
LECTURE 13: REPRESENTABLE FUNCTORS AND THE BROWN

REPRESENTABILITY THEOREM

1. Representable functors

Let C be a category. A functor F : Cop → Sets is called representable if there exists an object
B = BF in C with the property that there is a natural isomorphism of functors

ϕ : C(−, BF ) −→ F.

Thus, for every object X in C, there is an isomorphism ϕX from the set of arrows C(X,BF ) to
the value F (X) of the functor. The naturality condition states that for any map f : Y → X in
C, the identity

F (f)(ϕX(α)) = ϕY (α ◦ f)

holds, for any α : X → B. One usually expresses this in terms of a commutative diagram

C(X,B)
ϕX //

f∗

��

F (X)

f∗

��

C(Y,B)
ϕY

// F (Y ),

where f∗ denotes the contravariant functoriality in f ; that is, f∗ is composition with f on the
left of the diagram, and f∗ = F (f) on the right. By applying ϕB to the identity map B → B
we obtain a special element γ = ϕB(id) ∈ F (B), which is generic in the sense that any element
ξ ∈ F (X) can be obtained as ξ = f∗(γ), for a suitable f : X → B. Indeed, one can take
f = ϕ−1X (ξ) and apply naturality to check that ξ = f∗(γ).

Clearly, if the functor F : Cop → Sets is representable, then it “respects” all colimits that exist
in C. Since F is contravariant, these colimits are limits in Cop and are turned into limits in
Sets by F . For example, a pushout diagram in C as below on the left is turned into a pullback
diagram on the right

A
g
//

f

��

C

k
��

B
h
// D

F (A) F (C)
g∗
oo

F (B)

f∗

OO

F (D),

k∗

OO

h∗
oo

and a coproduct X =
∐
i∈I Xi in C is turned into a product F (X) =

∏
i∈I F (Xi).

Thus, for a functor F : Cop → Sets to be representable it is necessary that F turns colimits
that exist in C into limits in Sets. It is not necessary to check this condition for all types of
existing colimits, because some can be obtained from others. For example, coequalizers below on
the left can be obtained from pushouts and (binary) coproducts, as indicated on the right:

A
f
//

g
// B // C A

∐
A

(f,g)
//

∇
��

B

��

A // C,

(1.1)

1
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where ∇ denotes the “codiagonal”. Also, the colimit X = lim−→Xn of a sequence

X0
f1−→ X1

f2−→ X2 −→ · · ·

can be constructed from coequalizers and coproducts, as∐
Xn

id //

f
//
∐
Xn

// lim−→Xn, (1.2)

where f sends the summand Xn to the summand to the summand Xn+1 via fn.
Many algebraic structures can be expressed in terms of finite products and commutative

diagrams, hence if F : Cop → Sets is representable, it sends such an algebraic structure to a
similar structure in Sets. For example, a group G in Cop, that is, a “cogroup” in C, given by
comultiplication and counit

∗ ε←− G ∇−→ G
∐
G,

(∗ denotes the initial object in C) is turned into a group F (G) with multiplication

∇∗ : F (G)× F (G) ∼= F (G
∐
G) −→ F (G)

and unit ε∗. Such coalgebraic structures are quite familiar in topology. As a basic example,
recall that the group structure on πn(X,x0) = [(Sn, ∗), (X,x0)] comes from a cogroup structure
on the sphere

∗ ←− Sn ∇−→ Sn ∨ Sn

given by the “pinch map” ∇

∇

(1.3)

So, if F is a contravariant functor from the homotopy category of pointed spaces Ho(Top∗) to
Sets, then F (Sn, ∗) is a group for each n ≥ 1 (abelian for n ≥ 2).

In Ho(Top∗) and other cases we wish to study, the category C is a pointed category: it has an
object, usually denoted by ∗ or pt, which is both initial and terminal. So for any two objects X
and Y there is a canonical arrow X → ∗ → Y , and any representable functor Cop → Sets, from
a pointed category naturally takes values in the category Sets∗ of pointed sets.

Moreover, as we will see in our example, C will have coproducts, but not very many other
types of colimits. Instead, C will have some “weak” colimits though: a weak colimit A of a
diagram {Ai}i∈I has the existence property of a colimit, but not the uniqueness property. In
other words, for a compatible system of maps {Ai → X}i∈I (a “cocone”) there is some A→ X
making the appropriate diagram commute, but it need not be unique. For example, if a square

A
g
//

f

��

C

k
��

B
h
// D

is a weak pushout, then for any u : B → X and v : C → X with u ◦ f = v ◦ g, there is at least
one w : D → X with w ◦ h = u and w ◦ k = v, but there can be more such w.
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Note that, exactly as for ordinary colimits, one can construct weak coequalizers and weak
colimits of sequences from weak pushouts and coproducts (cf. (1.1) and (1.2)). Also note that
a representable functor necessarily sends weak colimits in C to weak limits in Sets (or in the
category Sets∗ of pointed sets, if C is pointed). Of course, weak limits are defined exactly like
weak colimits, by dropping the uniqueness condition in the definition of ordinary limit.

The category C that we are primarily interested in is the category Ho(Top∗) of pointed spaces
and homotopy classes of pointed maps. This category has coproducts, the coproduct of a family
of pointed spaces {Xi}i∈I being their wedge product ∨i∈IXi, obtained from the disjoint union
by identifying all the base points. The wedge product of the empty family also exists, and is the
zero object, that is, a single point. However, most other types of colimits do no exist. On the
other hand, if

A //

��

B

��

C // D

is a pushout of pointed spaces (a pushout in the category Top∗) and A→ X is a cofibration, then
the homotopy extension property for cofibrations (see Lecture 8) at least says that this square is
a weak pushout in Ho(Top∗). Thus, in Ho(Top∗), weak pushouts along cofibrations exist. From
this fact, we can deduce the following:

Proposition 13.1. Let F be a contravariant functor from Ho(Top∗) into the category Sets∗ of
pointed sets. Suppose that F maps coproducts to products and pushouts along cofibrations in
Top∗ to weak pullbacks. Then

(i) If A ⇒ B → C is a coequalizer in Top∗ and the map A ∨ A → B is a cofibration, then
FC → FB ⇒ FA is a weak coequalizer of pointed sets.

(ii) If X0
f0→ X1

f1→ X2
f2→ · · · is a sequence of cofibrations with colimit X in Top∗, then

F (X) is a weak limit of the inverse sequence F (X0)← F (X1)← F (X2)← · · · , that is,
the map F (X)→ lim←−F (Xn) is a surjection of pointed sets.

Proof. Part (i) is clear from the description of coequalizers in terms of pushouts and coproducts
as in diagram (1.1).

For part (ii), we need to do a bit more work. Recall that we can construct lim−→Xn as the
coequalizer of the two maps ∨

Xn

i //

f
//
∨
Xn,

where the wedge is the coproduct in the category of pointed spaces, and where i is the identity
while f sends the summand Xn to Xn+1 by the given cofibration fn. Thus, this colimit is the
pushout in the diagram

(
∨
Xn) ∨ (

∨
Xn)

(i,f)
//

∇
��

∨
Xn

q

��∨
Xn q

// lim−→Xn

(1.4)

as discussed before. We have written q for the canonical map q :
∨
Xn → lim−→Xn, with compo-

nents qn : Xn → lim−→Xn. The problem is that (i, f) is not (necessarily) a cofibration. To resolve
this, we are going to “thicken” the colimit and construct a “telescope” T , which decomposes the
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pushout (1.4) above into a composition of two pushouts:

(
∨
Xn) ∨ (

∨
Xn) //

(i′,f ′)
//

∇
��

∨
(Xn ∧ I+)

p

��

pr1 //
∨
Xn

q

��∨
Xn
//

v
// T

π
// lim−→Xn.

(1.5)

To see what these maps are, write points of
∨
Xn as pairs (n, x), where x ∈ Xn, and points of∨

(X ∧ I+) as triples (n, x, t), where x ∈ Xn and t ∈ I. Then

i′(n, x) = (n, x, 1) and f ′(n, x) = (n+ 1, fn(x), 0).

So points of T are equivalence classes of triples (n, x, t), with identifications (n, x0, t) ∼ (n, x0, t
′)

for the base point x0 coming from the definition of X ∧ I+, and identifications

(n, x, 1) ∼ (n+ 1, fn(x), 0)

coming from the definition of the pushout. Let us write [n, x, t] = p(n, x, t) for the equivalence
class. Then v :

∨
Xn → T is the map given on a summand Xn by

vn : Xn −→ T, vn(x) = [n, x, 1]

and π : T → lim−→Xn is the obvious projection, π[n, x, t] = qn(x).

Now observe that (i′, f ′) is a cofibration. Indeed, it is a wedge (coproduct) of cofibrations
i′0 : X0 → X0 ∧ I+ (sending x 7→ (x, 1)) and for n ≥ 0

Xn ∨Xn+1
fn∨id−→ Xn+1 ∨Xn+1 −→ Xn+1 ∧ I+,

where the second map is the standard cofibration mapping the two copies of Xn+1 to Xn+1×{0}
and Xn+1 × {1}, respectively.

We are now ready to prove that the map F (lim−→Xn) → lim←−F (Xn) is surjective. Choose a

sequence ξn ∈ F (Xn) with (fn)∗(ξn+1) = ξn (n ≥ 0). These ξn together make up an element ξ in∏
F (Xn) ∼= F (

∨
Xn). Let ξn ∈ F (X ∧ I+) be obtained from ξn by applying F to the projection

pr1 : Xn ∧ I+ → Xn, ξn = pr∗1(ξn). Then the ξn together define an element ξ ∈ F (
∨

(Xn ∧ I+)).
The assumption that (fn)∗(ξn+1) = ξn means precisely that (i′)∗(ξ) = f ′(ξ) = ξ. So by applying
(i) to the pushout square on the left of (1.5) we find a ζ ∈ F (T ) with v∗(ζ) = ξ and p∗(ζ) = ξ.
In particular, (vn)∗(ζ) = ξn.

We now wish to “push down” ζ to an element η ∈ F (lim−→Xn). To this end, we construct a
map w : lim−→n

→ T . Consider the maps vn : Xn → T , and observe that each triangle

Xn
//
fn //

vn

��

Xn+1

vn+1

{{
T

commutes up to homotopy. Indeed, vn(x) = [n, x, 1] = [n + 1, fn(x), 0] and vn+1(fn(x)) =
[n+1, fn(x), 1], which are connected by the homotopy sending x to [n+1, fn(x), t] for 0 ≤ t ≤ 1.
We can now successively apply the homotopy extension property to the cofibrations f0, f1, f2, . . .
and replace the vi by homotopic maps wi ' vi so that wn+1 ◦ fn = wn. This gives a map

w : lim−→Xn → T with w ◦ qn = wn ' vn.

Let η = w∗(ζ). Then η is the element in F (lim−→Xn) we are looking for, because

(qn)∗(η) = (qn)∗(w∗(ζ)) = (w ◦ qn)∗(ζ) = (wn)∗(ζ) = (vn)∗(ζ) = ξn,
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proving that F (X)→ lim←−F (Xn) is a surjection. �

Exercise 13.2. Prove the result in the last part of the proof stating that, by applying the
homotopy extension property to the cofibrations fi, we can replace the maps vi by homotopic
maps wi so that wn+1 ◦ fn = wn,

The kinds of colimits mentioned in the proposition have a special property, viz. they are
“homotopy invariant”. For coproducts this is clear: a family of pointed homotopy equivalences

Xi
'−→ Yi (where i ranges over some index set I) induces a pointed homotopy equivalence∨

Xi
'−→

∨
i Yi. For pushouts along cofibrations, it is a bit more complicated. The next state-

ment can be proved using the properties of cofibrations stated at the end of Lecture 8.

Proposition 13.3. Let F : Ho(Top∗)
op → Sets∗ be a contravariant functor, from the homotopy

category of pointed spaces to pointed sets. Suppose that F sends each pushout

A // //
��

��

C

��

B // B ∪A C
of two cofibrations to a weak pullback in Sets∗. Then F sends each pushout along a cofibration
to a weak pullback.

Proof. If we have a pushout diagram

A
f

//
��

��

X

��

B // B ∪A X
of a map f : A→ X along a cofibration A→ B, we can factor A→ X as a cofibration followed
by a homotopy equivalence, and construct the pushout in two steps:

A // //
��

��

Mf
' //

��

��

X��

��

B // // B ∪AMf '
// B ∪A X.

Then the lower map on the right is a homotopy equivalence by Corollary 8.15 from Lecture 8.
If we apply F to this diagram, we obtain a diagram

F (A) F (Mf )oo F (X)
∼=oo

F (B)

OO

F (B ∪AMf )

OO

oo F (B ∪A X)∼=
oo

OO

in which the square on the left is a weak pullback by hypothesis, while in the one on the right, the
horizontal maps are isomorphisms. It follows that the large rectangle is also a weak pullback. �

2. Brown representability theorem

Let us summarize the discussion so far. Suppose that

F : Ho(Top∗)
op −→ Sets∗

is a functor having the following two properties:
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(i) F (
∨
i∈I Xi)→

∏
i∈I F (Xi) is an isomorphism, for any family of pointed spaces {Xi}i∈I .

(ii) F (B ∪A C) → F (B) ×F (A) F (C) is a surjection for any two cofibrations A → B and
A→ C.

Then we also have

(iii) F (∗) = ∗

(iv) If we have a pushout of pointed spaces

A //

��

X

��

B // Y

in which i is a cofibration, then F (Y )→ F (B)×F (A) F (X) is a surjection.

(v) If A⇒ B → C is a coequalizer of pointed spaces in which the two maps form a cofibration
A ∨A→ B , then F (C)→ F (B) maps surjectively to the equalizer of F (B) ⇒ F (A).

(vi) If X0 → X1 → X2 → · · · is a sequence of cofibrations, then F (X) → lim←−F (Xn) is a
surjection.

Our aim is now to show that conditions (i) and (ii) are in fact enough to show that F is
representable, at least when we restrict ourselves to connected CW-complexes.

Theorem 13.4 (Brown representability theorem). Let F be a contravariant functor from the
homotopy category of pointed connected CW-complexes to pointed sets. If F satisfies conditions
(i) and (ii) above (for any pointed connected CW-complexes Xi, A,B,C), then F is representable.

Remark 13.5.
(i) Recall that this means that there is a space B = BF (itself a pointed CW-complex) for

which there is a natural isomorphism

ϕX : [X,BF ]∗
∼=−→ F (X),

for any pointed connected CW-complex X. This space BF is called a classifying space for
F . Recall also that when such a ϕ exists, it is completely determined by a generic element
γ ∈ F (BF ).

(ii) Suppose that (B1, γ1) and (B2, γ2) are two classifying spaces for F , with generic elements γ1
and γ2, respectively. Then there exists a homotopy equivalence f : B1 → B2 with f∗(γ2) = γ1.
In other words, the pair (B, γ) of a classifying space and its generic element is unique up to
homotopy. Indeed, writing C for the category of pointed connected CW-complexes and homotopy
classes of maps, there are natural isomorphism

ϕ1
X : C(X,B1)

∼=−→ F (X) and ϕ2
X : C(X,B2)

∼=−→ F (X)

defined by ϕiX(f) = f∗(γi), for i = 1, 2. Then

(ϕ1
B2

)−1(γ1) : B2 −→ B1 and (ϕ2
B1

)−1(γ2) : B1 −→ B2

are mutually inverse maps in the category C.

(iii) We can use the Whitehead theorem to make a slightly different statement. Let us say that
(B, γ) is a spherical classifying space for F is γ ∈ F (B) is an element inducing an isomorphism

γ∗ : [Sn, B]∗ −→ F (Sn), γ∗(f) = f∗(γ)
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for any sphere Sn (n > 0; S0 is not connected). If (B1, γ1) and (B2, γ2) are two such spherical
classifying spaces in the category C, and f : B1 → B2 is a map with f∗(γ2) = γ1, then f induces
isomorphisms

πn(B1) −→ πn(B2)

between the homotopy groups for each n > 0 (we dropped the basepoints of B1 and B2 from the
notation). Since B1 and B2 are pointed connected CW-complexes, this means that f is a weak
homotopy equivalence, hence a homotopy equivalence by the Whitehead theorem.

Let us now turn to the proof of Brown representability theorem. It is based on the following
lemmas.

Lemma 13.6. Let X be a pointed CW-complex and let ξ ∈ F (X). Then there exists a spherical
classifying space (B, γ) for F with a cofibration f : X → B with f∗(γ) = ξ.

Lemma 13.7. Any spherical classifying space (B, γ) for F is a classifying space. (Thus,
γ∗ : [X,B]∗ → F (X) is an isomorphism for any pointed connected CW-complex X, nor just
for spheres.)

Indeed, Brown’s theorem follows by taking X to be a point in Lemma 13.6, and then applying
Lemma 13.7 to the spherical classifying space provided by Lemma 13.6. We will now first show
that Lemma 13.7 follows from Lemma 13.6, and then prove Lemma 13.6.

Proof of Lemma 13.7 (using Lemma 13.6). Let X be a pointed connected CW -complex, and let
(B, γ) be a spherical classifying space for F .

We first prove that γ∗ : [X,B]∗ → F (X) is a surjection. Let ξ ∈ F (X). Form the wedge

X
i−→ X ∨B j←− B.

Since F (X ∨B) ∼= F (X)×F (B) (by an isomorphism identifying i∗ and j∗ with the projections),
we find an element (ξ, γ) ∈ F (X ∨B) with i∗(ξ, γ) = ξ and j∗(ξ, γ) = γ. By Lemma 13.6, there
is a spherical classifying space (B′, γ′) and a cofibration

f : X ∨B −→ B′

with f∗(γ′) = (ξ, γ). Thus (f ◦ i)∗(γ′) = ξ and (f ◦ j)∗(γ′) = γ. But then f ◦ j : B → B′ is a
homotopy equivalence by Remark 13.5(iii). If g : B′ → B is a homotopy inverse for f ◦ j, then
g ◦ f ◦ i : X → B is a map with (g ◦ f ◦ i)∗(γ) = ξ

X
i // X ∨B

f

��

B
j
oo

B′.

'
g

;;

This proves that γ∗ : [X,B]∗ → F (X) is a surjection.
Next, we prove that γ∗ : [X,B]∗ → F (X) is injective. Suppose that f and g are two maps

X ⇒ B with f∗(γ) = g∗(γ) ∈ F (X). Consider the diagram

X ∨X
f∨g

//

i
��

∇

{{

B

X X ∧ I+,
ε

oo

h

;;
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where X ∧ I+ is the reduced cylinder (X× I)/({x0}× I). We wish to find a map h : X ∧ I+ → B
with h ◦ i = f ∨ g because this would show that f ' g. To this end, form the pushout

X ∨X
f∨g

//

i
��

B

u

��

X ∧ I+
v
// W.

Now F (X ∨X) = F (X)× F (X) and (f ∨ g)∗(γ) = (f∗(γ), g∗(γ)) under this identification. Let
ζ = ε∗ ◦ f∗ ◦ γ = ε∗ ◦ g∗ ◦ γ ∈ F (X ∧ I+). Then i∗(ζ) = (f ∨ g)∗(γ), so since F transforms
the pushout into a weak pullback, there exists an η ∈ F (W ) with v∗(η) = ζ and u∗(η) = γ. By
Lemma 13.6, there exists a spherical classifying space (B′, γ′) and a cofibration w : W → B′ with
w∗(γ′) = η. Then (w ◦ u)∗(γ′) = γ, so w : B → B′ is a homotopy equivalence.

In particular, there is a map p : B′ → B with p∗(γ) = γ′ and p◦w◦u ' id. Then, p◦w◦v◦ i =
p ◦ w ◦ u(f ∨ g) ' f ∨ g, so by the homotopy extension property applied to the cofibration
X ∨X → X ∧ I+ we find a map q : X ∧ I+ → B with q ' p◦w ◦v and q ◦ i = f ∨g. In particular,
q is a homotopy between f and g. �

Proof of Lemma 13.6. Let X be a pointed connected CW-complex and ξ ∈ F (X). We are going
to construct a sequence of cofibrations

X ⊆ B1 ⊆ B2 ⊆ B3 ⊆ · · ·

together with elements γn ∈ F (Bn) (for n > 0), such that the map

(γn)∗ : [Sq, Bn]∗ −→ F (Sq)

which sends f to f∗(γn), is a surjection for q = n and a bijection for 0 < q < n. Moreover,
the γi will be compatible with each other and with ξ in the obvious sense that the image of
X → Bn → Bn+1 under F sends γn+1 to γn and then to ξ. These Bn will be constructed in
quite a straightforward way, by attaching cells, much as in the proof of the CW-approximation
theorem. For n = 1, let

B1 = X ∨
∨
ζ

S1
ζ ,

where ζ ranges over all elements of F (S1) and S1
ζ is a copy of S1. Then, by property (i) on

page 6, F (B1) ∼= F (X) ×
∏
ζ F (S1

ζ ), and we let γ1 be the element with coordinate ξ on F (X)

and coordinate ζ on the factor F (S1
ζ ). Then, for the inclusion iζ : S1

ζ → B1 we have i∗ζ(γ
1) = ζ.

In particular, [S1, B1]∗ → F (S1) is surjective.
Suppose that (Bn, γn) has been constructed with the desired properties. In particular,

(γn)∗ : [Sn, Bn]∗ → F (Sn) is a surjection of pointed sets. In fact, it is a surjection of groups,

because Sn is an H-cogroup, cf. (1.3). Let K be the kernel of (γn)∗. Let Bn
1
2 be the space

obtained form Bn by attaching an (n + 1)-cell along the attaching map k : Sn → Bn, one k for
each homotopy class [k] in this kernel K. Thus, we have a pushout:∐

k S
n // //

��

��

∨
k S

n

��

��

// Bn��

��∐
k e

n+1 // //
∨
k e

n+1 // Bn
1
2 .

Since en+1 is contractible, F (en+1) is a point, so the pullback of F (Bn) →
∏
k F (Sn) along∏

F (en+1)→
∏
F (Sn) is the kernel of the map F (Bn)→

∏
k F (Sn), sending γn to the element
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with coordinate k∗(γn) = (γn)∗(k) on the factor k. The map F (Bn
1
2 ) → F (Bn) surjects onto

this kernel (by property (iv) on page 6), so there is an element γn
1
2 ∈ Bn 1

2 with j∗(γn
1
2 ) = γn.

For each q ≤ n we now have a diagram

[Sq, Bn
1
2 ]∗

(γn 1
2 )∗
// F (Sq)

[Sq, Bn]∗

j∗

OO

(γn)∗

99

By cellular approximation, j∗ is an isomorphism for q < n, and hence (γn
1
2 )∗ is because (γn)∗

is by induction hypothesis. Moreover, (γn
1
2 )∗ is surjective for q = n because (γn)∗ is. It is

also a surjection for q = n, because if k : Sn → Bn
1
2 is (or represents) a homotopy class with

(γn
1
2 )∗(k) = 0, then by cellular approximation k is homotopic to j ◦ k′ for a map k′ : Sn → Bn,

and (γn)∗(k
′) = 0 so k′ (or more precisely its homotopy class) lies in K. Then j∗(k

′) = k = 0 in

[Sn, Bn
1
2 ]∗ by construction of Bn

1
2 .

Finally, we construct Bn+1 from Bn
1
2 much as we constructed B1 from X, as

Bn+1 = Bn
1
2 ∨

∨
ζ

Sn+1
ζ ,

where ζ ranges over all elements of F (Sn+1) and each Sn+1
ζ is a copy of Sn+1. Then

F (Bn+1) ∼= F (Bn
1
2 )×

∏
ζ

F (Sn+1
ζ )

has a canonical element γn+1 with coordinates γn
1
2 and ζ. Moreover, we have that the map

(γn+1)∗ : [Sq, Bn+1]∗ → F (Sq) is an isomorphism for q ≤ n (as before, for Bn
1
2 ) and a surjection

for q = n+ 1 (by construction).
To conclude the proof, let B = lim−→Bn and use property (vi) on page 6 to find an element

γ ∈ F (B) such that for every n, the element γ is mapped to γn by F (Bn → B). Then (B, γ) is
a spherical classifying space.

This completes the proof of the Brown representability theorem. �


