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CSASC 2011
Krems, Austria, 25-28 September, 2011

Javier J. Gutiérrez (UB) Generalized Ohkawa’s theorem 1 / 10



Introduction

Introduction

The homological Bousfield class 〈E〉 of a spectrum E consists of all
E∗-acyclic spectra, where E∗ is the reduced homology theory
associated with E

〈E〉 = {X | E ∧ X ' ∗}.

Ohkawa’s theorem: There is a set of Bousfield classes
[Ohkawa, 1989].
Simpler proof and relationship with the Bousfield lattice
[Dwyer–Palmieri, 2001].
Bousfield classes in the derived category of modules over some
non-noetherian rings [Dwyer–Palmieri, 2008].
Generalization to well-generated tensor triangulated categories
[Iyengar–Krause, 2011].
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Theorem (Iyengar–Krause, 2011)
Let T be a α-well generated triangulated category and consider the
collection H of functors H : T → A such that

(i) A is abelian and has coproducts and exact α-filtered colimits.
(ii) H is cohomological and preserves coproducts.

Then the localizing subcategories of the form ker H for some H ∈ H

form a set of cardinality at most 22|Tα|
.

Corollary
For any α-well generated tensor triangulated category T, the collection
of Bousfield classes forms a set of cardinality at most 22|Tα|

.
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Background on accessible categories

Accessible categories

Let C be any category.
An object X of C is called λ-presentable if the functor C(X ,−)
preserves λ-filtered colimits.
A category C is λ-accessible if all λ-filtered colimits exist in C and
there is a set S of λ-presentable objects such that every object of
C is a λ-filtered colimit of objects from S. It is called accessible if it
is λ-accessible for some λ.
A cocomplete accessible category is called locally presentable.
If C and C′ are λ-accessible categories, then a functor H : C→ C′

is called λ-accessible if it preserves λ-filtered colimits.
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Background on accessible categories

Combinatorial model categories

A model category M is λ-combinatorial if it is locally λ-presentable and
cofibrantly λ-generated. M is combinatorial if it is λ-combinatorial for
some λ.

For a model category M, the composition

M
R−→Mcf

Q−→ Ho(M),

is the canonical functor to its homotopy category, where Q is the
quotient functor.

Definition
A functor H : M→M′ between model categories is called a homotopy
functor if it sends weak equivalences between fibrant and cofibrant
objects to weak equivalences.
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Generalized Bousfield classes

Every homotopy functor H : M→M′ restricts to a functor

H : Ho(M) −→ Ho(M′).

Let H be a homotopy endofunctor on M. An object X in Ho(M) is
called H-acyclic if HX is isomorphic to the terminal object Ho(M).

We denote by A(H) the full subcategory of Ho(M) consisting of all
H-acyclic objects.

Definition
Let M be a model category. A generalized Bousfield class is a full
subcategory of Ho(M) of the form A(H) for some homotopy
endofunctor H on M. If H is a λ-accessible homotopy functor, then
A(H) will be called a generalized λ-Bousfield class.
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Generalized Bousfield classes

Main result

Theorem (CGR)
Let M be a combinatorial pointed model category and λ a regular
cardinal. Then there is only a set of generalized λ-Bousfield classes
in Ho(M).

Proof
Ho(M) has a set G of weak generators. By the Uniformization
Theorem we can choose a regular cardinal µ ≥ λ such that

(i) M is µ-combinatorial.
(ii) Each G ∈ G is µ-presentable.
(iii) The fibrant replacement functor and the cofibrant replacement

functor are µ-accessible and preserve µ-presentable objects.
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Generalized Bousfield classes

Main result

Proof (cont.)
Since every λ-accessible functor H : M→M is µ-accessible, it suffices
to prove that there is only a set of generalized µ-Bousfield classes
in Ho(M).
Given a µ-accessible homotopy functor H : M→M, let

J(H) = {f : A→ B in Mµ ∩Mcf such that HQ(f ) = 0}.

Then, one shows that A(H1) = A(H2) whenever J(H1) = J(H2). Since
Mµ is small, this finishes the proof.

Remark
The argument in the proof can be adapted to semipointed model
categories, i.e., if for every X the morphism X → ∗ is an epimorphism.
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Examples

A set of left Quillen functors

A functor F : M→M′ is left Quillen if it is a left adjoint and preserves
cofibrations and trivial cofibrations.

Every left Quillen functor preserves weak equivalences between
cofibrant objects, hence they are homotopy functors and they are
λ-accessible for any λ (since they preserve all colimits).

Let M be a combinatorial (semi)pointed model category and let F be
the class of all left Quillen functors F : M→M. Given two functors F1
and F2 in F, we say that F1 ∼ F2 if A(F1) = A(F2).
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Examples

A set of left Quillen functors

Corollary 1
Let M be a (semi)pointed combinatorial model category. Then there is
a set of equivalence classes in F/ ∼.

If M is a monoidal model category, then the homological Bousfield
class of an object E in M is the class

〈E〉 = {X ∈M | E ⊗ X ' ∗}.

Corollary 2
Let M be a (semi)pointed combinatorial monoidal model category.

Then there is a set of homological Bousfield classes.
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