
ALGEBRAIC TOPOLOGY

MASTERMATH (FALL 2014)
Written exam, 21/01/2015, 3 hours

Outline of solutions

Exercise 1.

(i) There are various definitions in the literature. Based on the discussion on p. 5 of Lecture
3, as well as the fact that all spaces and maps should be taken pointed, the correct answer
should at least be an example of the following definition:

Definition. An H-space is a space X equipped with a multiplication map µ : X ×X → X
and a unit element e : ∗ → X such that the maps

µ(e,−) : X // X µ(−, e) : X // X

are homotopic to the identity maps on X, via a homotopy that fixes the unit e (so that
µ(e, e) = e).

There are variants asking for associativity up to homotopy or the existence of strict units.
All these variants are counted as a correct answer. Note that exercise (iii) gives an extra
hint for taking (X, e) as a pointed space, so that all homotopies should fix the unit e.

(ii) For [α] ∈ π1(X) and [β] ∈ πn(X), take representatives α : I → X and β : In → X sending
∂I and ∂In to the basepoint. Consider the map In × {0} ∪ ∂In × I → X given by β on
In × {0} and by α ◦ π2 on ∂In × I. It has an extension to a map H : In × I → X, whose
restriction to In × {1} presents the element [α] · [β]. For n = 1, the map H can be pictured
as

α α

β

This clearly shows that the remaining face represents [α][β][α]−1. See p. 6-7 of Lecture 4.

(iii) π1(X) is abelian by the Eckman-Hilton trick (p. 3 of Lecture 3). It also follows from the
argument for generic n, by taking n = 1.

If the unit is a strict unit, one can take the extension H from part (ii) to be given by

H(x, t) = µ(β(x), α(t))

Since α(1) = e, one sees that H(x, 1) = β(x), showing that the action is trivial. If the e
is only the unit up to pointed homotopy, observe that H(x, 1) = µ(β(x), e) is homotopic to
β(x) via the homotopy witnessing unitality. But the restriction of H(x, 1) to ∂In is constant
with value e and the unitality homotopy fixes e. It follows that H(−, 1) ' β via a homotopy
that fixes the boundary ∂In.

Exercise 2.

(i) False, π3(S2) 6= 0 (see p. 4 of Lecture 3 or Exercise 6 from sheet 6).

(ii) True, by cellular approximation (see p. 3 of Lecture 9).

(iii) True, to check the defining right lifting property one produces a lifting in two steps.

(iv) True, to check the defining right lifting property one produces a lifting in two steps.

(v) False in general, f should land in X(n−1).
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(vi) True, f necessarily lands in X(n−1).

(vii) False. As was mentioned in the lectures, there are many maps K(A,n) → K(B,m) which
are not nullhomotopic, even when n 6= m. Such maps always induce the zero map on
homotopy groups when n 6= m. However, this remark does not appear in the lecture notes
and therefore exercise 2(vii) has not been marked.

A concrete counterexample to (vii) is given by the quotient map

S1 × S1 → S1 × S1/S1 ∨ S1 ' S2.

However, to prove that this map is indeed not nullhomotopic requires material beyond the
scope of this course (the map induces an isomorphism between the second homology groups).

Exercise 3.

(i) In general, if

q−1(c0) //

��

D //

q

��

B

p

��

∗
c0

// C
φ

// A

realizes q as the pullback of a Serre fibration p, then q is a Serre fibration as well. Fur-
thermore, the fiber q−1(c0) can be realized by the dotted pullback square. By the ‘pasting
lemma’ for pullbacks, the total square is a pullback as well, which show that q−1(c0) is
homeomorphic to p−1(φ(c0)).

Since we know that the map (ε0, ε1) : XI → X × X is a Serre fibration (see p. 2 of
Lecture 5), this gives (i). Alternatively, one can construct an explicit homeomorphism
between the fiber of Y ×hX Z → Y × Z and Ω(X,x0).

(ii) The long exact sequence of the fibration Y ×hX Z → Y × Z gives an exact sequence

· · · −→ πn(Ω(X,x0)) −→ πn(Y ×hX Z) −→ πn(Y × Z) −→ πn−1(Ω(X,x0)) −→ · · ·

· · · −→ π0(Ω(X,x0)) −→ π0(Y ×hX Z) −→ π0(Y × Z)

Using that πn(X,x0) ' πn−1(Ω(X,x0)) for n ≥ 1 and that πn(Y × Z) ' πn(Y ) × πn(Z),
one obtains a long exact sequence of the desired form.

The map π1(Y ) × π1(Z) → π1(X) corresponds to the connecting homomorphism of the
long exact sequence for Y ×hX Z → Y × Z. It is constructed as follows: let α : I → Y and
β : I → Z present an element in π1(Y )× π1(Z). Pick a lift

{0}

��

(κx0 ,y0,z0) // Y ×hX Z

��

// XI

(ε0,ε1)

��

I

h

66

(α,β)
// Y × Z

f×g
// X ×X.

Then h(1) is a point in the fiber over (y0, z0) – which was Ω(X,x0) – whose homotopy class
provides the desired element in π0(Ω(X,x0)).

Now the composite I → Y ×hXZ → XI determines a map H : I×I → X with the property
that

H(−, 0) = f ◦ α H(−, 1) = g ◦ β H(0,−) = κx0

In other words, H determines a square of the form

f∗α

κx0 γ

g∗β
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for some γ : I → X with γ(0) = γ(1) = x0. It follows that [γ] · f∗[α] = g∗[β] · [κx0 ] in π1(X),
so that [γ] = g∗[β] · f∗[α]−1.

By construction, the h(1) is given by (γ, y0, z0). It follows that the connecting homomor-
phism sends (α, β) to [γ] = g∗[β] · f∗[α]−1 in π0(Ω(X,x0)) ' π1(X).

Remark: the map πn(Y ) × πn(Z) → πn(X) sends (α, β) to g∗(β) − f∗(α) for all n ≥ 2.
This either follows from a similar argument as the one for n = 1, or one can reduce to the
case n = 1 as follows: applying Ωn to pullback square (??), we find a pullback square

Ωn(Y ×hX Z) //

��

(
ΩnX

)I
��

ΩnY × ΩnZ // ΩnX × ΩnX

in which the vertical maps are the n-fold loopings of the original Serre fibrations.
If p : E → X is a Serre fibration with fiber F , then Ωnp : ΩnE → ΩnX is a fiber sequence

with fiber ΩnF . Under the isomorphism π0(ΩnX) ' πn(X), the long exact sequence of Ωnp
corresponds to the part of the long exact sequence of p that sits in dimensions ≥ n. The
exercise then shows that the map

πn+1(Y )× πn+1(Z) ' π1(ΩnY × ΩnZ) // π1(ΩnX) ' πn+1(X)

sends (α, β) to g∗β · f∗(α)−1.

Exercise 4.

(i) See Lecture 11. A correct answer should include: iteratively attaching cells along maps
∂en → X presenting nontrivial elements in πn−1(X) and replacing the resulting sequence of
relative CW-complexes by a homotopy equivalent sequence of fibrations.

(ii) See Lecture 11. The fibration ψn−1 induces isomorphisms of homotopy groups in dimensions
6= n: in dimensions > n the homotopy groups of Pn(X) and Pn−1(X) are both trivial and
in dimensions k < n there is a commuting diagram

πk
(
Pn(X)

)
ψn−1

��

πk(X)

'
88qqqqqqqqqq

'
fn−1

// πk
(
Pn−1(X)

)
so that ψn−1 induces isomorphisms of homotopy groups in dimensions k < n.

Furthermore, the map ψn−1 induces the zero map on the n-th homotopy group. Inspection
of the long exact sequence of the fibration ψn−1 now shows that the fiber of ψn−1 is a K(π, n),
where π = πn(X).

Exercise 5.

(i) One possible CW-decomposition is given by

× ∂1

��

?

• c

����

•
OOOO

?
∂2

×

OO

This has three 0-cells ×, •, ?, five 1-cells and two 2-cells. The inclusion of the central cirlce
is the inclusion of a subcomplex (we take • to be the unique 0-cell of the central circle).
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If we give the boundary circle the CW-decomposition with a unique 0-cell × and one
1-cell, then the inclusion of the boundary becomes cellular (since it sends the 0- , resp. 1-
skeleton of the circle to the 0- , resp. 1-skeleton of M).

For exercise (iii), it is useful to pick a different CW-structure for the Möbius strip, for which
both the central circle and the boundary circle are inclusions of subcomplexes:

× ∂1

��

• c

����

•
OOOO

∂2
×

OO

This decomposition has two 0-cells, three 1-cells (the central circle, the boundary circle
∂2 ◦ ∂1 and the segment between × and •) and one 2-cell.

(ii) The most obvious retraction is given by

p : M // S1; p[s, t] = [s, 0]

It is immediate that p ◦ c is the identity on S1 ' I/∂I. Furthermore, c ◦ p is homotopic to
the identity on M via

H : M × I // M ; H
(
[s, t], τ

)
= [s, t · τ ].

The main point is that the composite S1 ∂−→ M
p−→ S1 wraps the boundary circle twice

around the central circle, so it induces multiplication by two on π1(S1) = Z. The map p
is a homotopy equivalence by construction, while the map ∂ is a cofibration since it is the
inclusion of a subcomplex.

(iii) Using the second CW-structure from (i), we have that c and ∂ are both inclusions of sub-
complexes. In general, if A → B and A → C are inclusions of subcomplexes (giving the
same CW-structure on A!), then the pushout B → B

∐
A C is the inclusion of a subcomplex.

In particular, B
∐
A C is itself a CW-complex.

Indeed, define
(
B
∐
A C

)(n)
as the pushout

A(n) //

��

C(n)

��

B(n) //
(
B
∐
A C

)(n)
.

Then
(
B
∐
A C

)(n+1)
is obtained from

(
B
∐
A C

)(n)
by adding the (n+1)-cells of B and the

(n+ 1)-cells of C (identifying the (n+ 1)-cells of A).
Applying this inductively to the sequence of M(n) shows that M(n) is a CW-complex

and that both M(n−1) → M(n) and the inclusion of the central circle c(n) : S1 → M(n) are
inclusions of subcomplexes; the latter allows one to proceed inductively.

Phrased differently, one obtains a CW-structure on M(n) by
(1) taking the CW-structure on M(n−1)
(2) adding a 0-cell (the 0-cell of the new central circle)
(3) adding two 1-cells: add the new central circle to the added point, and add a 1-cell

between the newly added point and the 0-cell in the old central circle of M(n−1).
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(4) finally, adding a 2-cell according to the CW-structure of the Möbius strip.
The result is a CW-complex since we only attach n-cells to the (n−1)-skeleton. Furthermore,
it is immediate that M(n−1) is a CW subcomplex.

For the case n = ∞, the CW-structure is given by taking the images of the 0-, 1- and
2-cells of each M(n).

(iv) Any finite subcomplex of M(∞) is contained in some M(n) (this holds in general for the

colimit of a sequence of subcomplex inclusions). This implies that any map Sk → M(∞)

takes values in some M(n).

But it is given that πk(M(n)) is zero when k 6= 1, so any map Sk → M(∞) is (pointed)
homotopic to the constant map when k 6= 1. This shows that M(∞) is a K(G, 1). In
particular, it is path-connected, so we just have to look at the fundamental group at some
basepoint that lies in M(1) ⊆M(∞).

For any sequence of subcomplex inclusions X0 ⊆ X1 ⊆ ..., one has that

π1(colimXn) = colimn π1(Xn)

It this case, we know that each π1(M(n)) ' Z and that each map π1(M(n))→ π1(M(n+1) is
given by ‘multiplication by 2’. We thus have that π1(M(∞)) is the colimit of the sequence

Z
×2

// Z
×2

// · · ·

The colimit of this sequence is Z[ 12 ], i.e. the (additive) group of fractions p
q where q is a

power of 2.

Alternatively, one can explicitly construct an isomorphism between Z[ 12 ] and π1(M(∞)) as

follows: send the element 1 ∈ Z[ 12 ] to the image of the generating element 1 ∈ π1(M(1))

in π1(M(∞)). Similarly, send 1
2n to the image in π1(M(∞)) of the generating element

of π1(M(n+1)). This gives a well-defined group homomorphism because the generator of
π1(M(n)) is exactly identified with twice the generator of π1(M(n+1)).

The resulting group homomorphism is surjective: this follows from the fact that
any map S1 → M(∞) takes values in some M(n+1) and therefore is given by p

2n for some p
and n.

The resulting group homomorphism is injective: if p
2n and q

2m are sent to the
same element in π1(M(∞)), then the representing loops inside M(n), resp. M(m), become
homotopic in some M(N) for N large enough. But this means precisely that

p

2n
=

2N−n · p
2N

=
2N−m · q

2N
=

q

2m
.


