Generalized Ohkawa's theorem

Javier J. Gutiérrez Universitat de Barcelona (joint work with Carles Casacuberta and Jiří Rosický)

CSASC 2011

Krems, Austria, 25-28 September, 2011

$$\langle E \rangle = \{ X \mid E \land X \simeq * \}.$$

- **Ohkawa's theorem**: There is a set of Bousfield classes [Ohkawa, 1989].
- Simpler proof and relationship with the Bousfield lattice [Dwyer–Palmieri, 2001].
- Bousfield classes in the derived category of modules over some non-noetherian rings [Dwyer–Palmieri, 2008].
- Generalization to well-generated tensor triangulated categories [lyengar–Krause, 2011].

$$\langle E \rangle = \{ X \mid E \land X \simeq * \}.$$

- Ohkawa's theorem: There is a set of Bousfield classes [Ohkawa, 1989].
- Simpler proof and relationship with the Bousfield lattice [Dwyer–Palmieri, 2001].
- Bousfield classes in the derived category of modules over some non-noetherian rings [Dwyer–Palmieri, 2008].
- Generalization to well-generated tensor triangulated categories [lyengar–Krause, 2011].

$$\langle E \rangle = \{ X \mid E \land X \simeq * \}.$$

- Ohkawa's theorem: There is a set of Bousfield classes [Ohkawa, 1989].
- Simpler proof and relationship with the Bousfield lattice [Dwyer–Palmieri, 2001].
- Bousfield classes in the derived category of modules over some non-noetherian rings [Dwyer–Palmieri, 2008].
- Generalization to well-generated tensor triangulated categories [lyengar–Krause, 2011].

$$\langle E \rangle = \{ X \mid E \land X \simeq * \}.$$

- Ohkawa's theorem: There is a set of Bousfield classes [Ohkawa, 1989].
- Simpler proof and relationship with the Bousfield lattice [Dwyer–Palmieri, 2001].
- Bousfield classes in the derived category of modules over some non-noetherian rings [Dwyer–Palmieri, 2008].
- Generalization to well-generated tensor triangulated categories [lyengar–Krause, 2011].

$$\langle E \rangle = \{ X \mid E \land X \simeq * \}.$$

- Ohkawa's theorem: There is a set of Bousfield classes [Ohkawa, 1989].
- Simpler proof and relationship with the Bousfield lattice [Dwyer–Palmieri, 2001].
- Bousfield classes in the derived category of modules over some non-noetherian rings [Dwyer–Palmieri, 2008].
- Generalization to well-generated tensor triangulated categories [lyengar-Krause, 2011].

Theorem (lyengar–Krause, 2011)

Let \mathfrak{T} be a α -well generated triangulated category and consider the collection \mathfrak{H} of functors $H : \mathfrak{T} \to \mathcal{A}$ such that

- (i) A is abelian and has coproducts and exact α -filtered colimits.
- (ii) H is cohomological and preserves coproducts.

Then the localizing subcategories of the form ker H for some $H \in \mathcal{H}$ form a set of cardinality at most $2^{2^{|\mathcal{T}^{\alpha}|}}$.

Corollary

For any α -well generated tensor triangulated category \mathfrak{T} , the collection of Bousfield classes forms a set of cardinality at most $2^{2^{|\mathfrak{T}^{\alpha}|}}$.

Theorem (lyengar–Krause, 2011)

Let \mathfrak{T} be a α -well generated triangulated category and consider the collection \mathfrak{H} of functors $H : \mathfrak{T} \to \mathcal{A}$ such that

- (i) A is abelian and has coproducts and exact α -filtered colimits.
- (ii) H is cohomological and preserves coproducts.

Then the localizing subcategories of the form ker H for some $H \in \mathcal{H}$ form a set of cardinality at most $2^{2^{|\mathcal{T}^{\alpha}|}}$.

Corollary

For any α -well generated tensor triangulated category \mathfrak{T} , the collection of Bousfield classes forms a set of cardinality at most $2^{2^{|\mathfrak{T}^{\alpha}|}}$.

Let $\ensuremath{\mathbb{C}}$ be any category.

- An object X of C is called λ-presentable if the functor C(X, -) preserves λ-filtered colimits.
- A category C is λ-accessible if all λ-filtered colimits exist in C and there is a set S of λ-presentable objects such that every object of C is a λ-filtered colimit of objects from S. It is called accessible if it is λ-accessible for some λ.
- A cocomplete accessible category is called *locally presentable*.
- If C and C' are λ-accessible categories, then a functor H: C → C' is called λ-accessible if it preserves λ-filtered colimits.

Let C be any category.

- An object X of C is called λ-presentable if the functor C(X, -) preserves λ-filtered colimits.
- A category C is λ-accessible if all λ-filtered colimits exist in C and there is a set S of λ-presentable objects such that every object of C is a λ-filtered colimit of objects from S. It is called accessible if it is λ-accessible for some λ.
- A cocomplete accessible category is called *locally presentable*.
- If C and C' are λ-accessible categories, then a functor H: C → C' is called λ-accessible if it preserves λ-filtered colimits.

Let C be any category.

- An object X of C is called λ-presentable if the functor C(X, -) preserves λ-filtered colimits.
- A category C is λ-accessible if all λ-filtered colimits exist in C and there is a set S of λ-presentable objects such that every object of C is a λ-filtered colimit of objects from S. It is called accessible if it is λ-accessible for some λ.
- A cocomplete accessible category is called *locally presentable*.
- If C and C' are λ-accessible categories, then a functor H: C → C' is called λ-accessible if it preserves λ-filtered colimits.

Let \mathcal{C} be any category.

- An object X of C is called λ-presentable if the functor C(X, -) preserves λ-filtered colimits.
- A category C is λ-accessible if all λ-filtered colimits exist in C and there is a set S of λ-presentable objects such that every object of C is a λ-filtered colimit of objects from S. It is called accessible if it is λ-accessible for some λ.
- A cocomplete accessible category is called *locally presentable*.
- If C and C' are λ-accessible categories, then a functor H: C → C' is called λ-accessible if it preserves λ-filtered colimits.

Let \mathcal{C} be any category.

- An object X of C is called λ-presentable if the functor C(X, -) preserves λ-filtered colimits.
- A category C is λ-accessible if all λ-filtered colimits exist in C and there is a set S of λ-presentable objects such that every object of C is a λ-filtered colimit of objects from S. It is called accessible if it is λ-accessible for some λ.
- A cocomplete accessible category is called *locally presentable*.
- If C and C' are λ-accessible categories, then a functor H: C → C' is called λ-accessible if it preserves λ-filtered colimits.

Combinatorial model categories

A model category \mathcal{M} is λ -combinatorial if it is locally λ -presentable and cofibrantly λ -generated. \mathcal{M} is combinatorial if it is λ -combinatorial for some λ .

For a model category \mathcal{M} , the composition

$$\mathcal{M} \xrightarrow{R} \mathcal{M}_{cf} \xrightarrow{Q} Ho(\mathcal{M}),$$

is the canonical functor to its homotopy category, where Q is the quotient functor.

Definition

A functor $H: \mathcal{M} \to \mathcal{M}'$ between model categories is called a *homotopy functor* if it sends weak equivalences between fibrant and cofibrant objects to weak equivalences.

Combinatorial model categories

A model category \mathcal{M} is λ -combinatorial if it is locally λ -presentable and cofibrantly λ -generated. \mathcal{M} is combinatorial if it is λ -combinatorial for some λ .

For a model category $\ensuremath{\mathcal{M}},$ the composition

$$\mathcal{M} \xrightarrow{R} \mathcal{M}_{cf} \xrightarrow{Q} Ho(\mathcal{M}),$$

is the canonical functor to its homotopy category, where Q is the quotient functor.

Definition

A functor $H: \mathcal{M} \to \mathcal{M}'$ between model categories is called a *homotopy functor* if it sends weak equivalences between fibrant and cofibrant objects to weak equivalences.

Combinatorial model categories

A model category \mathcal{M} is λ -combinatorial if it is locally λ -presentable and cofibrantly λ -generated. \mathcal{M} is combinatorial if it is λ -combinatorial for some λ .

For a model category $\ensuremath{\mathcal{M}},$ the composition

$$\mathcal{M} \xrightarrow{R} \mathcal{M}_{cf} \xrightarrow{Q} Ho(\mathcal{M}),$$

is the canonical functor to its homotopy category, where Q is the quotient functor.

Definition

A functor $H: \mathcal{M} \to \mathcal{M}'$ between model categories is called a *homotopy functor* if it sends weak equivalences between fibrant and cofibrant objects to weak equivalences.

Every homotopy functor $H \colon \mathcal{M} \to \mathcal{M}'$ restricts to a functor

\overline{H} : $Ho(\mathcal{M}) \longrightarrow Ho(\mathcal{M}')$.

Let *H* be a homotopy endofunctor on \mathcal{M} . An object *X* in $Ho(\mathcal{M})$ is called *H*-acyclic if \overline{HX} is isomorphic to the terminal object $Ho(\mathcal{M})$.

We denote by $\mathcal{A}(H)$ the full subcategory of $Ho(\mathcal{M})$ consisting of all *H*-acyclic objects.

Definition

Every homotopy functor $H \colon \mathcal{M} \to \mathcal{M}'$ restricts to a functor

 \overline{H} : $Ho(\mathcal{M}) \longrightarrow Ho(\mathcal{M}')$.

Let *H* be a homotopy endofunctor on \mathcal{M} . An object *X* in $Ho(\mathcal{M})$ is called *H*-acyclic if \overline{HX} is isomorphic to the terminal object $Ho(\mathcal{M})$.

We denote by $\mathcal{A}(H)$ the full subcategory of $Ho(\mathcal{M})$ consisting of all *H*-acyclic objects.

Definition

Every homotopy functor $H \colon \mathcal{M} \to \mathcal{M}'$ restricts to a functor

 \overline{H} : $Ho(\mathcal{M}) \longrightarrow Ho(\mathcal{M}')$.

Let *H* be a homotopy endofunctor on \mathcal{M} . An object *X* in $Ho(\mathcal{M})$ is called *H*-acyclic if \overline{HX} is isomorphic to the terminal object $Ho(\mathcal{M})$.

We denote by $\mathcal{A}(H)$ the full subcategory of $Ho(\mathcal{M})$ consisting of all *H*-acyclic objects.

Definition

Every homotopy functor $H \colon \mathcal{M} \to \mathcal{M}'$ restricts to a functor

 \overline{H} : $Ho(\mathcal{M}) \longrightarrow Ho(\mathcal{M}')$.

Let *H* be a homotopy endofunctor on \mathcal{M} . An object *X* in $Ho(\mathcal{M})$ is called *H*-acyclic if \overline{HX} is isomorphic to the terminal object $Ho(\mathcal{M})$.

We denote by $\mathcal{A}(H)$ the full subcategory of $Ho(\mathcal{M})$ consisting of all *H*-acyclic objects.

Definition

Theorem (CGR)

Let \mathcal{M} be a combinatorial pointed model category and λ a regular cardinal. Then there is only a set of generalized λ -Bousfield classes in Ho(\mathcal{M}).

Proof

 $Ho(\mathcal{M})$ has a set \mathcal{G} of weak generators. By the Uniformization Theorem we can choose a regular cardinal $\mu \geq \lambda$ such that

- (i) \mathcal{M} is μ -combinatorial.
- (ii) Each $G \in \mathcal{G}$ is μ -presentable.
- (iii) The fibrant replacement functor and the cofibrant replacement functor are μ -accessible and preserve μ -presentable objects.

Theorem (CGR)

Let \mathcal{M} be a combinatorial pointed model category and λ a regular cardinal. Then there is only a set of generalized λ -Bousfield classes in Ho(\mathcal{M}).

Proof

 $Ho(\mathcal{M})$ has a set 9 of weak generators. By the Uniformization

- (i) \mathcal{M} is μ -combinatorial.
- (ii) Each $G \in \mathcal{G}$ is μ -presentable.
- (iii) The fibrant replacement functor and the cofibrant replacement functor are μ -accessible and preserve μ -presentable objects.

Theorem (CGR)

Let \mathcal{M} be a combinatorial pointed model category and λ a regular cardinal. Then there is only a set of generalized λ -Bousfield classes in Ho(\mathcal{M}).

Proof

 $Ho(\mathcal{M})$ has a set \mathfrak{G} of weak generators. By the Uniformization Theorem we can choose a regular cardinal $\mu \ge \lambda$ such that

- (i) \mathcal{M} is μ -combinatorial.
- (ii) Each $G \in \mathcal{G}$ is μ -presentable.
- (iii) The fibrant replacement functor and the cofibrant replacement functor are μ -accessible and preserve μ -presentable objects.

Proof (cont.)

Since every λ -accessible functor $H: \mathcal{M} \to \mathcal{M}$ is μ -accessible, it suffices to prove that there is only a set of generalized μ -Bousfield classes in $Ho(\mathcal{M})$.

Given a μ -accessible homotopy functor $H: \mathcal{M} \to \mathcal{M}$, let

 $\mathcal{J}(H) = \{f \colon A \to B \text{ in } \mathcal{M}_{\mu} \cap \mathcal{M}_{cf} \text{ such that } \overline{HQ}(f) = 0\}.$

Then, one shows that $\mathcal{A}(H_1) = \mathcal{A}(H_2)$ whenever $\mathcal{J}(H_1) = \mathcal{J}(H_2)$. Since \mathcal{M}_{μ} is small, this finishes the proof.

Remark

Proof (cont.)

Since every λ -accessible functor $H: \mathcal{M} \to \mathcal{M}$ is μ -accessible, it suffices to prove that there is only a set of generalized μ -Bousfield classes in $Ho(\mathcal{M})$.

Given a μ -accessible homotopy functor $H: \mathcal{M} \to \mathcal{M}$, let

 $\mathcal{J}(H) = \{f \colon A \to B \text{ in } \mathcal{M}_{\mu} \cap \mathcal{M}_{cf} \text{ such that } \overline{H}Q(f) = 0\}.$

Then, one shows that $\mathcal{A}(H_1) = \mathcal{A}(H_2)$ whenever $\mathcal{J}(H_1) = \mathcal{J}(H_2)$. Since \mathcal{M}_{μ} is small, this finishes the proof.

Remark

Proof (cont.)

Since every λ -accessible functor $H: \mathcal{M} \to \mathcal{M}$ is μ -accessible, it suffices to prove that there is only a set of generalized μ -Bousfield classes in $Ho(\mathcal{M})$.

Given a μ -accessible homotopy functor $H: \mathcal{M} \to \mathcal{M}$, let

 $\mathcal{J}(H) = \{f \colon A \to B \text{ in } \mathcal{M}_{\mu} \cap \mathcal{M}_{cf} \text{ such that } \overline{H}Q(f) = 0\}.$

Then, one shows that $\mathcal{A}(H_1) = \mathcal{A}(H_2)$ whenever $\mathcal{J}(H_1) = \mathcal{J}(H_2)$. Since \mathcal{M}_{μ} is small, this finishes the proof.

Remark

Proof (cont.)

Since every λ -accessible functor $H: \mathcal{M} \to \mathcal{M}$ is μ -accessible, it suffices to prove that there is only a set of generalized μ -Bousfield classes in $Ho(\mathcal{M})$.

Given a μ -accessible homotopy functor $H: \mathcal{M} \to \mathcal{M}$, let

 $\mathcal{J}(H) = \{f \colon A \to B \text{ in } \mathcal{M}_{\mu} \cap \mathcal{M}_{cf} \text{ such that } \overline{H}Q(f) = 0\}.$

Then, one shows that $\mathcal{A}(H_1) = \mathcal{A}(H_2)$ whenever $\mathcal{J}(H_1) = \mathcal{J}(H_2)$. Since \mathcal{M}_{μ} is small, this finishes the proof.

Remark

A functor $F : \mathfrak{M} \to \mathfrak{M}'$ is *left Quillen* if it is a left adjoint and preserves cofibrations and trivial cofibrations.

Every left Quillen functor preserves weak equivalences between cofibrant objects, hence they are homotopy functors and they are λ -accessible for any λ (since they preserve all colimits).

Let \mathfrak{M} be a combinatorial (semi)pointed model category and let \mathfrak{F} be the class of all left Quillen functors $F \colon \mathfrak{M} \to \mathfrak{M}$. Given two functors F_1 and F_2 in \mathfrak{F} , we say that $F_1 \sim F_2$ if $\mathcal{A}(F_1) = \mathcal{A}(F_2)$.

A functor $F : \mathfrak{M} \to \mathfrak{M}'$ is *left Quillen* if it is a left adjoint and preserves cofibrations and trivial cofibrations.

Every left Quillen functor preserves weak equivalences between cofibrant objects, hence they are homotopy functors and they are λ -accessible for any λ (since they preserve all colimits).

Let \mathfrak{M} be a combinatorial (semi)pointed model category and let \mathfrak{F} be the class of all left Quillen functors $F \colon \mathfrak{M} \to \mathfrak{M}$. Given two functors F_1 and F_2 in \mathfrak{F} , we say that $F_1 \sim F_2$ if $\mathcal{A}(F_1) = \mathcal{A}(F_2)$.

A functor $F : \mathcal{M} \to \mathcal{M}'$ is *left Quillen* if it is a left adjoint and preserves cofibrations and trivial cofibrations.

Every left Quillen functor preserves weak equivalences between cofibrant objects, hence they are homotopy functors and they are λ -accessible for any λ (since they preserve all colimits).

Let \mathcal{M} be a combinatorial (semi)pointed model category and let \mathcal{F} be the class of all left Quillen functors $F \colon \mathcal{M} \to \mathcal{M}$. Given two functors F_1 and F_2 in \mathcal{F} , we say that $F_1 \sim F_2$ if $\mathcal{A}(F_1) = \mathcal{A}(F_2)$.

Corollary 1

Let \mathfrak{M} be a (semi)pointed combinatorial model category. Then there is a set of equivalence classes in \mathfrak{F}/\sim .

If $\mathcal M$ is a monoidal model category, then the homological Bousfield class of an object E in $\mathcal M$ is the class

 $\langle E \rangle = \{ X \in \mathcal{M} \mid E \otimes X \simeq * \}.$

Corollary 2

Let \mathcal{M} be a (semi)pointed combinatorial monoidal model category. Then there is a set of homological Bousfield classes.

Corollary 1

Let \mathfrak{M} be a (semi)pointed combinatorial model category. Then there is a set of equivalence classes in \mathfrak{F}/\sim .

If ${\mathcal M}$ is a monoidal model category, then the homological Bousfield class of an object ${\it E}$ in ${\mathcal M}$ is the class

$$\langle E \rangle = \{ X \in \mathcal{M} \mid E \otimes X \simeq * \}.$$

Corollary 2

Let \mathcal{M} be a (semi)pointed combinatorial monoidal model category. Then there is a set of homological Bousfield classes.

Corollary 1

Let \mathfrak{M} be a (semi)pointed combinatorial model category. Then there is a set of equivalence classes in \mathfrak{F}/\sim .

If ${\mathcal M}$ is a monoidal model category, then the homological Bousfield class of an object ${\it E}$ in ${\mathcal M}$ is the class

$$\langle E \rangle = \{ X \in \mathcal{M} \mid E \otimes X \simeq * \}.$$

Corollary 2

Let \mathcal{M} be a (semi)pointed combinatorial monoidal model category. Then there is a set of homological Bousfield classes.

Javier J. Gutiérrez (UB)