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Introduction

Precedents

Abelian groups

If R is a (commutative) ring, then LR is a (commutative) ring and
the localization map is a ring morphism.

If M is an R-module, then LM is an R-module and the localization
map is a morphism of R-modules.

Topological spaces

If X is an H-space, then LX is homotopy equivalent to an H-space
and the localization map is equivalent to an H-map.

If X is a loop space, then LX is homotopy equivalent to a loop
space and the localization map is equivalent to a loop map. (In
fact, Lf ΩX ≃ ΩLΣf X [Farjoun, 1996].)
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Introduction

Precedents

Stable homotopy category

If R is a connective ring spectrum and LR is connective, then LR is
a ring spectrum and the localization map is a map of ring spectra.

If M is an R-module spectrum and R is connective, then LM is an
R-module spectrum and the localization map is a map of
R-modules [Casacuberta-G, 2005].

S-modules

If R is an S-algebra and E∗ is a homology theory, then the
Bousfield localization LER is an S-algebra and the localization
map is a map of S-algebras [EKMM, 1997].
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Introduction

Objectives

Symmetric spectra

Study the preservation of strict ring spectra and module spectra
under localizations (by viewing them as algebras over A∞ or E∞) .

Monoidal model categories

Study the preservation under localizations of structures defined as
algebras over coloured operads.
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Coloured operads and their algebras

Coloured operads

Let E be a cocomplete closed symmetric monoidal category. Let C
be a set, whose elements will be called colours. A C-coloured
collection is a set P of objects P(c1, . . . , cn; c) in E for every
n ≥ 0 and each tuple (c1, . . . , cn; c) of colours, together with maps

σ∗ : P(c1, . . . , cn; c) −→ P(cσ(1), . . . , cσ(n); c)

for all permutations σ ∈ Σn, yielding together a right action.

A C-coloured operad is a C-coloured collection P equipped with
unit maps I → P(c; c) and composition product maps

P(c1, . . . , cn; c) ⊗ P(a1,1, . . . , a1,k1 ; c1) ⊗ · · · ⊗ P(an,1, . . . , an,kn ; cn)

−→ P(a1,1, . . . , a1,k1 , a2,1, . . . , a2,k2 , . . . , an,1, . . . , an,kn ; c)

compatible with the action of the symmetric groups and subject to
associativity and unitary compatibility relations.
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Coloured operads and their algebras

Algebras over coloured operads

If P is a C-coloured operad, a P-algebra is an object
X = (X (c))c∈C in EC together with a morphism of C-coloured
operads

P −→ End(X)

where the C-coloured operad End(X) is defined as

End(X)(c1, . . . , cn; c) = HomE(X (c1) ⊗ · · · ⊗ X (cn), X (c)).

Examples
An operad is a coloured operad with only one colour.

The associative operad A is defined as A(n) = I[Σn] for all n,
where I[Σn] is a coproduct of copies of the unit I of E indexed by
Σn. The commutative operad Com is defined as Com(n) = I.
A-algebras are monoids and Com-algebras are commutative
monoids in E.
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Coloured operads and their algebras

Algebras over coloured operads

Example (Modules)
Let C = {r , m} and P an operad. Define a C-coloured operad
ModP whose only nonzero terms are

ModP(r , (n). . ., r ; r) = P(n)

and
ModP(c1, . . . , cn; m) = P(n)

when exactly one ci is m and the rest (if any) are r . Then an
algebra over ModP is a pair (R, M) where R is a P-algebra and M
is an R-module. By using non-symmetric operads, one obtains left
R-modules and right R-modules similarly.

Hence, modules over P-algebras can be viewed as algebras over
coloured operads.
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Coloured operads and their algebras

Algebras over coloured operads

Example (Morphisms of algebras)

Let P be a C-coloured operad and choose D = {0, 1} × C. Define
a D-coloured operad MorP whose value on
((i1, c1), . . . , (in, cn); (i , c)) is

{

0 if i = 0 and ik = 1 for some k ;

P(c1, . . . , cn; c) otherwise.

Then an algebra over MorP consists of two P-algebras
X0 = (X (0, c))c∈C and X1 = (X (1, c))c∈C and a map of P-algebras
f : X0 −→ X1 defined for every c ∈ C as the composite

X (0, c) −→ MorP((0, c); (1, c)) ⊗ X (0, c) −→ X (1, c).

Hence, morphisms of P-algebras can be viewed as algebras over
coloured operads.
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Coloured operads and their algebras

Model structures

Model structure for coloured operads

Let E be a monoidal model category Definition . A model structure
on the category of C-coloured operads in E for a fixed C was
described by [Berger-Moerdijk, 2007].

A map of operads P −→ Q is a weak equivalence (resp. fibration)
if for every (c1, . . . , cn; c) the map

P(c1, . . . , cn; c) −→ Q(c1, . . . , cn; c)

is a weak equivalence (resp. fibration) in E.

For any coloured operad P, we denote by P∞ a cofibrant
resolution P∞ −→ P.
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Homotopical localization functors

Localization functors

A homotopical localization on a model category M with homotopy
function complexes map(−,−) is a functor L : M −→ M that preserves
weak equivalences and takes fibrant values, together with a natural
transformation η : IdM −→ L such that, for every object X , the following
hold:

LηX : LX −→ LLX is a weak equivalence;

ηLX and LηX are equal in the homotopy category Ho(M);

ηX : X −→ LX is a cofibration such that the map

map(ηX , LY ) : map(LX , LY ) −→ map(X , LY )

is a weak equivalence of simplicial sets for all Y .
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Homotopical localization functors

Localization functors

Every homotopical localization functor is an idempotent functor on
the homotopy category Ho(M).

Fibrant objects of M weakly equivalent to LX for some X are
called L-locals.

Morphisms f such that Lf is a weak equivalence are called
L-equivalences.
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Homotopical localization functors

Localization functors

Example (Left Bousfield localizations)
Let M be a left proper cellular model category and L a set of
morphisms in M. Then there exists a model structure ML such that

Cofibrations in M = Cofibrations in ML.

Fibrant objects in ML = L-local objects.

Weak equivalences in ML = L-equivalences.

A functorial factorization in ML of a map as a trivial cofibration followed
by a fibration gives a homotopical localization functor on M:

X //

!!

∼
!!

DD
DD

DD
DD

∗

LLX

== ==||||||||

Javier J. Gutiérrez (CRM) Coloured operads and localizations 17 / 32



Homotopical localization functors

Localization functors

Example (Left Bousfield localizations)
Let M be a left proper cellular model category and L a set of
morphisms in M. Then there exists a model structure ML such that

Cofibrations in M = Cofibrations in ML.

Fibrant objects in ML = L-local objects.

Weak equivalences in ML = L-equivalences.

A functorial factorization in ML of a map as a trivial cofibration followed
by a fibration gives a homotopical localization functor on M:

X //

!!

∼
!!

DD
DD

DD
DD

∗

LLX

== ==||||||||

Javier J. Gutiérrez (CRM) Coloured operads and localizations 17 / 32



Homotopical localization functors

Extending localization functors

If (L, η) is a homotopical localization functor in M, how can we apply L
to an object X = (X (c))c∈C of MC?

Definition

The extension of (L, η) over MC away from J ⊆ C is the
coaugmented functor given by:

LX = (LcX (c))c∈C where Lc = Id if c ∈ J and Lc = L if c /∈ J.

ηX : X −→ LX is defined by (ηX)c = Id if c ∈ J and (ηX)c = ηX(c) if
c /∈ J.
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Homotopical localization functors

Ideals

Example
Let L be a localization functor on abelian groups. If M is an R-module,
then the pair (R, M) is an algebra over ModA.

(LR, LM) and (R, LM) are algebras over ModA

(LR, M) is not an algebra over ModA in general

Definition
If P is a C-coloured operad, a subset J ⊆ C is called an ideal relative
to P if P(c1, . . . , cn; c) = 0 whenever n ≥ 1, c ∈ J, and ci 6∈ J for some
i ∈ {1, . . . , n}.
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Homotopical localization functors

Ideals

Examples
Consider the coloured operads of the previous examples:

The ideals relative to ModP are

∅, {r} and {r , m}.

If Q = ModP , then the ideals relative to MorQ are

∅, {(0, r), (0, m), (1, r), (1, m)}, {(0, r), (0, m), (1, r)},

{(0, r), (0, m)}, {(0, r), (1, r))} and {(0, r)}.
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Main results

Outline of the talk

1 Introduction

2 Coloured operads and their algebras

3 Homotopical localization functors

4 Main results

5 Generalizations and further results
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Main results

Localization of algebras

Theorem (CGMV)
Let (L, η) be a homotopical localization on a simplicial monoidal model
category M Definition .

Let P be a cofibrant C-coloured operad in simplicial sets, and consider
the extension of (L, η) over MC away from an ideal J ⊆ C relative to P.

Let X be a P-algebra such that X (c) is cofibrant in M for every c ∈ C.

Suppose that
(ηX)c1 ⊗ · · · ⊗ (ηX)cn

is an L-equivalence.

Then LX admits a homotopy unique P-algebra structure such that ηX is
a map of P-algebras.
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Main results

Localization of algebras

Proof.
For all (c1, . . . , cn; c), the map

X (c1) ⊗ · · · ⊗ X (cn) −→ Lc1X (c1) ⊗ · · · ⊗ LcnX (cn)

is an L-equivalence by assumption, and it is also a cofibration since
X (c) is cofibrant for all c. Hence, the map

Map(Lc1 X (c1) ⊗ · · · ⊗ Lcn X (cn), LcX (c)) −→ Map(X (c1) ⊗ · · · ⊗ X (cn), LcX (c))

is a fibration and a weak equivalence. By definition,

Map(Lc1X (c1) ⊗ · · · ⊗ LcnX (cn), LcX (c)) = End(LX)(c1, . . . , cn; c)

Map(X (c1) ⊗ · · · ⊗ X (cn), LcX (c)) = Hom(X, LX)(c1, . . . , cn; c).
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Main results

Proof (cont.)
Define a C-coloured operad End(ηX) as the following pull-back:

End(ηX) //

��

End(LX)

��

End(X) // Hom(X, LX).

The right-hand vertical arrow is a trivial fibration. Hence, the left-hand
vertical arrow is also a trivial fibration.

Then, since P is cofibrant, there is a lifting

End(ηX) //

��

End(LX)

��

P //

;;

End(X) // Hom(X, LX).
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Main results

Applications

Topological spaces

If X is a cofibrant A∞-space, then LX has a homotopy unique
A∞-space structure such that the localization map ηX : X −→ LX
is a map of A∞-spaces.

Same is true for A∞-maps, E∞-spaces and E∞-maps.

Symmetric spectra

Let M be a left A∞-module over an A∞-ring R, and assume that
both R and M are cofibrant as spectra. Let (L, η) be a localization
functor that commutes with suspension. Then LM has a homotopy
unique left A∞-module structure over R such that ηM : M −→ LM
is a morphism of A∞-modules.

Same is true for A∞-rings, E∞-rings, E∞-modules and maps of
these.

Javier J. Gutiérrez (CRM) Coloured operads and localizations 25 / 32



Main results

Applications

Topological spaces

If X is a cofibrant A∞-space, then LX has a homotopy unique
A∞-space structure such that the localization map ηX : X −→ LX
is a map of A∞-spaces.

Same is true for A∞-maps, E∞-spaces and E∞-maps.

Symmetric spectra

Let M be a left A∞-module over an A∞-ring R, and assume that
both R and M are cofibrant as spectra. Let (L, η) be a localization
functor that commutes with suspension. Then LM has a homotopy
unique left A∞-module structure over R such that ηM : M −→ LM
is a morphism of A∞-modules.

Same is true for A∞-rings, E∞-rings, E∞-modules and maps of
these.

Javier J. Gutiérrez (CRM) Coloured operads and localizations 25 / 32



Main results

Applications

Topological spaces

If X is a cofibrant A∞-space, then LX has a homotopy unique
A∞-space structure such that the localization map ηX : X −→ LX
is a map of A∞-spaces.

Same is true for A∞-maps, E∞-spaces and E∞-maps.

Symmetric spectra

Let M be a left A∞-module over an A∞-ring R, and assume that
both R and M are cofibrant as spectra. Let (L, η) be a localization
functor that commutes with suspension. Then LM has a homotopy
unique left A∞-module structure over R such that ηM : M −→ LM
is a morphism of A∞-modules.

Same is true for A∞-rings, E∞-rings, E∞-modules and maps of
these.

Javier J. Gutiérrez (CRM) Coloured operads and localizations 25 / 32



Main results

Applications

Topological spaces

If X is a cofibrant A∞-space, then LX has a homotopy unique
A∞-space structure such that the localization map ηX : X −→ LX
is a map of A∞-spaces.

Same is true for A∞-maps, E∞-spaces and E∞-maps.

Symmetric spectra

Let M be a left A∞-module over an A∞-ring R, and assume that
both R and M are cofibrant as spectra. Let (L, η) be a localization
functor that commutes with suspension. Then LM has a homotopy
unique left A∞-module structure over R such that ηM : M −→ LM
is a morphism of A∞-modules.

Same is true for A∞-rings, E∞-rings, E∞-modules and maps of
these.

Javier J. Gutiérrez (CRM) Coloured operads and localizations 25 / 32



Main results

Rectification of homotopy algebras

Any map of C-coloured operads ϕ : P −→ Q induces a pair of adjoint
functors

ϕ! : AlgP(M) ⇄ AlgQ(M) : ϕ∗

This is a Quillen equivalence if ϕ is a weak equivalence and P and Q
are well-pointed Σ-cofibrant [Berger-Moerdijk, 2007].

Let M be the category of symmetric spectra with the positive model
structure. Then

For every C-coloured operad P in simplicial sets, the category
AlgP(M) admits a model structure [Elmendorf-Mandell, 2006].

If ϕ is a weak equivalence, then (ϕ!, ϕ
∗) is a Quillen equivalence

[Elmendorf-Mandell, 2006].

For any operad P, we can rectify P∞-algebras to P-algebras.
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Main results

Theorem (CGMV)
Let (L, η) be a homotopical localization on the model category M of
symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the
extension of (L, η) over MC away from an ideal J ⊆ C relative to P.

Let X be a P-algebra such that X (c) is cofibrant for each c ∈ C, and let
ηX : X −→ LX be the localization map.

Suppose that (ηX)c1 ∧ · · · ∧ (ηX)cn is an L-equivalence.

Then there is a map ξX : DX −→ T X of P-algebras, depending
functorially on X, such that:

X and DX are naturally weakly equivalent as P-algebras;

LX and TX are naturally weakly equivalent as P∞-algebras;

ηX and ξX are naturally weakly equivalent as (MorP)∞-algebras.
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Main results

Rectification results for spectra

Symmetric spectra

Let R be a ring spectrum and M a left R-module. Suppose either
that L commutes with suspension or that R is connective. Then
ηM : M −→ LM is naturally weakly equivalent to a morphism
ξM : DM −→ TM of left R-modules where DM ≃ M as R-modules.

Same is true for ring spectra, ring maps, algebras over
commutative ring spectra . . .

For every commutative connective ring spectrum R, each
connective R-algebra has a Postnikov tower consisting of
R-algebras (previously proved by [Lazarev, 2001]).
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Generalizations and further results
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Generalizations and further results

Generalizations and further results

Consider operads with values in symmetric spectra.

Homotopical colocalizations (right Bousfield localizations).

More general situation. Consider an E-enriched Quillen pair

F : M ⇄ N : U

where E is a monoidal model category, M and N are E-enriched
monoidal model categories and F is strict monoidal.
If P is a cofibrant C-coloured operad in E and X is a P-algebra that
is cofibrant in MC , then RULFX admits a P-algebra structure such
that

X −→ RULFX

is a map of P-algebras.
(The case of a left Bousfield localization is Id : M ⇆ ML : Id.)
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Monoidal and simplicial model categories

Monoidal model categories

Definition
A model category E is monoidal if it has an associative internal
product ⊗ with a unit I and an internal hom HomE(−,−), satisfying the
pushout-product axiom, that is, if f : X → Y and g : U → V are
cofibrations in E, then the induced map

(X ⊗ V )
∐

X⊗U

(Y ⊗ U) −→ Y ⊗ V

is a cofibration which is a weak equivalence if f or g are.

Back

Javier J. Gutiérrez (CRM) Coloured operads and localizations 31 / 32



Monoidal and simplicial model categories

Simplicial model categories

Definition
A model category E is simplicial if it is enriched, tensored and
cotensored over simplicial sets in such a way that Quillen’s SM7 axiom
holds, namely, if f : X → Y is a cofibration and g : U → V is a fibration
in E, then the induced map

Map(Y , U) −→ Map(Y , V ) ×Map(X ,V )
Map(X , U)

is a fibration which is a weak equivalence if f or g are.

Back
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