(X,x0)

(ii) The group structure on [(Sn, ∗), (X,x0)] induced by this bijection coincides with the one
obtained by composition with the ‘pinch map’

∇ : Sn → Sn ∨ Sn

defined by collapsing the equator in Sn to a single point.

Proof. Part (i) follows immediately from the isomorphism

(In/∂In, ∗)→ (Sn, ∗).
For part (ii), recall from the exercises that the wedge ∨ defines a coproduct in the category of
pointed spaces, so that two maps α, β : (Sn, ∗)→ (X,x0) together uniquely define a map

α ∨ β : (Sn ∨ Sn, ∗)→ (X,x0).

Thus we get an induced operation on [(Sn, ∗), (X,x0)] defined by

β ∗ α = (α ∨ β) ◦ ∇
It is easy to check that this corresponds to the operation ∗ on maps from (In, ∂In), once one takes
the equator in Sn to be the image of {t1 = 1/2} ⊆ In under the map In → In/∂In ∼= Sn. �

Example 3.9. For the one-point space ∗ ∈ Top∗ there is precisely one pointed map Sn → ∗ for
each n ≥ 0. Thus we have

π0(∗) ∼= ∗, π1(∗) ∼= 1, and πn(∗) ∼= 0, n ≥ 2.

We will refer to this by saying that πn(∗) is trivial for all n ≥ 0.

This example together with the homotopy invariance immediately gives us the following.
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Corollary 3.10. Let f : (X,x0) → (Y, y0) be a pointed homotopy-equivalence. Then the induced
map

f∗ : πn(X,x0)→ πn(Y, y0)

is an isomorphism. In particular, πn(X,x0) is trivial for all choices of base points in a contractible
space X and all n ≥ 0.

Proof. Let g : (Y, y0)→ (X,x0) be an inverse pointed homotopy equivalence so that we have:

g ◦ f ' idX rel x0 and f ◦ g ' idY rel y0

Homotopy invariance gives g∗ ◦ f∗ = (g ◦ f)∗ = id, and similarly f∗ ◦ g∗ = id. For the second claim,
given a contractible space X and x0 ∈ X, it suffices to consider the pointed homotopy equivalence
(X,x0)→ ∗. �

We will later see that these groups πn(X,x0) are non-trivial and highly informative, but we need
to develop (or know) a little more theory before we can make this precise. However, assuming a bit
of background knowledge, we observe the following.

Example 3.11. (Preview of examples)

(i) The identity map id : Sn → Sn defines an element of πn(X,x0). If you know something
about degrees, you know that the constant map has degree zero while the identity has degree
1. It is a fact that the degrees of homotopic maps coincide, we conclude that 0 6= [id] in
πn(Sn, ∗). In fact, we will show that there is an isomorphism πn(Sn, ∗) ∼= Z and that [id]
is a generator. This could be proved, e.g., using singular homology but we will obtain this
calculation as a consequence of the homotopy excision theorem.

(ii) If you know a bit of differential topology then you know that any map Sk → Sn is homotopic
to a smooth map, and that a smooth map f : Sk → Sn cannot be surjective if k < n. So
such a map f factors as a composition

Sk → Sn − {x} ∼= Rn → Sn

for some point x ∈ Sn not in the image of f . The contractibility of Rn implies that f is
homotopic to a constant map. Thus,

πk(Sn, ∗) ∼= 0, k < n.

We will later deduce this result from the cellular approximation theorem.
(iii) Consider the scalar multiplication on the complex vector space of dimension 2,

µ : C× C2 → C2.

When we restrict to the complex numbers, respectively vectors of norm 1, we obtain a map

µ : S1 × S3 → S3,

an action of the circle-group on the 3-sphere. It can be shown that the orbit space of
this action is S2. The quotient map S3 → S2 is the famous Hopf fibration, and defines a
non-zero element in π3(S2, ∗).
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2. H-spaces and H-groups

Let us now examine loop spaces in some more detail. Recall the construction of the loop space
Ω(X,x0) associated to a pointed space (X,x0), and the isomorphism

π1(X,x0) ∼= π0(Ω(X,x0)).

The group structure on π1(X,x0) comes from a ‘group structure up to homotopy’ on Ω(X,x0).
Explicitly, writing

H = Ω(X,x0)

and e = κx0 ∈ H for the constant loop at x0, there is a multiplication map on H given by the
concatenation:

µ : H ×H → H : (β, α) 7→ β ∗ α
This multiplication is associative up to homotopy in the sense that the following two maps are
homotopic:

H ×H ×H
id×µ

//

µ×id
��

H ×H

µ

��

(γ, β, α)
� // (γ, β ∗ α)

_

��

(γ, β, α)
_

��

H ×H
µ

// H γ ∗ (β ∗ α) (γ ∗ β, α) � // (γ ∗ β) ∗ α

Moreover, this multiplication is unital up to homotopy, i.e., we have homotopies from id to µ◦(e×id)
and µ ◦ (id× e):

H

id
##

e×id
// H ×H

µ

��

H
id×e
oo

id
{{

α � // (e, α)
_

��

(α, e)
_

��

α�oo

H e ∗ α α ∗ e
Indeed, these homotopies are given by the usual reparametrization homotopies. A pointed space
(H, e) with such an additional structure is called an (associative) H-space (or Hopf space).

Given any such H-space (H, e), composition with µ defines an associative multiplication on the
set of homotopy classes of maps

[(Y, y0), (H, e)]

for an arbitrary pointed space (Y, y0). Moreover, this ‘multiplicative structure’ is natural in (Y, y0).
(If you do not know what we mean by this naturality, then see the exercise sheet.)

Moreover, the associative multiplication defines a group structure on this set if H has a homo-
topy inverse, i.e., if there is a map i : H → H such that the following diagram commutes up to
homotopies:

H

e
""

i×id
// H ×H

µ

��

H
id×i
oo

e
||

α
� // (i(α), α)

_

��

(α, i(α))
_

��

α
�oo

H i(α) ∗ α α ∗ i(α)

In this case (H, e) is called an H-group. Thus, Ω(X,x0) is an H-group, and for each pointed space
(Y, y0) the set [(Y, y0),Ω(X,x0)] carries a natural group structure. For the one-point space ∗ ∈ Top∗,
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this defines the usual group structure on:

[∗,Ω(X,x0)] ∼= π0(Ω(X,x0)) ∼= π1(X,x0)

Exercise 3.12. Define the notion of a commutative H-space and a commutative H-group. Is the
loop space of a pointed space with the concatenation pairing a commutative H-group?

Theorem 3.13. For every n ≥ 1, there is a natural isomorphism of groups:

πn(X,x0) ∼= πn−1(Ω(X,x0))

Let us begin with a lemma. Recall our notation [x, y] ∈ X ∧ Y for points in a smash product.
Moreover, let us use a similar notation for elements in a quotient space, i.e., we will write [x] ∈ X/A.
For convenience, we will drop base points from notation in the next lemma and we use In/∂In as
our model for the n-sphere.

Lemma 3.14. The following map is a pointed homeomorphism:

Sn ∧ Sm → Sn+m :
[
[t1, . . . , tn], [t′1, . . . , t

′
m]

]
7→ [t1, . . . , tn, t

′
1, . . . , t

′
m]

Proof. One checks directly that this is a well-defined continuous bijection between compact Haus-
dorff spaces and hence a homeomorphism. �

This map can be described as:

Sn ∧ Sm = (In/∂In) ∧ (Im/∂Im)

= (In/∂In × Im/∂Im)/(∗ × Im/∂Im ∪ In/∂In × ∗)
∼= In × Im/(∂In × Im ∪ In × ∂Im)
∼= In+m/∂In+m

= Sn+m

Proof. (of Theorem 3.13). The multiplication on πn−1(Ω(X,x0)) is the ‘loop multiplication’. We
already know from an earlier lecture that there is a natural isomorphism:

[(Sn−1, ∗),Ω(X,x0)] ∼= [(Sn−1 ∧ S1, ∗), (X,x0)]

Using the homeomorphism of the above lemma, it is immediate that the pairing on [(Sn, ∗), (X,x0)]
induced by the loop multiplication is ∗n, the ‘concatenation with respect to the last coordinate’.
But we already know that this is identical to the group structure on πn(X,x0). �

If we look at the theorem for n ≥ 2, we see that πn−1(Ω(X,x0)) has two group structures: one is
the group structure on πn−1 for any pointed space, and the other is an instance of the group structure
on [(Y, y0), (H, e)] for any H-group H, in this case for Y = Sn−1 and H = Ω(X,x0). Moreover, these
group structures distribute over each other. Indeed, the multiplication µ : H ×H → H induces a
group homomorphism

µ∗ : πn−1(H, e)× πn−1(H, e)→ πn−1(H, e)

and this precisely means that the multiplication coming from the H-group distributes over the one
coming from πn−1. So, by Eckmann-Hilton (Proposition 3.5), the two multiplications coincide and
are commutative.

Corollary 3.15. The fundamental group π1(H, e) of an H-group (H, e) is abelian.
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We now come to a different model for the loop space. We have seen that Ω(X,x0) has a
multiplication which is associative and unital ‘up to homotopy’. One may wonder whether there is
a way to make this multiplication strictly associative and unital. For a general H-space this need
not be possible. But in this special case there is an easy way to do this. Let M(X,x0) be the
space of Moore loops (named after J. C. Moore). Its points are pairs (t, α) where t ∈ R, t ≥ 0,
and α : [0, t] → X is a loop at x0 of length t (i.e., α(0) = x0 = α(t)). We can topologize this set
as a subspace of R ×X [0,∞), identifying a path α : [0, t] → X with the map [0,∞) → X which is
constant on [t,∞), and the resulting space is the Moore loop space. Then there is a continuous and
strictly associative multiplication on M(X,x0), given by

(t, β) · (s, α) = (t+ s, β ∗M α)

where:

(β ∗M α)(r) =

{
α(r) , 0 ≤ r ≤ s
β(r − s) , s ≤ r ≤ t+ s

A strict unit for this multiplication is (0, κx0
).

The space M(X,x0) is homotopy equivalent to Ω(X,x0). Indeed there are maps

Ω(X,x0)
ψ
//
M(X,x0),

φ
oo

ψ is simply the inclusion, while φ is defined by

φ(t, α)(r) = α(t · r), 0 ≤ r ≤ 1.

Then obviously φ ◦ ψ is the identity, while

Hs(t, α) =

(
t

(1− s) + st
, α(((1− s) + st)) · −)

)
defines a homotopy from H1 = ψ ◦ φ to the identity H0.

Remark 3.16. We just observed that the loop space and the Moore loop space are homotopy
equivalent spaces. Note that the respective H-group structures correspond to each other under
these homotopy equivalences. However the multiplications have different formal properties: the
Moore loop space is strictly associative while the loop space is only associative up to homotopy.
Thus we see that a space X homotopy equivalent to a space with a strictly associative multiplication
does not necessarily inherit the same structure. But it is easy to see that X can be turned into an
H-space that way. To put it as a slogan:

‘strictly associative multiplications do not live in homotopy theory’

As we already mentioned not all H-spaces can be rectified in the sense that they would be homotopy
equivalent to spaces with a strictly associative multiplication. One might wonder what additional
structure would be needed for this to become true. There is an answer to this question lying beyond
the scope of these lectures. Nevertheless, these questions and the more general search for homotopy
invariant algebraic structures initiated the development of a good deal of mathematics.

Let us formalize the notion of a homotopy invariant functor. Let C be an arbitrary category.
Then a functor F : Top∗ → C is homotopy invariant if pointed maps which are homotopic relative
to the base point always have the same image under F :

f ' g implies F (f) = F (g)
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Now, note that there is a canonical functor

γ : Top∗ → Ho(Top∗)

which is the identity on objects and which sends a pointed map to its pointed homotopy class.

Exercise 3.17.

(i) The above assignments, in fact, define a functor γ : Top∗ → Ho(Top∗) and this functor is
homotopy invariant.

(ii) Let C be a category. A functor F : Top∗ → C is homotopy invariant if and only if there is a
functor F ′ : Ho(Top∗) → C such that F = F ′ ◦ γ : Top∗ → C. In this case the functor F ′ is
unique.

(iii) Redo a similar reasoning for the categories Top and Top2.

Thus a homotopy invariant functor ‘is the same thing’ as a functor defined on the homotopy category
of (pointed or pairs of) spaces. In particular, we have:

π0 : Ho(Top∗)→ Set∗, π1 : Ho(Top∗)→ Grp, and πn : Ho(Top∗)→ Ab


