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Introduction

A solid ring is a ring R with unit whose core is R itself, where

c(R) = {x ∈ R | 1R ⊗Z x = x ⊗Z 1R}.

• The rings Z, Q and Z/n are solid, but the p-adic integers Ẑp

and R are not.

• Solid rings are completely classified and all of them are
commutative and countable. The only torsion-free solid rings
are the subrings of the rationals.

• [Bousfield–Kan] H∗(f ;R) is an isomorphism if and only if
H∗(f ; cR) is an isomorphism. R∞X ' (cR)∞X .
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Introduction

A rigid ring R is a ring with unit such that the evaluation at the
unit morphism

HomZ(R,R) −→ R

that sends ϕ to ϕ(1R) is an isomorphism.

• The rings Z/n, subrings of Q, Ẑp for any prime p, and all
solid rings are rigid.

• The products
∏

p∈P Z/p and
∏

p∈P Ẑp, where P is any set of
primes are rigid. However, the Prüfer group Z/p∞ or the
p-adic field Q̂p do not admit a rigid ring structure.

• There exist rigid rings of arbitrarily large cardinality.

• [Casacuberta–Rodŕıguez–Tai] Rigid rings appear naturally as
localizations of Z and as homotopical localizations of S1.
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p∈P Ẑp, where P is any set of
primes are rigid. However, the Prüfer group Z/p∞ or the
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Localization and colocalization functors

Let C be any category.

A coaugmented idempotent functor (L, l) in C is called a
localization functor. Dually, an augmented idempotent
functor (C , c) in C is called a colocalization functor.

• The objects in the image of L are called L-local objects and
the objects in the image of C are called C -colocal objects.

• A morphism f is called an L-local equivalence if L(f ) is an
isomorphism, and it is called a C -colocal equivalence if C (f )
is an isomorphism.
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Closed (co)localizations

Let (E, I ,⊗,Hom(−,−)) be a closed symmetric monoidal category.

A closed localization is a localization functor (L, l) in E such that
for every L-local equivalence f : X → Y and every L-local object
Z , the induced map

f ∗ : Hom(Y ,Z ) −→ Hom(X ,Z )

is an isomorphism.
A closed colocalization is a colocalization functor (C , c) in E

such that for every C -colocal equivalence f : X → Y and every
C -colocal object Z in the induced map

f∗ : Hom(Z ,X ) −→ Hom(Z ,Y )

is an isomorphism.
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Smashing and mapping

A localization functor (L, l) in E is called smashing, if there is an
object A such that LX = X ⊗ A for every X .

A colocalization functor (C , c) is called mapping if there is an
object A in E such that CX = Hom(A,X ) for every X .

• If L is smashing then A ∼= LI and X ⊗ LY ∼= L(X ⊗ Y )
for all X and Y .

• If C is mapping, then C (Hom(X ,Y )) ∼= Hom(X ,CY ) for all
X and Y .
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Solid monoids

Let (E, I ,⊗,Hom(−,−)) be a closed symmetric monoidal category.

A monoid (R, µ, η) in E is called a solid monoid if the
multiplication map µ is an isomorphism.

• An object R is a solid monoid if and only if there exist a
morphism η : I → R such that both η ⊗ 1 and 1⊗ η are
isomorphisms.

• We can define a functor F : E→ Fun(E,E) by setting
F (X )(−) = −⊗ X and another functor G : Eop → Fun(E,E)
by setting G (X )(−) = Hom(X ,−).

• Moreover, F preserves solid monoids and the functor G sends
solid monoids to solid comonoids.
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Solid monoids

Theorem

Let E be a closed symmetric monoidal category. Then, there is a
one to one correspondence between the following classes:

(i) Solid monoids.

(ii) Smashing localization functors.

(iii) Mapping colocalization functors.

Theorem

Let (R, µ, η) be a solid monoid, and let LR = −⊗ R and
CR = Hom(R,−). Then the following categories are equivalent:

(i) LR -loc the full subcategory of LR -local objects

(ii) CR -coloc the full subcategory of CR -colocal objects

(iii) R-mod the category of R-modules.
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Introduction
Localizations and colocalizations

Solid and rigid monoids
Application to stable homotopy theory

Radboud University Nijmegen

Solid monoids

Theorem

Let E be a closed symmetric monoidal category. Then, there is a
one to one correspondence between the following classes:

(i) Solid monoids.

(ii) Smashing localization functors.

(iii) Mapping colocalization functors.

Theorem

Let (R, µ, η) be a solid monoid, and let LR = −⊗ R and
CR = Hom(R,−). Then the following categories are equivalent:

(i) LR -loc the full subcategory of LR -local objects

(ii) CR -coloc the full subcategory of CR -colocal objects

(iii) R-mod the category of R-modules.

Javier J. Gutiérrez PSSL95 On solid and rigid monoids 8 / 12



Introduction
Localizations and colocalizations

Solid and rigid monoids
Application to stable homotopy theory

Radboud University Nijmegen

Rigid monoids

A monoid (R, µ, η) in E is called a rigid monoid if the induced
morphism

η∗ : Hom(R,R) −→ Hom(I ,R)

is an isomorphism.

• Every solid monoid is rigid.

Theorem

Let (L, l) be a closed localization in E.

(i) LI is rigid and all rigid monoids appear this way.

(ii) Every rigid monoid is commutative.

Javier J. Gutiérrez PSSL95 On solid and rigid monoids 9 / 12
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Stable homotopy theory

Let Sp be the stable homotopy category of spectra. This is a
triangulated category equipped with a compatible closed symmetric
monoidal structure, where the unit is given by the sphere
spectrum S .

Theorem

Let L be any localization functor in Sp.

(i) If L is smashing, then LS is a solid ring spectrum, and all solid
ring spectra appear as smashing localizations of the sphere
spectrum.

(ii) If L is closed, then the spectrum LS is a rigid ring spectrum
and all rigid ring spectra appear as closed localizations of the
sphere spectrum.
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Stable homotopy theory

Let R be a solid ring spectrum. Then LR is homological
localization with respect to R and CR = CellR is
R-cellularization.

For any abelian group G , we denote by HG its Eilenberg–Mac Lane
spectrum and by MG its Moore spectrum.

Theorem

If R is a solid ring spectrum, e.g., R = HQ, LKS or LE(n)S, then
there is an equivalence of categories LRSp ∼= R-mod ∼= CellRSp.
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Stable homotopy theory

Theorem

Let L be any localization functor in Sp.

(i) LHZ ∼= HA for some rigid ring A and all (algebraic) rigid rings
appear this way.

(ii) If L is smashing, then A is a subring of the rationals.

(iii) If LS is connective, then LS is a solid ring spectrum if and
only if LS ∼= MA, where A is a subring of the rationals.

Corollary

If R is a connective solid ring spectrum, then R ∼= MA for some
subring of the rationals A.
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(ii) If L is smashing, then A is a subring of the rationals.

(iii) If LS is connective, then LS is a solid ring spectrum if and
only if LS ∼= MA, where A is a subring of the rationals.

Corollary

If R is a connective solid ring spectrum, then R ∼= MA for some
subring of the rationals A.
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