LECTURE 4: RELATIVE HOMOTOPY GROUPS
AND THE ACTION OF THE FUNDAMENTAL GROUP

In this section we will introduce relative homotopy groups of a (pointed) pair of spaces. Associated
to such a pair we obtain a long exact sequence in homotopy relating the absolute and the relative
groups. This and related long exact sequences are useful in calculations as we will see later.
Moreover, we want to clarify the role played by the choice of base points. Expressed in a fancy
way, we will show that the assignment xg — m,(X,zo) defines a functor on the fundamental
groupoid 7(X) of X. This encodes, in particular, an action of the fundamental group on higher
homotopy groups.

1. RELATIVE HOMOTOPY GROUPS

To begin with let us consider a pointed space (X, xzo) and a subspace A C X containing the
base point xyp. Thus we have an inclusion of pointed spaces i: (A,x9) — (X, zo) and we refer
to (X, A, xg) as a pointed pair of spaces. The inclusion induces a map at the level of homotopy
groups (or sets)

s (A, 20) = (X, o), n > 0.
which, in general, is not injective. A homotopy class a € m,(A,xo) lies in the kernel of i, if for
any map f: (I",0I") — (A, xzo) representing it the induced map i o f: (I",0I") — (X, x0) is
homotopic to the constant map x;,. Such a homotopy is a map H: I" x I — X satisfying the
following relations:
H(_al):fa H(—,O):Iﬁ‘/wO’ and H|BI"><I: Rzg
Thus, if we denote by J™ the subspace of the boundary 0I"*! = I x 91 U OI™ x I given by
Jr=I"x{0}fuol" x I
then such a homotopy is a map of triples of spaces (in the obvious sense):
H: (I 91" J™) — (X, A, 20)
There is also an adapted notion of homotopies of maps of triples which we want to introduce in
full generality. Let Xo C X; C X and Y5 C Y7 C Y] be triples of spaces and let
f’g: (XOaX17X2) — (YO7Y17Y2)
be maps of triples. Then a homotopy H: f ~ g is a map of triples
H: (X07X17X2) x I = (XO X I7X1 X I,XQ X I) — (Y07Y1,Y2)

which satisfies H(—,0) = f and H(—, 1) = g. Thus, we are asking for a homotopy H: Xo x I — Yy
which has the property that each map H(—,t) respects the subspace inclusions, i.e., is a map of
triples H(—,t): (Xo, X1, X2) — (Yo, Y1,Y2). In the special case that X5 and Ys are just base points,
this gives us the notion of homotopies of maps of pointed pairs.

Exercise 4.1. This homotopy relation is an equivalence relation which is well-behaved with respect
to maps of triples. Similarly, we get such a result for pointed pairs of spaces. There are homotopy
categories of triples of spaces and pointed pairs of spaces.
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Maybe you should not carry out this exercise in detail but only play a bit with the notions in
order to convince yourself that they behave as expected.
Now, back to our pointed pair (X, A, zp). The above discussion motivates the following definition:

Wn(X,A,$0) = [(In,alnajn_1)7 (X,A7.'170)]7 n>1

(Note that in the case of A = {zo} we have 7, (X, zo,x0) = 1, (X, z0).) A priori, the 7, (X, A, z¢)
are only pointed sets, the base point being given by the homotopy class of the constant map kg, .
However, it turns out that we get groups for n > 2 which are abelian for n > 3. To this end let us
consider maps

avB: (In7aIn7Jn_l)_>(X7Aax0)a n>2
Then we can define the concatenation 8 * a: (I™,9I", J"~ 1) — (X, A, z0) by the ‘usual formula’:
— a(2t17t27"'7tn) ) 0§t1§1/2
(Bra)lts,stn) = { B2t —1,ta,... tn) , 1/2<t; <1

It follows immediately that 5*a again is a map of triples. As in earlier lectures one checks that this
concatenation is well-defined on homotopy classes and defines a group structure on 7, (X, A, xg)
with neutral element given by the homotopy class of the constant map.

Definition 4.2. Let (X, A, zo) be a pointed pair of spaces. Then the group
(X, A, xo) = (1", 01", J" 1), (X, A,20)], n>2,
is the n-th relative homotopy group of (X, A, zp). The pointed set
(X, A, x0) = [(I',01',0), (X, A, z0)]
is the first relative homotopy set of (X, A, zg).

To avoid awkward notation we will simply write m,(X, A) instead of 7, (X, A,xo) unless there
is a risk of ambiguity. Now, if n > 3 one could again object that the above definition for the
concatenation is not very natural. In fact, one could also define pairings *;, where 1 < i <n — 1,
given by the formula:

) o a(tl,...,Qti,...,tn) 5 0§t1§1/2
(B*’O‘)(“"“’t")‘{ Bltr,een 2= 1,eety)  1/2<t,<1
(Note that there is no *, unless A = {xo} and this is why 71 (X, A) is only a pointed set in
general.) Following the lines of the last lecture (‘Eckmann-Hilton trick’) one checks that these

different pairings induce the same group structure and that (X, A) is abelian for n > 3. If we
denote by Topi the category of pointed pairs of spaces, then our discussion gives us the following;:

Corollary 4.3. The assignments (X, A, xg) — m,(X, A) can be extended to define functors:
e Topf — Set,, o Topi — Grp, and Ty Topi —Ab, n>3

Exercise 4.4. Convince yourself that (X, A, zg) — ma(X, A) really defines a functor taking values
in groups by drawing some diagrams. If you are ambitious, then do similarly in order to see
that m3(X, A) always is an abelian group.

A different way of proving this corollary is sketched in the exercises. There, you will show
that m,41(X, A) is naturally isomorphic to the n-th homotopy group of a certain space P(X;xg, A).
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2. THE LONG EXACT SEQUENCE FOR RELATIVE HOMOTOPY GROUPS

The motivation for this discussion was the observation that an inclusion i: (A, zo) — (X, o)
induces a morphism of homotopy groups which is not necessarily injective. The relative homo-
topy groups are designed to measure the deviation from this. In fact, if j denotes the inclu-
sion j: (X, z9) — (X, A) then there is the following result.

Proposition 4.5. Given a pointed pair of spaces (X, A, o), there are connecting homomorphisms
0: mp (X, A) = mp_1(A, o), n > 1, such that the following sequence is exact:

o Tt (XL A) S (A 20) S T (X, 20) D mn (X, A) S 0D (A, 20) 5 mo(X, o)

This is the long exact homotopy sequence of the pointed pair (X, A, xg). Moreover, this sequence
is matural in the pointed pair.

Before we attack the proof let us be a bit more precise about the statement. Recall that a diagram
of groups and group homomorphisms G EN Gy 2 G5 is exact at Gy if we have the equality
im(f) = ker(g) of subgroups of G5. In particular, the composition g o f sends everything to the
neutral element of G3, but we also have a converse inclusion. Namely, if o € G lies in ker(g),
then it already comes from Gy, i.e., there is an element z; € G such that f(z1) = zo.

More generally, a diagram of groups and group homomorphisms

GGy —...>Gh1— Gy,

is exact if it is exact at G; for all 2 < i < n — 1. A special case is a short exact sequence which is
an exact diagram of the form:

1—>G1—>G2—)G3—)1

Example 4.6. Let G and H be groups.

(i) A homomorphism G — H is injective if and only if 1 - G — H is exact.
(i1) A homomorphism G — H is surjective if and only if G — H — 1 is exact.
iii) A homomorphism G — H is an isomorphism if and only if 1 - G — H — 1 is exact.
Yy
(iv) A group G is trivial if and only if 1 — G — 1 is exact.

In particular, a short exact sequence basically encodes a surjective homomorphism Gy — G35 to-
gether with the inclusion of the kernel N = G; C Go.

Now, in the diagram we consider in the above proposition not all maps are homomorphisms of
groups. In fact, the last three entries 71 (X, A), mo(A4, o), and mo(X, x¢) are only pointed sets. The
notion of exactness is extended to the context of maps of pointed sets by defining the kernel of such
a map to be the preimage of the base point.

Finally, let us make precise the meaning of the naturality in the above proposition. If we have
a map of pointed pairs f: (X, A,z9) — (Y, B,yo0), then we have a connecting homomorphism for
each of the pointed pairs. The naturality means that the following square commutes:

Tns1 (X, A) =2 7, (A, 20)

| |

7TTL+1(Y7 B) T) ﬂ-TL(Ba yO)
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It is easy to check that from this we actually get a commutative ladder of the form:

4)7T1(X,ZL'O) 4)’/T1(X,A) 4)’/T0(A71'0) *>7T0(X,£K0)

. J

oo ——m (Y, y0) —— m(Y, B) —— mo(B, yo) — mo(Y, y0)

For the purpose of the following lemma let us introduce some notation. Recall that J" is obtained
from I™*! by removing the ‘interior of the cube and the interior of the top face’. From a different
perspective J" is obtained from I = I x {0} by gluing a further copy of I on each face of OI™.
Now, if F' is a collection of faces of I", then let Jg C J" be obtained from I" by gluing only
those copies of I"™ which correspond to faces in F. More formally, the cube I C R™ has 2n faces.
These can be parametrized by the set {1,...,n} x {0,1} in a way that the first component of such
a pair (j,4;) tells us which coordinate is constant while the second coordinate is the value of that
coordinate. Thus the face I]Tf_l C I" corresponding to an index f = (j,4;) is given by:

1?71 = {(tl, . ,tn) el” | t; = ij}
With this notation the space Jp C J® C 9I"*! associated to a set F of faces is given by:

Jp=TI"x{oyu(lJ 177" x 1)
feF

Lemma 4.7.

(i) The map i: J*~1 — I™ is the inclusion of a strong deformation retract, i.e., there is a map
r: I™ — JL which satisfies r o = id -1 and ior ~ idm (rel J*71).

(ii) Given a set F of faces of "' then Jii=' C I™ is the inclusion of a strong deformation
retract.

Proof. We will only give the proof of the first claim, the second one is an exercise. If we consider
the space I C R™ as the unit cube of length one, then let s be the point s = (1/2,...,1/2,2)
sitting ‘above the center of the cube’. For each point x € I™ let I(x) be the unique line in R”
passing through s and x. This line I(x) intersects J" ! in a unique point which we take as the
definition of r(z). It is easy to see that the resulting map r: I — J"~ ! is continuous and that we
have r o i = id. The homotopy i o r ~ id (rel J"~!) is obtained by ‘collapsing the line segments
between x and r(z)’ to r(z). We leave it to the reader to write down an explicit formula for this
and to check that this gives us the intended relative homotopy. O

With this preparation we can now turn to the proof of the proposition.

Proof. (of Proposition 4.5) Let us begin by defining the connecting homomorphism. Given a class w
in m,(X, A) it can be represented by a map of triples H: (I", 01", J"!) — (X, A, z0). This map
can be restricted to the top face I"~! x {1} to give a map h = H|: (I"~,0I"1) — (A, z0). We
set:
0: (X, A) = mp_1(A, o) [H] — [h] = [H]]

We leave it to the reader to check that this defines a group homomorphism or a map of pointed
sets depending on the value of n. The naturality of 0 follows immediately from the definition.

Let us prove that the sequence is exact. Thus, we have to establish exactness at three different
positions, one of which we will leave as an exercise. So, we will content ourselves showing exactness
at m, (A, o) and at 7, (X, A). So, we have to show that there are four inclusions:
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(i) im(9) C ker(ix): This inclusion is immediate; given the homotopy class of a map
H: (I",0I",J") = (X, A, x0),

we have to show that the map ioh: (I"71,0I"!) — (X, ) is homotopic to the constant
map (relative to the boundary). But such a homotopy is given by H itself.

(ii) ker(i.) C im(9): This follows by definition of the relative homotopy groups and the con-
necting homomorphism (see the motivational discussion!).

(iii) im(j.) C ker(9): Given an arbitrary a € m, (X, xo) it is easy to see that doj, is by definition
represented by the constant map rig,: I"71 — X.

(iv) ker(d) C im(j.): Let us consider a map H: (I",0I", J"~ ') — (X, A, xo) which lies in the
kernel of 9. By definition this means that the restriction

h=H|: (I"' x {1},0I"* x {1}) — (A, z0)

is homotopic to the constant map x, relative to the boundary. Choose an arbitrary such
homotopy H': h ~ Kk, (rel zy). Then we obtain a map

H'": J"=1"x{0}uol" x I - X
which is H on I™ x {0}, the homotopy H’ on I"~! x {1} x I and which takes the constant
value g on the rest of 9I™ x I.} An application of Lemma 4.7 gives us a map K: It — X
which restricts to H” along J" C I"*l. By construction, K is a homotopy of maps of
triples (1™, 01", J" 1) — (X, A, x¢) from H to K(—,1): (I",dI") — (X,xp). Thus, we
have [H] = j.([K(—,1)]) as intended.
|

Exercise 4.8. Conclude the proof of Proposition 4.5 by showing that the sequence is exact
at m, (X, xo).

Corollary 4.9.

(i) Given a pointed pair of spaces (X, A,xqg) such that there is a pointed homotopy equiva-
lence X ~ x then there are isomorphisms m,(X, A) 2 m,_1(4), n > 1.

(ii) Let i: (A,zo) — (X, z0) be the inclusion of a retract, i.e., we have r o i = id for some
pointed map r: (X, x0) = (A,x0). Then there are split short exact sequences

1= m(A o) = (X, 20) = (X, A) = 1, n>1,
i.e., short exact sequences such that m,(A, xo) = 7, (X, zo) admits a retraction.

We can apply the first part to the special case of the reduced cone C'A of a pointed space (A, ).
The reduced cone comes naturally with an inclusion (A4, *) — (CA,*) so that we have a pointed
pair (C'A, A, x). By the corollary, the connecting homomorphism 9: 7,1 (CA, A) — m,(A, %) is an
isomorphism. We can combine this with the map induced by the quotient map q: (CA, A) — (XA, *)
in order to obtain the suspension homomorphism:

S mn(A ) S 1t (CAA) S 01 (SA, %)

As opposed to the context of singular homology, this suspension homomorphism is not an iso-
morphism (even not for nice spaces as —say— CW-complexes). However, this map can be iterated

In the notation introduced before Lemma 4.7 we thus put the homotopy H on 18:11) x I and constant maps kg,
on 1;}—1 x I CoI™ x I, f# (n,1).



6 LECTURE 4: RELATIVE HOMOTOPY GROUPS AND THE ACTION OF THE FUNDAMENTAL GROUP

and we will later show that the suspension homomorphisms S: 7, x(SFA, %) = T 01 (SFFTA, )
eventually are isomorphisms. Thus, the groups 7,4 x(X* A, %) stabilize for large values of k.

3. THE ACTION OF THE FUNDAMENTAL GROUP

We will now turn to the action of the fundamental group on higher homotopy groups. This
will also allow us to understand more precisely the difference between m,(X,zg) and [S™, X]. To
begin with let us collect some basic facts about free homotopies. Given a space X and a homotopy
H: S" x I — X we obtain a path v in X by setting

u=H(x,—): T =X
where x is the base point of S™. If H is a homotopy from f to g and if u is the path of the base
point, then this will be denoted by:
H: fr~yg

The fact that the homotopy relation is an equivalence relation takes the following form if we keep
track of the paths of the base point.

Lemma 4.10. (1) For every map f: S™ — X we have f ~,  f.
(2) If for two maps f,g: S™ — X there is a homotopy f ~, g then we also have g ~,-1 f.
(3) Let f,g,h: S™ — X be maps such that f ~, g and g ~, h. Then there is a homotopy
f ~puu B

Lemma 4.11. For every map f: S™ — X and every path u: I — X such that u(0) = f(x) there is
a map g: S™ — X such that f ~, g.

Proof. Let q: I"™ — I"/OI™ = S™ be the quotient maps. The maps fogq: I" x {0} — X and
wopr: 0I" x I — I — X together define a map as follows:

(foquopr): J*=I"x{0}udl" x I —= X

l _ —~ T3H

In+1 -

It follows from Lemma 4.7 that we can find an extension H: I"*! — X as indicated in the diagram.
By construction, H(—,t): I"™ — X takes the constant value u(t) on the boundary dI"™ and hence
factors as I™ x I — S™ x I — X. The induced map S™ x I — X defines a homotopy f ~, ¢g. O

Thus g is obtained from f by ‘stacking a copy of the path on top of each point of dI™” and then
choosing a certain reparametrization. In the special case of n = 1 it is easy to see that this way we
obtain g = u * f * u~'. In the notation of the lemma, we want to show that the assignment

([u], [f]) = [g]
is well-defined.

Lemma 4.12. Let f, fo, f1,9,90,91: S™ — X be maps and let u,v: I — X be paths in X.
(i) If f ~u g and u ~ v (vel OI) then also [ ~, g.
(ii) Let us assume that fo(x) = fi(x) = zo and go(x) = g1(x) = x1. If fo ~ f1 (rel xp),
go = g1 (rel 1) and fo ==, go then also fi ~, ¢1.
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Proof. Let us begin with a proof of the first claim. We recommend that you draw a picture in the
case of n = 1 to see what is happening. Now, let H: I"" x I — X be a homotopy f ~, g and
similarly G: I x I — X a homotopy u ~ v (rel I') which both exist by assumption. From this we
construct a new map K: J*! — X as follows. Note that J"t! C 9I"*2 can be written as a union
of three subspaces (use the Leibniz rule!):

J =1 x I x {0}UdI™ x I x TUT™ x0T x I

On the first subspace we take the homotopy H, on the second subspace 1" x I x I 25 I x I £ X,
and on the remaining one the constant homotopies of f and g, i.e., we take:

"ol x I B mxor=rumr Y x

We leave it to the reader to check that these maps fit together in the sense that they define
a map K: J"' — X. Now, an application of Lemma 4.7 shows that K can be extended to
amap L = Kor: I"2? — Jotl X, By construction it follows that the restriction of L
to I"™ x I x {1} gives us the desired homotopy f ~, g.

The second claim is now easy. By assumption we have a chain of homotopies:

J1 2y o ~u 9o k., ™ 01

But since £z, * 4 * Ky, =~ u (rel OI) we can conclude f1 ~, ¢1 (by the first part of this lemma). O

Recall that given a space X we denote its fundamental groupoid by 7(X). The objects in 7(X)
are the points in X while morphisms are given by homotopy classes of paths relative to the boundary.

Corollary 4.13. Let f: (S™, %) = (X, x9), let u: I — X be a path from xg to x1, and let f ~, g for
some g: (S™, %) — (X, x1). Then the homotopy class [g] € (X, x1) only depends on the homotopy
classes [f] € mn (X, z0) and [u] € ©(X)(zo,x1).

Proof. Let us assume we were also given f ~,  f', u~wv (rel 9I), and f’ ~, ¢g’. Then in order to
show that g ~, ¢ we observe that:
Zu-t f ZH;CO f/ = g/

But since v * Kz, * u™! >~ k,, (vel dI) we can conclude by Lemma 4.10 and Lemma 4.12. |

Thus, we obtain a well-defined pairing

m(X) (o, 21) X (X, w0) = (X, 21): (], [f]) = M[f] = [g]
for f ~, g as in the notation of Lemma 4.11.

Proposition 4.14. Given a space X then we have a functor m,(X,—): 7(X) — Grp which sends
an object xg € w(X) to m,(X,20) and a map [u] € T(X)(zo,21) to M (=): 1, (X, z0) = mp(X, x1).

Proof. We know already that m, (X, z¢) is a group for all 2y € X and that we have a well-defined
map of sets (=) : 7, (X, z0) = m,(X, x1). To check that the assignment [u] — [*/(=) is compatible
with compositions and identities it suffices to recall the definition of this action. In fact, since it
was obtained from ‘stacking copies of u on top of 1™’ it is easy to see that this is true. It remains
to show that the maps (—): m,(X,z0) — m,(X,21) are group homomorphisms. But this is left
as an exercise. |
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Exercise 4.15. Given a path u: I — X with u(0) = z¢ and u(1) = x; show that [f] ~ [[f]
defines a group homomorphism

[U](i) 7Tn()(a 1'0) - W"(X7x1)'

Thus, we have isomorphisms 7, (X, zg) & 7,(X, z1) whenever zg,2; € X lie in the same path-
component. Note that such an isomorphism is, in general, not canonical, since it depends on the
choice of a homotopy class of paths from zy to x1. However, if m1 (X, z¢) = 1 then there is only a
unique such homotopy class so that the identification 7, (X, zg) & m, (X, z1) is canonical.

Corollary 4.16. Given a pointed space (X, zg) then there is an action of m1 (X, zo) on m, (X, xo).
For n =1 this specializes to the conjugation action, i.e., we have:

I = [l ™ (], [f] € m(X, o)

Proof. Since we have a functor 7, (X, —): 7(X) — Grp, it is completely formal that we get an action
of m1 (X, zp) on 7, (X, zp). In the context of Lemma 4.11, we already observed that our construction
sends (u, f) to u* f * u~!. Thus, at the level of homotopy classes we obtain the conjugation. [

Instead of using the actual construction of Lemma 4.11 to deduce this corollary, we can also
argue using the essential uniqueness of the construction (Corollary 4.13): we just have to observe
that there is a homotopy:

~yuk fruTt

Whenever we have a group acting on a set we can pass to the set of orbits. In the case of the
action of the fundamental group on higher homotopy groups we obtain the following convenient
result.

Corollary 4.17. Let X be a path-connected space and let o € X. Then the forgetful map
(X, z0) = [(S™, %), (X, z0)] — [S™, X]
exhibits [S™, X] as the set of orbits of the action of (X, xo) on m, (X, x0).

Exercise 4.18. Give a proof of this corollary, i.e., show that the forgetful map is surjective and
that two elements [f] and [g] have the same image if and only if there is a loop uw at zy such

that [[f] = [g].



