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Reflections and coreflections

Reflection and coreflections

A full subcategory L of a category T is reflective if the inclusion
L ↪→ T has a left adjoint T → L.
The composite L : T → T is called a reflection or a localization
onto L.
There is a natural transformation l : Id→ L such that Ll : L→ LL is
an isomorphism, lL is equal to Ll , and, for each X , the morphism
lX : X → LX is initial in T among morphisms from X to objects in L.

Similarly, a full subcategory C of T is coreflective if the inclusion
C ↪→ T has a right adjoint.
The composite C : T → T is called a coreflection or a
colocalization onto C.
There is a natural transformation c : C → Id such that Cc is an
isomorphism, cC is equal to Cc, and for each X , the morphism
cX : CX → X is terminal among morphisms from objects in C.
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Reflections and coreflections

Weak reflections

A full subcategory L of a category T is called weakly reflective if
for every object X of T there is a morphism lX : X → X ∗ with X ∗ in
L and such that the function

T(lX ,Y ) : T(X ∗,Y ) −→ T(X ,Y )

is surjective for all objects Y of L.

Every morphism from X to an object of L factors through lX , not
necessarily in a unique way.

If such a factorization is unique for all objects X , then the
morphisms lX : X → X ∗ for all X define together a reflection, so L

is then reflective.
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Types of subcategories

Closure properties for triangulated categories

Let T be a triangulated category with products and coproducts. Let Σ
be the shift or suspension operator. Triangles in T will be denoted by

X −→ Y −→ Z −→ ΣX ,

Let S be a full subcategory of T. We define the following closure
properties in S:

(i) Fibres: If Y and Z are in S then X is in S.
(ii) Cofibres: If X and Y are in S then Z is in S.
(iii) Extensions: If X and Z are in S then Y is in S.

Definition
A full subcategory of T is called semilocalizing if it is closed under
coproducts, (ii) and (iii). It is called localizing if it is closed under
coproducts, (i), (ii) and (iii). Dually, a full subcategory is called
semicolocalizing if it is closed under products, (i) and (iii). It is called
colocalizing if it is closed under products, (i), (ii) and (iii).

Javer J. Gutiérrez (UB) Coreflective semicolocalizing subcategories 4 / 15



Types of subcategories

Closure properties for triangulated categories

Let T be a triangulated category with products and coproducts. Let Σ
be the shift or suspension operator. Triangles in T will be denoted by

X −→ Y −→ Z −→ ΣX ,

Let S be a full subcategory of T. We define the following closure
properties in S:

(i) Fibres: If Y and Z are in S then X is in S.
(ii) Cofibres: If X and Y are in S then Z is in S.
(iii) Extensions: If X and Z are in S then Y is in S.

Definition
A full subcategory of T is called semilocalizing if it is closed under
coproducts, (ii) and (iii). It is called localizing if it is closed under
coproducts, (i), (ii) and (iii). Dually, a full subcategory is called
semicolocalizing if it is closed under products, (i) and (iii). It is called
colocalizing if it is closed under products, (i), (ii) and (iii).

Javer J. Gutiérrez (UB) Coreflective semicolocalizing subcategories 4 / 15



Types of subcategories

Closure properties for triangulated categories

Let T be a triangulated category with products and coproducts. Let Σ
be the shift or suspension operator. Triangles in T will be denoted by

X −→ Y −→ Z −→ ΣX ,

Let S be a full subcategory of T. We define the following closure
properties in S:

(i) Fibres: If Y and Z are in S then X is in S.
(ii) Cofibres: If X and Y are in S then Z is in S.
(iii) Extensions: If X and Z are in S then Y is in S.

Definition
A full subcategory of T is called semilocalizing if it is closed under
coproducts, (ii) and (iii). It is called localizing if it is closed under
coproducts, (i), (ii) and (iii). Dually, a full subcategory is called
semicolocalizing if it is closed under products, (i) and (iii). It is called
colocalizing if it is closed under products, (i), (ii) and (iii).

Javer J. Gutiérrez (UB) Coreflective semicolocalizing subcategories 4 / 15



Types of subcategories

Closure properties for triangulated categories

Let T be a triangulated category with products and coproducts. Let Σ
be the shift or suspension operator. Triangles in T will be denoted by

X −→ Y −→ Z −→ ΣX ,

Let S be a full subcategory of T. We define the following closure
properties in S:

(i) Fibres: If Y and Z are in S then X is in S.
(ii) Cofibres: If X and Y are in S then Z is in S.
(iii) Extensions: If X and Z are in S then Y is in S.

Definition
A full subcategory of T is called semilocalizing if it is closed under
coproducts, (ii) and (iii). It is called localizing if it is closed under
coproducts, (i), (ii) and (iii). Dually, a full subcategory is called
semicolocalizing if it is closed under products, (i) and (iii). It is called
colocalizing if it is closed under products, (i), (ii) and (iii).

Javer J. Gutiérrez (UB) Coreflective semicolocalizing subcategories 4 / 15



Types of subcategories

Closure properties for triangulated categories

Let T be a triangulated category with products and coproducts. Let Σ
be the shift or suspension operator. Triangles in T will be denoted by

X −→ Y −→ Z −→ ΣX ,

Let S be a full subcategory of T. We define the following closure
properties in S:

(i) Fibres: If Y and Z are in S then X is in S.
(ii) Cofibres: If X and Y are in S then Z is in S.
(iii) Extensions: If X and Z are in S then Y is in S.

Definition
A full subcategory of T is called semilocalizing if it is closed under
coproducts, (ii) and (iii). It is called localizing if it is closed under
coproducts, (i), (ii) and (iii). Dually, a full subcategory is called
semicolocalizing if it is closed under products, (i) and (iii). It is called
colocalizing if it is closed under products, (i), (ii) and (iii).

Javer J. Gutiérrez (UB) Coreflective semicolocalizing subcategories 4 / 15



Types of subcategories

Closure properties for triangulated categories

Let T be a tensor triangulated category, i.e., T has a closed symmetric
monoidal structure with a unit object S, tensor product ∧ and internal
hom F (−,−), compatible with the triangulated structure and such that
T(X ,F (Y ,Z )) ∼= T(X ∧ Y ,Z ) naturally in all variables. In this case we
have in addition the following closure properties in S:
(iv) Tensor: If X is in S, then so is X ∧W for all W in T.
(v) Internal hom: If X is in S, then so is F (W ,X ) for all W in T.

Definition
A full subcategory of T is called a localizing ideal if it is a localizing
subcategory and closed under (iv). It is called a colocalizing coideal
if it is a colocalizing subcategory and it is closed under (v).
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Types of subcategories

Closure properties for triangulated categories

A reflection L on T will be called semiexact if the subcategory of
L-local objects is semicolocalizing, and exact if it is colocalizing.
Dually, a coreflection C will be called semiexact if the subcategory
of C-colocal objects is semilocalizing and exact if it is localizing.
A (co)reflection is exact if and only if it preserves all triangles (or,
equivalently, commutes with the suspension operator)

Examples
Bousfield–Farjoun localizations are reflections.
Cellular approximations are coreflections.
Nullifications are semiexact reflections.
Homological localizations are exact reflections
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Types of subcategories

Orthogonality and semiorthogonality

For a class of objects D in T we introduce the following notation:

LD = {X | T(X ,ΣkD) = 0 for all D ∈ D and k ≤ 0}

D L = {Y | T(ΣkD,Y ) = 0 for all D ∈ D and k ≥ 0}

⊥D = {X | T(X ,ΣkD) = 0 for all D ∈ D and k ∈ Z}

D⊥ = {Y | T(ΣkD,Y ) = 0 for all D ∈ D and k ∈ Z}

If T is tensor triangulated we denote

⊥D = {X | F (X ,D) = 0 for all D ∈ D},

D⊥ = {Y | F (D,Y ) = 0 for all D ∈ D}.
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Types of subcategories

Orthogonality and semiorthogonality

Theorem
In every triangulated category T there is a bijective correspondence
between semiexact reflections and semiexact coreflections such that, if
a reflection L is paired with a coreflection C then:

(i) For every X, the morphisms lX : X → LX and cX : CX → X fit into
a triangle

CX −→ X −→ LX −→ ΣCX .

(ii) The class L of L-local objects coincides with the class of
C-acyclics, and the class C of C-colocal objects coincides with the
class of L-acyclics.

(iii) The class C is equal to LL, and L is equal to C L.
(iv) L is exact if and only if C is exact. In this case, C = ⊥L and

L = C⊥.
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Types of subcategories

Orthogonality and semiorthogonality

Proposition
Let D be any class of objects in a triangulated category with products
and coproducts.

(i) If scoloc(D) is reflective, then scoloc(D) = ( LD)L, and if sloc(D) is
coreflective, then sloc(D) = L(D L).

(ii) If coloc(D) is reflective, then coloc(D) = (⊥D)⊥, and if loc(D) is
coreflective, then loc(D) = ⊥(D⊥).
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Main results

Triangulated categories with combinatorial models

A model category K is called
(i) Combinatorial if it is locally presentable and cofibrantly generated.
(ii) Stable if it is pointed and the suspension and loop operator are

inverse equivalences on the homotopy category Ho(K). In this
case Ho(K) is triangulated.

We are interested in triangulated categories that appear as homotopy
categories of combinatorial stable (monoidal) model categories. Such
triangulated categories are well-generated [Rosicky].

Examples
The homotopy category of spectra
The derived category of a commutative ring
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Main results

Vopěnka’s principle

Vopěnka’s principle (Categorical formulation)
Given any family of objects Xs of an accessible category indexed by
the class of all ordinals, there is a morphism Xs → Xt for some ordinal
s < t .

If Vopěnka’s principle holds, then every full subcategory of a locally
presentable category closed under λ-filtered colimits for some regular
cardinal λ is accessible.
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Main results

Main results

Theorem 1 (CGR)
Let K be a locally presentable category with a stable model category
structure. If Vopěnka’s principle holds, then every full subcategory L of
Ho(K) closed under fibres and products is reflective. If L is
semicolocalizing, then the reflection is semiexact. If L is colocalizing,
then the reflection is exact.

Corollary
Let K be a locally presentable stable model category. If Vopěnka’s
principle holds, then every closed semilocalizing subcategory of Ho(K)
is coreflective.
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Theorem 2 (CGR)
Let K be a stable combinatorial model category. If Vopěnka’s principle
holds, then every semilocalizing subcategory of Ho(K) is singly
generated and coreflective. The same result holds for localizing
subcategories and for localizing ideals.

Theorem (CGR)
If K is a stable combinatorial model category, then every singly
generated semilocalizing subcategory of Ho(K) is coreflective.
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Corollary
Let T be a triangulated category with combinatorial models. Assuming
Vopěnka’s principle, every semicolocalizing subcategory of T is equal
to E L for some object E (i.e., a nullity class) and every colocalizing
subcategory is equal to E⊥ for some E (i.e., a stable nullity class).
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Main results

Summary

Assuming Vopěnka’s principle:

Every semilocalizing subcategory of a triangulated category with
combinatorial models is part of a t-structure and the same
happens with every semicolocalizing subcategory.

In every triangulated category with combinatorial models there is
a bijective correspondence between the class of (semi)localizing
subcategories and (semi)colocalizing subcategories.

In every tensor triangulated category with combinatorial models
any localizing ideal is the kernel of a localization functor and every
colocalizing coideal is the kernel of a colocalization functor.

Javer J. Gutiérrez (UB) Coreflective semicolocalizing subcategories 15 / 15
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