
LECTURE 6: FIBER BUNDLES

In this section we will introduce the interesting class of fibrations given by fiber bundles. Fiber
bundles play an important role in many geometric contexts. For example, the Grassmaniann
varieties and certain fiber bundles associated to Stiefel varieties are central in the classification
of vector bundles over (nice) spaces. The fact that fiber bundles are examples of Serre fibrations
follows from Theorem ?? which states that being a Serre fibration is a local property.

1. Fiber bundles and principal bundles

Definition 6.1. A fiber bundle with fiber F is a map p : E → X with the following property: every
point x ∈ X has a neighborhood U ⊆ X for which there is a homeomorphism φU : U ×F ∼= p−1(U)
such that the following diagram commutes in which π1 : U × F → U is the projection on the first
factor:

U × F

π1
**

φU

∼=
// p−1(U)

p
ttU

Remark 6.2. The projection X × F → X is an example of a fiber bundle: it is called the trivial
bundle over X with fiber F . By definition, a fiber bundle is a map which is ‘locally’ homeomorphic
to a trivial bundle. The homeomorphism φU in the definition is a local trivialization of the bundle,
or a trivialization over U .

Let us begin with an interesting subclass. A fiber bundle whose fiber F is a discrete space is (by
definition) a covering projection (with fiber F ). For example, the exponential map R → S1 is a
covering projection with fiber Z. Suppose X is a space which is path-connected and locally simply
connected (in fact, the weaker condition of being semi-locally simply connected would be enough

for the following construction). Let X̃ be the space of homotopy classes (relative endpoints) of

paths in X which begin at a given base point x0. We can equip X̃ with the quotient topology with

respect to the map P (X,x0) → X̃. The evaluation ε1 : P (X,x0) → X induces a well-defined map

X̃ → X. One can show that X̃ → X is a covering projection. (It is called the universal covering
projection. A later exercise will explain this terminology.)

Let p : E → X be a fiber bundle with fiber F . If f : X ′ → X is any map, then the projection

f∗(p) : X ′ ×X E → X ′

is again a fiber bundle with fiber F (see Exercise 1 of sheet 6).
We will need the following definitions.

Definition 6.3. Let f : Y → X be an arbitrary map.

(i) A section of f over an open set U ⊆ X is a map s : U → Y such that f ◦ s = idU .
(ii) The map f : Y → X has enough local sections if every points of X has an open neighborhood

on which some local section of f exists.
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Thus, by the very definition, every fiber bundle has enough local sections. And if you know a
bit of differential topology, you’ll know that any surjective submersion between smooth manifolds
has enough local sections.

Many interesting examples of fiber bundle show up in the context of nice group actions. For this
purpose, let us formalize this notion.

Definition 6.4. Let G be a topological group and let E be a space. A (right) action of G on E is
a map

µ : E ×G→ E : (e, g) 7→ µ(e, g) = e · g
such that the following identities hold:

e · 1 = e and e · (gh) = (e · g) · h, e ∈ E, g, h ∈ G.
If E also comes with a map p : E → X such that p(e · g) = p(e) for all e and g, then the action of G
restricts to an action on each fiber of p, and one also says that the action is fiberwise.

Given a space E with a right action by G, then there is an induced equivalence relation ∼ on E
defined by

e ∼ e′ iff e · g = e′ for some g ∈ G.
The quotient space E/∼ is called the orbit space of the action, and is usually denoted E/G. The
equivalence classes are called the orbits of the action. They are the fibers of the quotient map
π : E → E/G.

Definition 6.5. Let G be a topological group. A principal G-bundle is a map p : E → B together
with a fiberwise action of G on E, with the property that:

(i) The map φ : E ×G→ E ×B E : (e, g) 7→ (e, e · g) is a homeomorphism.
(ii) The map p : E → B has enough local sections.

Proposition 6.6. Any principal G-bundle is a fiber bundle with fiber G.

Proof. Write

δ = π2 ◦ φ−1 : E ×B E → E ×G→ G

for the difference map, characterized by the identity

e · δ(e, e′) = e′

for any (e, e′) ∈ E ⊗B E. If b ∈ B and b ∈ U ⊆ B is a neighborhood on which a local section
s : U → E exists, then the map

U ×G→ p−1(U) : (x, g) 7→ s(x) · g
is a homeomorphism, with inverse given by e 7→

(
p(e), δ(s(p(e)), e)

)
. �

An important source of principal bundles comes from the construction of homogeneous spaces.
Let G be a topological group, and suppose that G is compact and Hausdorff. Let H be a closed
subgroup of G, and let G/H be the space of left cosets gH. Then the projection π : G → G/H
satisfies the first condition in the definition of principal bundles, because the map

φ : G×H → G×(G/H) G : (g, h) 7→ (g, gh)

is easily seen to be a continuous bijection, and hence it is a homeomorphism by the compact-
Hausdorff assumption. So, we conclude that if G → G/H has enough local sections, then it is
a principal H-bundle. (For those who know Lie groups: if G is a compact Lie group and H is a
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closed subgroup, then G/H is a manifold and G → G/H is a submersion, hence has enough local
sections.)

Remark 6.7. In case you have to prove by hand that π : G → G/H has enough local sections, it
is useful to observe that it suffices to find a local section on a neighborhood V of π(1) where 1 ∈ G
is the unit, so π(1) = H ∈ G/H. Because if s : V → G is such a section, then for another coset
gH, the open set gV is a neighborhood of gH in G/H, and s̃ : gV → G defined s̃(ξ) = gs(g−1ξ) is
a local section on gV .

Remark 6.8. A related construction yields for two closed subgroups K ⊆ H ⊆ G a map G/K →
G/H which gives us a fiber bundle with fiber H/K under certain assumptions. (See Exercise 5 of
sheet 6)

2. Stiefel varieties and Grassmann varieties

We will now consider some classical and important special cases of these general constructions
for groups, namely the cases of Stiefel and Grassmann varieties. We begin by the Stiefel varieties.
Consider the vector space Rn with its standard basis (e1, . . . , en). A k-frame in Rn (or more
explicitly, an orthonormal k-frame) is a k-tuple of vectors in Rn,

(v1, . . . , vk)

with 〈vi, vj〉 = δij . Thus, v1, . . . , vk form an orthonormal basis for a k-dimensional subspace
sp(v1, . . . , vk) ⊆ Rn. We can topologize this space of k-frames as a subspace of Rn × . . . × Rn
(k times). It is a closed and bounded subspace, hence it is compact. This space is usually denoted

Vn,k

and called the Stiefel variety. (It has a well-defined dimension: what is it?) Note that

Vn,1 = Sn−1

is a sphere. We claim that Vn,k is a homogeneous space, i.e., a space of the form G/H as just
discussed. To see this, take for G the group O(n) of orthogonal transformations of Rn. We can
think of the elements of O(n) as orthogonal n× n matrices, or as n-tuples of vectors in Rn,

(v1, . . . , vn)

(the column vectors of the matrix) which form an orthonormal basis in Rn. Thus, there is an
evident projection

π : O(n)→ Vn,k

which just remembers the first k vectors. The group O(n− k) can be viewed as a closed subgroup
of O(n), using the group homomorphism

O(n− k)→ O(n) : A 7→
(
I 0
0 A

)
where I = Ik is the k × k unit matrix. One easily checks (Exercise!) that the projection induces a
homeomorphism

O(n)/O(n− k)
∼=→ Vn,k.

Note that it is again enough to show that we have a continuous bijection since the spaces under
consideration are compact Hausdorff. Thus, to see that π : O(n) → Vn,k is a principal bundle, it
suffices to check that there are enough local sections. This can easily be done explicitly, using the
Gram-Schmidt algorithm for transforming a basis into an orthonormal one. Indeed, as we said
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above, it is enough to find a local section on a neighborhood of π(1) = π(e1, . . . , en) = (e1, . . . , ek).
Let

U = {(v1, . . . , vk) | v1, . . . , vk, ek+1, . . . , en are linearly independent}
and let s(v1, . . . , vk) be the result of applying the Gram-Schmidt to the basis v1, . . . , vk, ek+1, . . . , en.
(This leaves v1, . . . , vk unchanged, changes ek+1 into ek+1 −

∑
〈vi, ek+1〉vi divided by its length,

and so on.)
Let us observe that this construction of the Stiefel varieties also shows that they fit into a tower

O(n) = Vn,n → Vn,n−1 → . . .→ Vn,k → Vn,k−1 → . . .→ Vn,1 ∼= Sn−1

in which each map Vn,k → Vn,k−1 is a principal bundle with fiber:

O(n− k + 1)/O(n− k) ∼= Vn−k+1,1
∼= Sn−k

From these Stiefel varieties we can now construct the Grassmann varieties. In fact, the group
O(k) obviously acts on the Stiefel variety Vn,k of k-frames in Rn. The orbit space of this action is
called the Grassmann variety, and denoted

Gn,k = Vn,k/O(k).

The orbit of a k-frame (v1, . . . , vk) only remembers the subspace W spanned by (v1, . . . , vk), because
any two orthogonal bases for W can be related by acting by an element of O(k). Thus, Gn,k is the
space of k-dimensional subspaces of Rn. Since Vn,k = O(n)/O(n − k), the Grassmann variety is
itself a homogeneous space

Gn,k ∼= O(n)/
(
O(k)×O(n− k)

)
where O(k) and O(k)×O(n− k) are viewed as the subgroups of matrices of the forms(

B 0
0 I

)
and

(
B 0
0 A

)
respectively. The quotient map

q : O(n)→ Gn,k

is again a principal bundle (with fiber O(k)×O(n− k)), because q again has enough local sections.
Indeed, it suffices to construct a local section on a neighborhood of q(I). As a k-dimensional
subspace of Rn this is Rk × {0}. Let

U = {W ⊆ Rn |W ⊕ Rn−k = Rn}
be the subspace of complements of the subspace Rn−k ⊆ Rn spanned by ek+1, . . . , en, and define a
section s on U as follows: write wi for the projection of ei on W , 1 ≤ i ≤ k, i.e.,

ei = wi +
∑
j>k

λjej .

Then (w1, . . . , wk, e+1, . . . , en) still span all of Rn, and we can transform this into an orthonormal
basis by Gram-Schmidt, the result of which defines s(W ).

It follows that Vn,k → Gn,k also has enough local sections (why?), so this is a principal bundle
too (for the group O(k)). Summarizing, we have a diagram of three principal bundles

O(n)

����

Vn,k // Gn,k
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constructed as
O(n) −→ O(n)/O(n− k) −→ O(n)/

(
O(k)×O(n− k)

)
.

3. Fiber bundles are fibrations

The relation of the previous considerations to the previous lecture is given by the following result.

Theorem 6.9. A fiber bundle is a Serre fibration.

Before proving this theorem, we draw some immediate consequences by applying the long exact
sequence of homotopy groups associated to a Serre fibration to our examples of fiber bundles. More
applications of this kind can be found in the exercises.

Application 6.10.

(i) Let p : E → B be a covering projection, let e0 ∈ E and let b0 = p(e0). If we denote the
fiber by F (a discrete space), then we have pointed maps

(F, e0)→ (E, e0)→ (B, b0).

Then p∗ : πi(E, e0)→ πi(B, b0) is an isomorphism for all i > 1. Moreover, if E is connected
then there is short exact sequence

0→ π1(E)→ π1(B)→ F → 0

where we have omitted base points from notation, and where we view F as a pointed set
(F, e0). Thus, for the covering R → S1 this gives us πi(S

1) ∼= 0 for i > 1, since R is
contractible.

More generally, for the universal covering projection X̃ → X with fiber π1(X,x0) we

have πi(X̃)
∼=→ πi(X) for i > 1 and π1(X̃) ∼= 0. These statements all follow by applying the

long exact sequence of a Serre fibration.
(ii) In the second lecture we stated that πi(S

n) ∼= 0 for i < n (a fact that can easily be proved
using a bit of differential topology, but which we haven’t given an independent proof yet).
Using this, we can analyze the long exact sequence associated to the fiber bundle

O(n)→ Vn,1 ∼= Sn−1

with fiber O(n− 1), to conclude that the map

πi(O(n− 1))→ πi(O(n))

induced by the inclusion (always with the unit of the group as the base point) is an iso-
morphism for i+ 1 < n− 1 and a surjection for i < n− 1. Writing O(n− k)→ O(n) as a
composition

O(n− k)→ O(n− k + 1)→ . . .→ O(n− 1)→ O(n),

we find that
πi(O(n− k))→ πi(O(n))

is an isomorphism if i + 1 < n − k and is surjective if i < n − k. Feeding this back in the
long exact sequence for the fiber bundle

O(n)→ O(n)/O(n− k) ∼= Vn,k,

we conclude that
πi(Vn,k) ∼= 0, i < n− k.
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Now back to the proof of Theorem ??. Instead of proving this theorem, we will prove a slightly
more general result (Theorem ??), which can informally be phrased by saying that ‘being a Serre
fibration is a local property’. Theorem ?? immediately follows from this result and the fact that
trivial fibrations are Serre fibrations.

Theorem 6.11. Let p : E → B be a map with the property that every point b ∈ B has a neighborhood
U ⊆ B such that the restriction p | : p−1(U) → U is a Serre fibration. Then p : E → B is itself a
Serre fibration.

The proof of this theorem is relatively straightforward if we assume the following lemma. Recall
the following notation from a previous lecture. Let F = {Fa | a ∈ A} be a family of faces of the
cube In, and let

Jn(F ) = (In × {0}) ∪ (
⋃
a

Fa × I)→ In × I

be the inclusion.

Lemma 6.12. A map p : E → B is a Serre fibration if and only if it has the RLP with respect to
all maps of the form Jn(F ) → In × I.

Note that the ‘if’-part is clear because the case F = ∅ gives the definition of a Serre fibration.
Earlier on, we have also used the case where F is the family of all the faces, when Jn(F ) → In+1 is

homeomorphic to In × {0} → In+1. The same is actually true for an arbitrary family F , but one
can also use an inductive argument to reduce the general case to the two cases where F = ∅ or F
consists of all faces. We will do this after the proof of Theorem ??.

Proof of Theorem ??. Let p : E → B be as in the statement of the theorem, and consider a diagram
of solid arrows of the form

In−1 × {0}
g
//

��

E

p

��

In
f

//

h

::

B

in which we wish to find a diagonal h as indicated. By assumption on p and compactness of In,
we can find a natural number k large enough so that for any sequence (i1, . . . , in) of numbers
0 ≤ i1, . . . , in ≤ k − 1, the small cube

[i1/k, (i1 + 1)/k]× . . .× [in/k, (in + 1)/k]

is mapped by f into an open set U ⊆ B over which p is a Serre fibration (use the Lebesgue lemma!).
Now order all these tuples

(i1, . . . , in)

lexicographically, and list them as C1, . . . , Ckn . We will define a lift h by consecutively finding
lifts hr on C1 ∪ . . . ∪ Cr ⊆ In making the diagram

In−1 × {0}
g
//

��

E

p

��

C1 ∪ . . . ∪ Cr

hr

99

f
// B
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commute. We can find h1 because (In−1 × {0}) ∩ C1 is a small copy of In−1 × {0} → In. And
given hr, we can extend it to hr+1 by defining hr+1 |Cr+1 as a lift in

Cr+1 ∩
(
(In−1 × {0}) ∪ (C1 ∪ . . . ∪ Cr)

) (g,hr)
//

��

E

p

��

Cr+1
f

//

hr+1|

33

B.

Such a lift exists, because Cr+1 ∩
(
(In−1 × {0}) ∪ (C1 ∪ . . . ∪ Cr)

)
→ Cr+1 is (essentially) a small

copy of an inclusion Jn(F ) → In × {0}. (You should draw some pictures for yourself in the cases

n = 2, 3 to see what is going on.) �

Proof of Lemma ??. As we already said it only remains to establish the ‘only if’-direction which
we already know in the cases of F = ∅ or the collection of all faces. We will reduce the intermediate
cases to the case of all the faces by induction on n. For n = 0, I0 has no faces so only the case A = ∅
applies and there is nothing to prove. For n = 1, there are four cases,

A = ∅, A = {0}, A = {1}, and A = {0, 1},
of which the first and the last have already been dealt with. For the intermediate case A = {0},
for example, consider a diagram of the form

I × {0} ∪ {0} × I
f
//

��

E

p

��

I2 // B

where p : E → B is a Serre fibration. Now one can first find a lift for

{1} × {0} //

��

E

p

��

{1} × I //

g

;;

B

by the case n = 0. Then next fill the following diagram(
I × {0} ∪ {0} × I

)
∪ {1} × I

(f,g)
//

��

E

p

��

I2

66

// B

by the case where F consists of all the faces (the fourth case).
The induction from n to n+ 1 proceeds in exactly the same way: suppose F = {Fa | a ∈ A} is a

family of faces of In+1 for which we wish to find a lift in a diagram of the form

Jn+1
(F )

f
//

��

E

p

��

In+1 × I

;;

// B
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If F does not consist of all the faces, we add a face G and extend f to Jn+1
F ∪ (G× I) = Jn+1

F∪{G} by

lifting in

G× {0} ∪
⋃
a(G ∩ Fa)× I //

��

E

p

��

G× I

66

// B

which is possible by the earlier case of the induction, because ∪a(G ∩ Fa) is a family of faces of a
cube of lower dimension. After having done this for all the faces not in F , we arrive at the case
where A is the set of all faces which was already settled. �


