Algebras over coloured operads and localization functors

Javier J. Gutiérrez Centre de Recerca Matemàtica

(joint work with C. Casacuberta, I. Moerdijk and R. M. Vogt) arXiv:0806.3983

HOCAT2008

Centre de Recerca Matemàtica, June 30 to July 5, 2008

Javier J. Gutiérrez (CRM)

Coloured operads and localizations

< ロ > < 同 > < 回 > < 回 >

Introduction

2 Coloured operads and their algebras

3 Homotopical localization functors

Main results

Generalizations and further results

< 同 ト < 三 ト < 三 ト

Outline of the talk

- Coloured operads and their algebras
- 3 Homotopical localization functors
- 4 Main results
- 6 Generalizations and further results

A (10) × (10)

Abelian groups

- If *R* is a (commutative) ring, then *LR* is a (commutative) ring and the localization map is a ring morphism.
- If *M* is an *R*-module, then *LM* is an *R*-module and the localization map is a morphism of *R*-modules.

Topological spaces

- If X is an H-space, then LX is homotopy equivalent to an H-space and the localization map is equivalent to an H-map.
- If X is a loop space, then LX is homotopy equivalent to a loop space and the localization map is equivalent to a loop map. (In fact, $L_f\Omega X \simeq \Omega L_{\Sigma f} X$ [Farjoun, 1996].)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Abelian groups

- If *R* is a (commutative) ring, then *LR* is a (commutative) ring and the localization map is a ring morphism.
- If *M* is an *R*-module, then *LM* is an *R*-module and the localization map is a morphism of *R*-modules.

Topological spaces

- If X is an H-space, then LX is homotopy equivalent to an H-space and the localization map is equivalent to an H-map.
- If X is a loop space, then LX is homotopy equivalent to a loop space and the localization map is equivalent to a loop map. (In fact, $L_f \Omega X \simeq \Omega L_{\Sigma f} X$ [Farjoun, 1996].)

Abelian groups

- If *R* is a (commutative) ring, then *LR* is a (commutative) ring and the localization map is a ring morphism.
- If *M* is an *R*-module, then *LM* is an *R*-module and the localization map is a morphism of *R*-modules.

Topological spaces

- If X is an H-space, then LX is homotopy equivalent to an H-space and the localization map is equivalent to an H-map.
- If X is a loop space, then LX is homotopy equivalent to a loop space and the localization map is equivalent to a loop map. (In fact, $L_f \Omega X \simeq \Omega L_{\Sigma f} X$ [Farjoun, 1996].)

・ロト ・四ト ・ヨト

Abelian groups

- If *R* is a (commutative) ring, then *LR* is a (commutative) ring and the localization map is a ring morphism.
- If *M* is an *R*-module, then *LM* is an *R*-module and the localization map is a morphism of *R*-modules.

Topological spaces

- If X is an H-space, then LX is homotopy equivalent to an H-space and the localization map is equivalent to an H-map.
- If X is a loop space, then LX is homotopy equivalent to a loop space and the localization map is equivalent to a loop map. (In fact, $L_f \Omega X \simeq \Omega L_{\Sigma f} X$ [Farjoun, 1996].)

イロト 人間 ト イヨト イヨト

Stable homotopy category

- If *R* is a connective ring spectrum and *LR* is connective, then *LR* is a ring spectrum and the localization map is a map of ring spectra.
- If *M* is an *R*-module spectrum and *R* is connective, then *LM* is an *R*-module spectrum and the localization map is a map of *R*-modules [Casacuberta-G, 2005].

S-modules

 If *R* is an *S*-algebra and *E*_{*} is a homology theory, then the Bousfield localization *L_ER* is an *S*-algebra and the localization map is a map of *S*-algebras [EKMM, 1997].

< ロ > < 同 > < 回 > < 回 > < 回 > <

Stable homotopy category

- If *R* is a connective ring spectrum and *LR* is connective, then *LR* is a ring spectrum and the localization map is a map of ring spectra.
- If *M* is an *R*-module spectrum and *R* is connective, then *LM* is an *R*-module spectrum and the localization map is a map of *R*-modules [Casacuberta-G, 2005].

S-modules

 If *R* is an *S*-algebra and *E*_{*} is a homology theory, then the Bousfield localization *L_ER* is an *S*-algebra and the localization map is a map of *S*-algebras [EKMM, 1997].

< □ > < □ > < □ > < □ > < □ > .

Stable homotopy category

- If *R* is a connective ring spectrum and *LR* is connective, then *LR* is a ring spectrum and the localization map is a map of ring spectra.
- If *M* is an *R*-module spectrum and *R* is connective, then *LM* is an *R*-module spectrum and the localization map is a map of *R*-modules [Casacuberta-G, 2005].

S-modules

 If *R* is an *S*-algebra and *E*_{*} is a homology theory, then the Bousfield localization *L_ER* is an *S*-algebra and the localization map is a map of *S*-algebras [EKMM, 1997].

< □ > < □ > < □ > < □ > < □ > .

Objectives

Symmetric spectra

• Study the preservation of strict ring spectra and module spectra under localizations (by viewing them as algebras over A_{∞} or E_{∞}).

Monoidal model categories

• Study the preservation under localizations of structures defined as algebras over coloured operads.

・ 伺 ト ・ ヨ ト ・ ヨ ト

Objectives

Symmetric spectra

• Study the preservation of strict ring spectra and module spectra under localizations (by viewing them as algebras over A_{∞} or E_{∞}).

Monoidal model categories

• Study the preservation under localizations of structures defined as algebras over coloured operads.

・ 伺 ト ・ ヨ ト ・ ヨ ト

Outline of the talk

1 Introduction

2 Coloured operads and their algebras

3 Homotopical localization functors

4 Main results

5 Generalizations and further results

< /₽ > < E > <

Let *E* be a cocomplete closed symmetric monoidal category. Let *C* be a set, whose elements will be called colours. A *C*-coloured collection is a set *P* of objects *P*(*c*₁,..., *c*_n; *c*) in *E* for every *n* ≥ 0 and each tuple (*c*₁,..., *c*_n; *c*) of colours, together with maps

$$\sigma^* \colon P(c_1,\ldots,c_n;c) \longrightarrow P(c_{\sigma(1)},\ldots,c_{\sigma(n)};c)$$

for all permutations $\sigma \in \Sigma_n$, yielding together a right action.

 A C-coloured operad is a C-coloured collection P equipped with unit maps I → P(c; c) and composition product maps

$$P(c_1, \dots, c_n; c) \otimes P(a_{1,1}, \dots, a_{1,k_1}; c_1) \otimes \dots \otimes P(a_{n,1}, \dots, a_{n,k_n}; c_n) \\ \longrightarrow P(a_{1,1}, \dots, a_{1,k_1}, a_{2,1}, \dots, a_{2,k_2}, \dots, a_{n,1}, \dots, a_{n,k_n}; c)$$

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

Javier J. Gutiérrez (CRM)

Coloured operads and localizations

Let *E* be a cocomplete closed symmetric monoidal category. Let *C* be a set, whose elements will be called colours. A *C*-coloured collection is a set *P* of objects *P*(*c*₁,..., *c_n*; *c*) in *E* for every *n* ≥ 0 and each tuple (*c*₁,..., *c_n*; *c*) of colours, together with maps

$$\sigma^* \colon P(c_1, \ldots, c_n; c) \longrightarrow P(c_{\sigma(1)}, \ldots, c_{\sigma(n)}; c)$$

for all permutations $\sigma \in \Sigma_n$, yielding together a right action.

 A C-coloured operad is a C-coloured collection P equipped with unit maps I → P(c; c) and composition product maps

$$P(c_1, ..., c_n; c) \otimes P(a_{1,1}, ..., a_{1,k_1}; c_1) \otimes \cdots \otimes P(a_{n,1}, ..., a_{n,k_n}; c_n) \\ \longrightarrow P(a_{1,1}, ..., a_{1,k_1}, a_{2,1}, ..., a_{2,k_2}, ..., a_{n,1}, ..., a_{n,k_n}; c)$$

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

Let *E* be a cocomplete closed symmetric monoidal category. Let *C* be a set, whose elements will be called colours. A *C*-coloured collection is a set *P* of objects *P*(*c*₁,..., *c_n*; *c*) in *E* for every *n* ≥ 0 and each tuple (*c*₁,..., *c_n*; *c*) of colours, together with maps

$$\sigma^* \colon P(c_1,\ldots,c_n;c) \longrightarrow P(c_{\sigma(1)},\ldots,c_{\sigma(n)};c)$$

for all permutations $\sigma \in \Sigma_n$, yielding together a right action.

 A C-coloured operad is a C-coloured collection P equipped with unit maps I → P(c; c) and composition product maps

$$P(c_{1},...,c_{n};c) \otimes P(a_{1,1},...,a_{1,k_{1}};c_{1}) \otimes \cdots \otimes P(a_{n,1},...,a_{n,k_{n}};c_{n}) \\ \longrightarrow P(a_{1,1},...,a_{1,k_{1}},a_{2,1},...,a_{2,k_{2}},...,a_{n,1},...,a_{n,k_{n}};c)$$

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

Let *E* be a cocomplete closed symmetric monoidal category. Let *C* be a set, whose elements will be called colours. A *C*-coloured collection is a set *P* of objects *P*(*c*₁,..., *c_n*; *c*) in *E* for every *n* ≥ 0 and each tuple (*c*₁,..., *c_n*; *c*) of colours, together with maps

$$\sigma^* \colon P(c_1,\ldots,c_n;c) \longrightarrow P(c_{\sigma(1)},\ldots,c_{\sigma(n)};c)$$

for all permutations $\sigma \in \Sigma_n$, yielding together a right action.

 A C-coloured operad is a C-coloured collection P equipped with unit maps I → P(c; c) and composition product maps

$$\begin{array}{c} P(c_{1},\ldots,c_{n};c)\otimes P(a_{1,1},\ldots,a_{1,k_{1}};c_{1})\otimes \cdots \otimes P(a_{n,1},\ldots,a_{n,k_{n}};c_{n}) \\ \longrightarrow P(a_{1,1},\ldots,a_{1,k_{1}},a_{2,1},\ldots,a_{2,k_{2}},\ldots,a_{n,1},\ldots,a_{n,k_{n}};c) \end{array}$$

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

Javier J. Gutiérrez (CRM)

Javier J. Gutiérrez (CRM)

E

If *P* is a *C*-coloured operad, a *P*-algebra is an object
X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \mathsf{End}(\mathbf{X})$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(\mathbf{X})(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1) \otimes \cdots \otimes X(c_n), X(c)).$

Examples

• An operad is a coloured operad with only one colour.

The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The commutative operad Com is defined as Com(n) = I. A-algebras are monoids and Com-algebras are commutative monoids in E.

If *P* is a *C*-coloured operad, a *P*-algebra is an object
X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \mathsf{End}(\mathbf{X})$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(\mathbf{X})(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1) \otimes \cdots \otimes X(c_n), X(c)).$

Examples

• An operad is a coloured operad with only one colour.

The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The commutative operad Com is defined as Com(n) = I. A-algebras are monoids and Com-algebras are commutative monoids in E.

If *P* is a *C*-coloured operad, a *P*-algebra is an object
X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \mathsf{End}(\mathbf{X})$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(\mathbf{X})(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1) \otimes \cdots \otimes X(c_n), X(c)).$

Examples

• An operad is a coloured operad with only one colour.

The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The commutative operad Com is defined as Com(n) = I. A-algebras are monoids and Com-algebras are commutative monoids in E.

If *P* is a *C*-coloured operad, a *P*-algebra is an object
X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \mathsf{End}(\mathbf{X})$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(\mathbf{X})(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1) \otimes \cdots \otimes X(c_n), X(c)).$

Examples

- An operad is a coloured operad with only one colour.
- The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The commutative operad Com is defined as Com(n) = I. A-algebras are monoids and Com-algebras are commutative monoids in E.

If *P* is a *C*-coloured operad, a *P*-algebra is an object
X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \mathsf{End}(\mathbf{X})$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(\mathbf{X})(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1) \otimes \cdots \otimes X(c_n), X(c)).$

Examples

- An operad is a coloured operad with only one colour.
- The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The commutative operad Com is defined as Com(n) = I. A-algebras are monoids and Com-algebras are commutative monoids in E.

Example (Modules)

 Let C = {r, m} and P an operad. Define a C-coloured operad Mod_P whose only nonzero terms are

 $\operatorname{Mod}_{P}(r, \stackrel{(n)}{\ldots}, r; r) = P(n)$

and

$$\operatorname{Mod}_P(c_1,\ldots,c_n;m)=P(n)$$

when exactly one c_i is *m* and the rest (if any) are *r*. Then an algebra over Mod_{*P*} is a pair (*R*, *M*) where *R* is a *P*-algebra and *M* is an *R*-module. By using non-symmetric operads, one obtains left *R*-modules and right *R*-modules similarly.

Hence, modules over *P*-algebras can be viewed as algebras over coloured operads.

Example (Modules)

 Let C = {r, m} and P an operad. Define a C-coloured operad Mod_P whose only nonzero terms are

 $\operatorname{Mod}_{P}(r, \stackrel{(n)}{\ldots}, r; r) = P(n)$

and

$$\operatorname{Mod}_P(c_1,\ldots,c_n;m)=P(n)$$

when exactly one c_i is m and the rest (if any) are r. Then an algebra over Mod_P is a pair (R, M) where R is a P-algebra and M is an R-module. By using non-symmetric operads, one obtains left R-modules and right R-modules similarly.

Hence, modules over *P*-algebras can be viewed as algebras over coloured operads.

Example (Modules)

 Let C = {r, m} and P an operad. Define a C-coloured operad Mod_P whose only nonzero terms are

 $\operatorname{Mod}_{P}(r, \stackrel{(n)}{\ldots}, r; r) = P(n)$

and

$$\operatorname{Mod}_P(c_1,\ldots,c_n;m)=P(n)$$

when exactly one c_i is m and the rest (if any) are r. Then an algebra over Mod_P is a pair (R, M) where R is a P-algebra and M is an R-module. By using non-symmetric operads, one obtains left R-modules and right R-modules similarly.

Hence, modules over *P*-algebras can be viewed as algebras over coloured operads.

Example (Morphisms of algebras)

Let *P* be a *C*-coloured operad and choose *D* = {0,1} × *C*. Define a *D*-coloured operad Mor_{*P*} whose value on ((*i*₁, *c*₁), ..., (*i*_n, *c*_n); (*i*, *c*)) is

$$\begin{cases} 0 & \text{if } i = 0 \text{ and } i_k = 1 \text{ for some } k; \\ P(c_1, \dots, c_n; c) & \text{otherwise.} \end{cases}$$

Then an algebra over Mor_{*P*} consists of two *P*-algebras $\mathbf{X}_0 = (X(0, c))_{c \in C}$ and $\mathbf{X}_1 = (X(1, c))_{c \in C}$ and a map of *P*-algebras $\mathbf{f} : \mathbf{X}_0 \longrightarrow \mathbf{X}_1$ defined for every $c \in C$ as the composite

 $X(0, c) \longrightarrow \operatorname{Mor}_{P}((0, c); (1, c)) \otimes X(0, c) \longrightarrow X(1, c).$

Hence, morphisms of *P*-algebras can be viewed as algebras over coloured operads.

Example (Morphisms of algebras)

Let *P* be a *C*-coloured operad and choose *D* = {0,1} × *C*. Define a *D*-coloured operad Mor_{*P*} whose value on ((*i*₁, *c*₁), ..., (*i*_n, *c*_n); (*i*, *c*)) is

$$\begin{cases} 0 & \text{if } i = 0 \text{ and } i_k = 1 \text{ for some } k; \\ P(c_1, \dots, c_n; c) & \text{otherwise.} \end{cases}$$

Then an algebra over Mor_P consists of two *P*-algebras $X_0 = (X(0, c))_{c \in C}$ and $X_1 = (X(1, c))_{c \in C}$ and a map of *P*-algebras $f: X_0 \longrightarrow X_1$ defined for every $c \in C$ as the composite

$$X(0,c) \longrightarrow \operatorname{Mor}_{P}((0,c);(1,c)) \otimes X(0,c) \longrightarrow X(1,c).$$

Hence, morphisms of *P*-algebras can be viewed as algebras over coloured operads.

Example (Morphisms of algebras)

Let *P* be a *C*-coloured operad and choose *D* = {0,1} × *C*. Define a *D*-coloured operad Mor_{*P*} whose value on ((*i*₁, *c*₁), ..., (*i*_n, *c*_n); (*i*, *c*)) is

$$\begin{cases} 0 & \text{if } i = 0 \text{ and } i_k = 1 \text{ for some } k \\ P(c_1, \dots, c_n; c) & \text{otherwise.} \end{cases}$$

Then an algebra over Mor_P consists of two *P*-algebras $X_0 = (X(0, c))_{c \in C}$ and $X_1 = (X(1, c))_{c \in C}$ and a map of *P*-algebras $f: X_0 \longrightarrow X_1$ defined for every $c \in C$ as the composite

 $X(0,c) \longrightarrow \operatorname{Mor}_{P}((0,c);(1,c)) \otimes X(0,c) \longrightarrow X(1,c).$

Hence, morphisms of *P*-algebras can be viewed as algebras over coloured operads.

Javier J. Gutiérrez (CRM)

Model structures

Model structure for coloured operads

- Let *&* be a monoidal model category Definition. A model structure on the category of *C*-coloured operads in *&* for a fixed *C* was described by [Berger-Moerdijk, 2007].
- A map of operads P → Q is a weak equivalence (resp. fibration) if for every (c₁,..., c_n; c) the map

$$P(c_1,\ldots,c_n;c) \longrightarrow Q(c_1,\ldots,c_n;c)$$

is a weak equivalence (resp. fibration) in \mathcal{E} .

• For any coloured operad P, we denote by P_{∞} a cofibrant resolution $P_{\infty} \longrightarrow P$.

Model structures

Model structure for coloured operads

- Let *&* be a monoidal model category Definition. A model structure on the category of *C*-coloured operads in *&* for a fixed *C* was described by [Berger-Moerdijk, 2007].
- A map of operads P → Q is a weak equivalence (resp. fibration) if for every (c₁,..., c_n; c) the map

$$P(c_1,\ldots,c_n;c) \longrightarrow Q(c_1,\ldots,c_n;c)$$

is a weak equivalence (resp. fibration) in \mathcal{E} .

• For any coloured operad P, we denote by P_{∞} a cofibrant resolution $P_{\infty} \longrightarrow P$.

Model structures

Model structure for coloured operads

- Let *&* be a monoidal model category Definition. A model structure on the category of *C*-coloured operads in *&* for a fixed *C* was described by [Berger-Moerdijk, 2007].
- A map of operads P → Q is a weak equivalence (resp. fibration) if for every (c₁,..., c_n; c) the map

$$P(c_1,\ldots,c_n;c) \longrightarrow Q(c_1,\ldots,c_n;c)$$

is a weak equivalence (resp. fibration) in \mathcal{E} .

• For any coloured operad P, we denote by P_{∞} a cofibrant resolution $P_{\infty} \longrightarrow P$.

Outline of the talk

1 Introduction

2) Coloured operads and their algebras

Homotopical localization functors

4 Main results

不同 とうちょうちょう

Localization functors

A **homotopical localization** on a model category \mathcal{M} with homotopy function complexes map(-, -) is a functor $L: \mathcal{M} \longrightarrow \mathcal{M}$ that preserves weak equivalences and takes fibrant values, together with a natural transformation $\eta: \operatorname{Id}_{\mathcal{M}} \longrightarrow L$ such that, for every object X, the following hold:

• $L\eta_X: LX \longrightarrow LLX$ is a weak equivalence;

• η_{LX} and $L\eta_X$ are equal in the homotopy category Ho(\mathcal{M});

• $\eta_X : X \longrightarrow LX$ is a cofibration such that the map

 $map(\eta_X, LY): map(LX, LY) \longrightarrow map(X, LY)$

is a weak equivalence of simplicial sets for all Y.

Localization functors

A **homotopical localization** on a model category \mathcal{M} with homotopy function complexes map(-, -) is a functor $L: \mathcal{M} \longrightarrow \mathcal{M}$ that preserves weak equivalences and takes fibrant values, together with a natural transformation $\eta: \operatorname{Id}_{\mathcal{M}} \longrightarrow L$ such that, for every object X, the following hold:

- $L\eta_X: LX \longrightarrow LLX$ is a weak equivalence;
- η_{LX} and $L\eta_X$ are equal in the homotopy category Ho(\mathcal{M});

• $\eta_X : X \longrightarrow LX$ is a cofibration such that the map

 $map(\eta_X, LY): map(LX, LY) \longrightarrow map(X, LY)$

is a weak equivalence of simplicial sets for all Y.

・ ロ ト ・ 同 ト ・ 三 ト ・ 二 ト

Localization functors

A **homotopical localization** on a model category \mathcal{M} with homotopy function complexes map(-, -) is a functor $L: \mathcal{M} \longrightarrow \mathcal{M}$ that preserves weak equivalences and takes fibrant values, together with a natural transformation $\eta: \operatorname{Id}_{\mathcal{M}} \longrightarrow L$ such that, for every object X, the following hold:

- $L\eta_X: LX \longrightarrow LLX$ is a weak equivalence;
- η_{LX} and $L\eta_X$ are equal in the homotopy category Ho(\mathcal{M});

• $\eta_X : X \longrightarrow LX$ is a cofibration such that the map

 $map(\eta_X, LY): map(LX, LY) \longrightarrow map(X, LY)$

is a weak equivalence of simplicial sets for all Y.
A **homotopical localization** on a model category \mathcal{M} with homotopy function complexes map(-, -) is a functor $L: \mathcal{M} \longrightarrow \mathcal{M}$ that preserves weak equivalences and takes fibrant values, together with a natural transformation $\eta: \operatorname{Id}_{\mathcal{M}} \longrightarrow L$ such that, for every object X, the following hold:

- $L\eta_X: LX \longrightarrow LLX$ is a weak equivalence;
- η_{LX} and $L\eta_X$ are equal in the homotopy category Ho(\mathcal{M});
- $\eta_X : X \longrightarrow LX$ is a cofibration such that the map

 $map(\eta_X, LY): map(LX, LY) \longrightarrow map(X, LY)$

is a weak equivalence of simplicial sets for all Y.

・ロト ・ 同ト ・ ヨト ・ ヨト

• Every homotopical localization functor is an idempotent functor on the homotopy category $Ho(\mathcal{M})$.

• Fibrant objects of \mathcal{M} weakly equivalent to *LX* for some *X* are called *L*-locals.

• Morphisms *f* such that *Lf* is a weak equivalence are called *L*-equivalences.

< □ > < 同 > < 回 > < 回 > < 回 >

- Every homotopical localization functor is an idempotent functor on the homotopy category $Ho(\mathcal{M})$.
- Fibrant objects of \mathcal{M} weakly equivalent to *LX* for some *X* are called *L*-locals.
- Morphisms *f* such that *Lf* is a weak equivalence are called *L*-equivalences.

< □ > < 同 > < 回 > < 回 > < 回 >

- Every homotopical localization functor is an idempotent functor on the homotopy category $Ho(\mathcal{M})$.
- Fibrant objects of \mathcal{M} weakly equivalent to *LX* for some *X* are called *L*-locals.
- Morphisms *f* such that *Lf* is a weak equivalence are called *L*-equivalences.

< □ > < 同 > < 回 > < 回 > < 回 >

Example (Left Bousfield localizations)

Let \mathcal{M} be a left proper cellular model category and \mathcal{L} a set of morphisms in \mathcal{M} . Then there exists a model structure $\mathcal{M}_{\mathcal{L}}$ such that

- Cofibrations in $\mathcal{M} =$ Cofibrations in $\mathcal{M}_{\mathcal{L}}$.
- Fibrant objects in $\mathcal{M}_{\mathcal{L}} = \mathcal{L}$ -local objects.
- Weak equivalences in $\mathcal{M}_{\mathcal{L}} = \mathcal{L}$ -equivalences.

A functorial factorization in $\mathcal{M}_{\mathcal{L}}$ of a map as a trivial cofibration followed by a fibration gives a homotopical localization functor on \mathcal{M} :

Example (Left Bousfield localizations)

Let \mathcal{M} be a left proper cellular model category and \mathcal{L} a set of morphisms in \mathcal{M} . Then there exists a model structure $\mathcal{M}_{\mathcal{L}}$ such that

- Cofibrations in $\mathcal{M} =$ Cofibrations in $\mathcal{M}_{\mathcal{L}}$.
- Fibrant objects in $\mathcal{M}_{\mathcal{L}} = \mathcal{L}$ -local objects.
- Weak equivalences in $\mathcal{M}_{\mathcal{L}} = \mathcal{L}$ -equivalences.

A functorial factorization in $\mathcal{M}_{\mathcal{L}}$ of a map as a trivial cofibration followed by a fibration gives a homotopical localization functor on \mathcal{M} :

Extending localization functors

If (L, η) is a homotopical localization functor in \mathcal{M} , how can we apply L to an object $\mathbf{X} = (X(c))_{c \in C}$ of \mathcal{M}^C ?

Definition

The extension of (L, η) over \mathcal{M}^C away from $J \subseteq C$ is the coaugmented functor given by:

• $L\mathbf{X} = (L_c X(c))_{c \in C}$ where $L_c = Id$ if $c \in J$ and $L_c = L$ if $c \notin J$.

η_X: X → LX is defined by (η_X)_c = Id if c ∈ J and (η_X)_c = η_{X(c)} if c ∉ J.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Extending localization functors

If (L, η) is a homotopical localization functor in \mathcal{M} , how can we apply L to an object $\mathbf{X} = (X(c))_{c \in C}$ of \mathcal{M}^C ?

Definition

The extension of (L, η) over \mathcal{M}^C away from $J \subseteq C$ is the coaugmented functor given by:

• $L\mathbf{X} = (L_c X(c))_{c \in C}$ where $L_c = Id$ if $c \in J$ and $L_c = L$ if $c \notin J$.

•
$$\eta_{\mathbf{X}} : \mathbf{X} \longrightarrow L\mathbf{X}$$
 is defined by $(\eta_{\mathbf{X}})_c = \text{Id if } c \in J \text{ and } (\eta_{\mathbf{X}})_c = \eta_{X(c)} \text{ if } c \notin J.$

・ ロ ト ・ 同 ト ・ 三 ト ・ 二 ト

Example

Let *L* be a localization functor on abelian groups. If *M* is an *R*-module, then the pair (R, M) is an algebra over Mod_A .

(LR, LM) and (R, LM) are algebras over Mod_A

(LR, M) is not an algebra over Mod_A in general

Definition

If *P* is a *C*-coloured operad, a subset $J \subseteq C$ is called an **ideal relative** to *P* if $P(c_1, ..., c_n; c) = 0$ whenever $n \ge 1$, $c \in J$, and $c_i \notin J$ for some $i \in \{1, ..., n\}$.

イロト イポト イヨト イヨト

Example

Let *L* be a localization functor on abelian groups. If *M* is an *R*-module, then the pair (R, M) is an algebra over Mod_A .

• (LR, LM) and (R, LM) are algebras over Mod_A

(LR, M) is not an algebra over Mod_A in general

Definition

If *P* is a *C*-coloured operad, a subset $J \subseteq C$ is called an **ideal relative** to *P* if $P(c_1, ..., c_n; c) = 0$ whenever $n \ge 1$, $c \in J$, and $c_i \notin J$ for some $i \in \{1, ..., n\}$.

Example

Let *L* be a localization functor on abelian groups. If *M* is an *R*-module, then the pair (R, M) is an algebra over Mod_A .

- (LR, LM) and (R, LM) are algebras over Mod_A
- (LR, M) is not an algebra over Mod_A in general

Definition

If *P* is a *C*-coloured operad, a subset $J \subseteq C$ is called an **ideal relative** to *P* if $P(c_1, ..., c_n; c) = 0$ whenever $n \ge 1$, $c \in J$, and $c_i \notin J$ for some $i \in \{1, ..., n\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Example

Let *L* be a localization functor on abelian groups. If *M* is an *R*-module, then the pair (R, M) is an algebra over Mod_A .

• (LR, LM) and (R, LM) are algebras over Mod_A

• (LR, M) is not an algebra over Mod_A in general

Definition

If *P* is a *C*-coloured operad, a subset $J \subseteq C$ is called an **ideal relative** to *P* if $P(c_1, ..., c_n; c) = 0$ whenever $n \ge 1$, $c \in J$, and $c_i \notin J$ for some $i \in \{1, ..., n\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Examples

Consider the coloured operads of the previous examples:

• The ideals relative to Mod_P are

 \emptyset , {*r*} and {*r*, *m*}.

• If $Q = Mod_P$, then the ideals relative to Mor_Q are

 $\emptyset, \{(0,r), (0,m), (1,r), (1,m)\}, \{(0,r), (0,m), (1,r)\}, \{(0,r), (0,m), (1,r)\}, \{(0,r), (0,m)\} \}$

Examples

Consider the coloured operads of the previous examples:

• The ideals relative to Mod_P are

 \emptyset , {*r*} and {*r*, *m*}.

• If $Q = Mod_P$, then the ideals relative to Mor_Q are

 $\emptyset, \{(0,r), (0,m), (1,r), (1,m)\}, \{(0,r), (0,m), (1,r)\}, \{(0,r), (0,m)\}, \{(0,r), (1,r))\} \text{ and } \{(0,r)\}.$

・ ロ ト ・ 同 ト ・ 三 ト ・ 二 ト

Outline of the talk

1 Introduction

- 2 Coloured operads and their algebras
- 3 Homotopical localization functors

4 Main results

5 Generalizations and further results

A (1) > A (1) > A (1) >

Theorem (CGMV)

Let (L, η) be a homotopical localization on a simplicial monoidal model category $\mathcal{M} \rightarrow \mathsf{Definition}$.

Let P be a cofibrant C-coloured operad in simplicial sets, and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a P-algebra such that X(c) is cofibrant in ${\mathfrak M}$ for every $c \in C$.

Suppose that

 $(\eta_{\mathbf{X}})_{c_1}\otimes\cdots\otimes(\eta_{\mathbf{X}})_{c_n}$

is an L-equivalence.

Then LX admits a homotopy unique P-algebra structure such that η_X is a map of P-algebras.

< ロ > < 回 > < 回 > < 回 > < 回 >

Theorem (CGMV)

Let (L, η) be a homotopical localization on a simplicial monoidal model category $\mathcal{M} \rightarrow \text{Definition}$.

Let P be a cofibrant C-coloured operad in simplicial sets, and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a P-algebra such that X(c) is cofibrant in \mathfrak{M} for every $c \in C$.

Suppose that

 $(\eta_{\mathbf{X}})_{c_1}\otimes\cdots\otimes(\eta_{\mathbf{X}})_{c_n}$

is an L-equivalence.

Then LX admits a homotopy unique P-algebra structure such that η_X is a map of P-algebras.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ·

Theorem (CGMV)

Let (L, η) be a homotopical localization on a simplicial monoidal model category $\mathcal{M} \rightarrow \text{Definition}$.

Let P be a cofibrant C-coloured operad in simplicial sets, and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a *P*-algebra such that X(c) is cofibrant in \mathcal{M} for every $c \in C$.

Suppose that

 $(\eta_{\mathbf{X}})_{c_1}\otimes\cdots\otimes(\eta_{\mathbf{X}})_{c_n}$

is an L-equivalence.

Then LX admits a homotopy unique P-algebra structure such that η_X is a map of P-algebras.

・ロト ・ 同ト ・ ヨト・

Theorem (CGMV)

Let (L, η) be a homotopical localization on a simplicial monoidal model category $\mathcal{M} \rightarrow \text{Definition}$.

Let P be a cofibrant C-coloured operad in simplicial sets, and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a *P*-algebra such that X(c) is cofibrant in \mathfrak{M} for every $c \in C$.

Suppose that

$$(\eta_{\mathbf{X}})_{c_1} \otimes \cdots \otimes (\eta_{\mathbf{X}})_{c_n}$$

is an L-equivalence.

Then LX admits a homotopy unique P-algebra structure such that η_X is a map of P-algebras.

イロト イポト イヨト イヨト

Theorem (CGMV)

Let (L, η) be a homotopical localization on a simplicial monoidal model category $\mathcal{M} \rightarrow \text{Definition}$.

Let P be a cofibrant C-coloured operad in simplicial sets, and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a P-algebra such that X(c) is cofibrant in \mathcal{M} for every $c \in C$.

Suppose that

$$(\eta_{\mathbf{X}})_{c_1} \otimes \cdots \otimes (\eta_{\mathbf{X}})_{c_n}$$

is an L-equivalence.

Then LX admits a homotopy unique P-algebra structure such that η_X is a map of P-algebras.

イロト イポト イヨト イヨト

Proof.

For all $(c_1, \ldots, c_n; c)$, the map

$$X(c_1) \otimes \cdots \otimes X(c_n) \longrightarrow L_{c_1}X(c_1) \otimes \cdots \otimes L_{c_n}X(c_n)$$

is an *L*-equivalence by assumption, and it is also a cofibration since X(c) is cofibrant for all *c*. Hence, the map

 $\operatorname{Map}(L_{c_1}X(c_1)\otimes\cdots\otimes L_{c_n}X(c_n),L_cX(c))\longrightarrow\operatorname{Map}(X(c_1)\otimes\cdots\otimes X(c_n),L_cX(c))$

is a fibration and a weak equivalence. By definition,

 $\mathsf{Map}(L_{c_1}X(c_1)\otimes\cdots\otimes L_{c_n}X(c_n),L_cX(c))=\mathsf{End}(L\mathbf{X})(c_1,\ldots,c_n;c)$

 $Map(X(c_1) \otimes \cdots \otimes X(c_n), L_cX(c)) = Hom(\mathbf{X}, L\mathbf{X})(c_1, \ldots, c_n; c).$

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof.

For all $(c_1, \ldots, c_n; c)$, the map

$$X(c_1)\otimes \cdots \otimes X(c_n) \longrightarrow L_{c_1}X(c_1)\otimes \cdots \otimes L_{c_n}X(c_n)$$

is an *L*-equivalence by assumption, and it is also a cofibration since X(c) is cofibrant for all *c*. Hence, the map

 $\mathsf{Map}(L_{c_1}X(c_1)\otimes\cdots\otimes L_{c_n}X(c_n),L_cX(c))\longrightarrow \mathsf{Map}(X(c_1)\otimes\cdots\otimes X(c_n),L_cX(c))$

is a fibration and a weak equivalence. By definition,

 $\mathsf{Map}(L_{c_1}X(c_1)\otimes\cdots\otimes L_{c_n}X(c_n),L_cX(c))=\mathsf{End}(L\mathbf{X})(c_1,\ldots,c_n;c)$

 $Map(X(c_1) \otimes \cdots \otimes X(c_n), L_cX(c)) = Hom(\mathbf{X}, L\mathbf{X})(c_1, \ldots, c_n; c).$

Proof.

For all $(c_1, \ldots, c_n; c)$, the map

$$X(c_1)\otimes\cdots\otimes X(c_n)\longrightarrow L_{c_1}X(c_1)\otimes\cdots\otimes L_{c_n}X(c_n)$$

is an *L*-equivalence by assumption, and it is also a cofibration since X(c) is cofibrant for all *c*. Hence, the map

 $\mathsf{Map}(L_{c_1}X(c_1)\otimes\cdots\otimes L_{c_n}X(c_n),L_cX(c))\longrightarrow \mathsf{Map}(X(c_1)\otimes\cdots\otimes X(c_n),L_cX(c))$

is a fibration and a weak equivalence. By definition,

$$\mathsf{Map}(L_{c_1}X(c_1)\otimes\cdots\otimes L_{c_n}X(c_n),L_cX(c))=\mathsf{End}(L\mathbf{X})(c_1,\ldots,c_n;c)$$

 $\mathsf{Map}(X(c_1)\otimes\cdots\otimes X(c_n), L_cX(c)) = \mathsf{Hom}(\mathbf{X}, L\mathbf{X})(c_1, \ldots, c_n; c).$

The right-hand vertical arrow is a trivial fibration. Hence, the left-hand vertical arrow is also a trivial fibration.

Then, since P is cofibrant, there is a lifting

$$\begin{array}{c} \mathsf{End}(\eta_{\mathbf{X}}) \longrightarrow \mathsf{End}(L\mathbf{X}) \\ \uparrow & \downarrow \\ \downarrow \\ \bullet \longrightarrow \mathsf{End}(\mathbf{X}) \longrightarrow \mathsf{Hom}(\mathbf{X}, L\mathbf{X}). \end{array}$$

Proof (cont.)

Define a C-coloured operad $End(\eta_X)$ as the following pull-back:

Main results

 $End(\eta_{\mathbf{X}}) \longrightarrow End(L\mathbf{X})$ \downarrow $End(\mathbf{X}) \longrightarrow Hom(\mathbf{X}, L\mathbf{X}).$

The right-hand vertical arrow is a trivial fibration. Hence, the left-hand vertical arrow is also a trivial fibration.

Then, since P is cofibrant, there is a lifting

$$\begin{array}{c} \mathsf{End}(\eta_{\mathbf{X}}) \longrightarrow \mathsf{End}(L\mathbf{X}) \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \to \mathsf{End}(\mathbf{X}) \longrightarrow \mathsf{Hom}(\mathbf{X}, L\mathbf{X}) \end{array}$$

The right-hand vertical arrow is a trivial fibration. Hence, the left-hand vertical arrow is also a trivial fibration.

Then, since P is cofibrant, there is a lifting

$$\begin{array}{c} \mathsf{End}(\eta_{\mathbf{X}}) \longrightarrow \mathsf{End}(L\mathbf{X}) \\ & \downarrow \\ P \longrightarrow \mathsf{End}(\mathbf{X}) \longrightarrow \mathsf{Hom}(\mathbf{X}, L\mathbf{X}). \end{array}$$

Topological spaces

- If X is a cofibrant A_{∞} -space, then LX has a homotopy unique A_{∞} -space structure such that the localization map $\eta_X \colon X \longrightarrow LX$ is a map of A_{∞} -spaces.
- Same is true for A_{∞} -maps, E_{∞} -spaces and E_{∞} -maps.

Symmetric spectra

- Let *M* be a left A_{∞} -module over an A_{∞} -ring *R*, and assume that both *R* and *M* are cofibrant as spectra. Let (L, η) be a localization functor that commutes with suspension. Then *LM* has a homotopy unique left A_{∞} -module structure over *R* such that $\eta_M \colon M \longrightarrow LM$ is a morphism of A_{∞} -modules.
- Same is true for A_{∞} -rings, E_{∞} -rings, E_{∞} -modules and maps of these.

イロト イポト イヨト イヨト

Topological spaces

- If X is a cofibrant A_{∞} -space, then LX has a homotopy unique A_{∞} -space structure such that the localization map $\eta_X \colon X \longrightarrow LX$ is a map of A_{∞} -spaces.
- Same is true for A_{∞} -maps, E_{∞} -spaces and E_{∞} -maps.

Symmetric spectra

- Let *M* be a left A_{∞} -module over an A_{∞} -ring *R*, and assume that both *R* and *M* are cofibrant as spectra. Let (L, η) be a localization functor that commutes with suspension. Then *LM* has a homotopy unique left A_{∞} -module structure over *R* such that $\eta_M \colon M \longrightarrow LM$ is a morphism of A_{∞} -modules.
- Same is true for A_{∞} -rings, E_{∞} -rings, E_{∞} -modules and maps of these.

・ロト ・ 同ト ・ ヨト ・ ヨト

Topological spaces

- If X is a cofibrant A_{∞} -space, then LX has a homotopy unique A_{∞} -space structure such that the localization map $\eta_X \colon X \longrightarrow LX$ is a map of A_{∞} -spaces.
- Same is true for A_{∞} -maps, E_{∞} -spaces and E_{∞} -maps.

Symmetric spectra

- Let *M* be a left A_{∞} -module over an A_{∞} -ring *R*, and assume that both *R* and *M* are cofibrant as spectra. Let (L, η) be a localization functor that commutes with suspension. Then *LM* has a homotopy unique left A_{∞} -module structure over *R* such that $\eta_M \colon M \longrightarrow LM$ is a morphism of A_{∞} -modules.
- Same is true for A_{∞} -rings, E_{∞} -rings, E_{∞} -modules and maps of these.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Topological spaces

- If X is a cofibrant A_{∞} -space, then LX has a homotopy unique A_{∞} -space structure such that the localization map $\eta_X \colon X \longrightarrow LX$ is a map of A_{∞} -spaces.
- Same is true for A_{∞} -maps, E_{∞} -spaces and E_{∞} -maps.

Symmetric spectra

- Let *M* be a left A_{∞} -module over an A_{∞} -ring *R*, and assume that both *R* and *M* are cofibrant as spectra. Let (L, η) be a localization functor that commutes with suspension. Then *LM* has a homotopy unique left A_{∞} -module structure over *R* such that $\eta_M \colon M \longrightarrow LM$ is a morphism of A_{∞} -modules.
- Same is true for A_∞-rings, E_∞-rings, E_∞-modules and maps of these.

・ ロ ト ・ 同 ト ・ 三 ト ・ 二 ト

Any map of C-coloured operads $\varphi \colon P \longrightarrow Q$ induces a pair of adjoint functors

 $\varphi_! \colon \mathsf{Alg}_{\mathcal{P}}(\mathcal{M}) \rightleftarrows \mathsf{Alg}_{\mathcal{Q}}(\mathcal{M}) \colon \varphi^*$

This is a Quillen equivalence if φ is a weak equivalence and P and Q are well-pointed Σ -cofibrant [Berger-Moerdijk, 2007].

Let $\ensuremath{\mathcal{M}}$ be the category of symmetric spectra with the $\ensuremath{\textit{positive}}$ model structure. Then

- For every *C*-coloured operad *P* in simplicial sets, the category $Alg_P(\mathcal{M})$ admits a model structure [Elmendorf-Mandell, 2006].
- If φ is a weak equivalence, then $(\varphi_!, \varphi^*)$ is a Quillen equivalence [Elmendorf-Mandell, 2006].
- For any operad *P*, we can **rectify** P_{∞} -algebras to *P*-algebras.

・ロト ・ 同ト ・ ヨト ・ ヨト

Any map of C-coloured operads $\varphi \colon P \longrightarrow Q$ induces a pair of adjoint functors

 $\varphi_! \colon \mathsf{Alg}_P(\mathcal{M}) \rightleftarrows \mathsf{Alg}_Q(\mathcal{M}) \colon \varphi^*$

This is a Quillen equivalence if φ is a weak equivalence and P and Q are well-pointed Σ -cofibrant [Berger-Moerdijk, 2007].

Let ${\mathfrak M}$ be the category of symmetric spectra with the $\ensuremath{\textit{positive}}$ model structure. Then

- For every *C*-coloured operad *P* in simplicial sets, the category $Alg_P(\mathcal{M})$ admits a model structure [Elmendorf-Mandell, 2006].
- If φ is a weak equivalence, then $(\varphi_!, \varphi^*)$ is a Quillen equivalence [Elmendorf-Mandell, 2006].
- For any operad *P*, we can **rectify** P_{∞} -algebras to *P*-algebras.

・ ロ ト ・ 同 ト ・ 三 ト ・ 二 ト

Any map of C-coloured operads $\varphi \colon P \longrightarrow Q$ induces a pair of adjoint functors

```
\varphi_{!} \colon \mathsf{Alg}_{P}(\mathcal{M}) \rightleftarrows \mathsf{Alg}_{Q}(\mathcal{M}) \colon \varphi^{*}
```

This is a Quillen equivalence if φ is a weak equivalence and P and Q are well-pointed Σ -cofibrant [Berger-Moerdijk, 2007].

Let $\ensuremath{\mathcal{M}}$ be the category of symmetric spectra with the $\ensuremath{\textit{positive}}$ model structure. Then

- For every C-coloured operad P in simplicial sets, the category $Alg_P(\mathcal{M})$ admits a model structure [Elmendorf-Mandell, 2006].
- If φ is a weak equivalence, then $(\varphi_!, \varphi^*)$ is a Quillen equivalence [Elmendorf-Mandell, 2006].
- For any operad *P*, we can **rectify** P_{∞} -algebras to *P*-algebras.

Any map of C-coloured operads $\varphi \colon P \longrightarrow Q$ induces a pair of adjoint functors

```
\varphi_{!} \colon \mathsf{Alg}_{P}(\mathcal{M}) \rightleftarrows \mathsf{Alg}_{Q}(\mathcal{M}) \colon \varphi^{*}
```

This is a Quillen equivalence if φ is a weak equivalence and P and Q are well-pointed Σ -cofibrant [Berger-Moerdijk, 2007].

Let $\ensuremath{\mathcal{M}}$ be the category of symmetric spectra with the $\ensuremath{\textit{positive}}$ model structure. Then

- For every C-coloured operad P in simplicial sets, the category $Alg_P(\mathcal{M})$ admits a model structure [Elmendorf-Mandell, 2006].
- If φ is a weak equivalence, then $(\varphi_!, \varphi^*)$ is a Quillen equivalence [Elmendorf-Mandell, 2006].

• For any operad *P*, we can **rectify** P_{∞} -algebras to *P*-algebras.

Any map of C-coloured operads $\varphi \colon P \longrightarrow Q$ induces a pair of adjoint functors

```
\varphi_{!} \colon \mathsf{Alg}_{P}(\mathcal{M}) \rightleftarrows \mathsf{Alg}_{Q}(\mathcal{M}) \colon \varphi^{*}
```

This is a Quillen equivalence if φ is a weak equivalence and P and Q are well-pointed Σ -cofibrant [Berger-Moerdijk, 2007].

Let $\ensuremath{\mathcal{M}}$ be the category of symmetric spectra with the $\ensuremath{\textit{positive}}$ model structure. Then

- For every C-coloured operad P in simplicial sets, the category Alg_P(M) admits a model structure [Elmendorf-Mandell, 2006].
- If φ is a weak equivalence, then $(\varphi_!, \varphi^*)$ is a Quillen equivalence [Elmendorf-Mandell, 2006].
- For any operad *P*, we can **rectify** P_{∞} -algebras to *P*-algebras.

Theorem (CGMV)

Let (L, η) be a homotopical localization on the model category M of symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P. Let X be a P-algebra such that X(c) is cofibrant for each $c \in C$, and let $\eta_{X} : X \longrightarrow LX$ be the localization map.

Suppose that $(1/\chi)_{c_1} \land \cdots \land (1/\chi)_{c_n}$ is an *L*-equivalence.

Then there is a map $\xi_X : DX \longrightarrow TX$ of P-algebras, depending functorially on **X**, such that:

- X and DX are naturally weakly equivalent as P-algebras;
- LX and TX are naturally weakly equivalent as P_{∞} -algebras;

• $\eta_{\mathbf{X}}$ and $\xi_{\mathbf{X}}$ are naturally weakly equivalent as $(Mor_P)_{\infty}$ -algebras.
Let (L, η) be a homotopical localization on the model category M of symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a P-algebra such that X(c) is cofibrant for each $c \in C$, and let $\eta_X : X \longrightarrow LX$ be the localization map.

Suppose that $(\eta_{\mathbf{X}})_{c_1} \wedge \cdots \wedge (\eta_{\mathbf{X}})_{c_n}$ is an L-equivalence.

Then there is a map ξ_X : DX \longrightarrow TX of P-algebras, depending functorially on X, such that:

- X and DX are naturally weakly equivalent as P-algebras;
- LX and TX are naturally weakly equivalent as P_{∞} -algebras;

• $\eta_{\mathbf{X}}$ and $\xi_{\mathbf{X}}$ are naturally weakly equivalent as $(Mor_P)_{\infty}$ -algebras.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let (L, η) be a homotopical localization on the model category M of symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a *P*-algebra such that X(c) is cofibrant for each $c \in C$, and let $\eta_{\mathbf{X}} : \mathbf{X} \longrightarrow L\mathbf{X}$ be the localization map.

Suppose that $(\eta_{\mathbf{X}})_{c_1} \wedge \cdots \wedge (\eta_{\mathbf{X}})_{c_n}$ is an L-equivalence.

Then there is a map ξ_X : DX \longrightarrow TX of P-algebras, depending functorially on X, such that:

• X and DX are naturally weakly equivalent as P-algebras;

• LX and TX are naturally weakly equivalent as P_{∞} -algebras;

• $\eta_{\mathbf{X}}$ and $\xi_{\mathbf{X}}$ are naturally weakly equivalent as $(Mor_P)_{\infty}$ -algebras.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let (L, η) be a homotopical localization on the model category M of symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a *P*-algebra such that X(c) is cofibrant for each $c \in C$, and let $\eta_{\mathbf{X}} : \mathbf{X} \longrightarrow L\mathbf{X}$ be the localization map.

Suppose that $(\eta_{\mathbf{X}})_{c_1} \wedge \cdots \wedge (\eta_{\mathbf{X}})_{c_n}$ is an L-equivalence.

Then there is a map ξ_X : DX \longrightarrow TX of P-algebras, depending functorially on X, such that:

- X and DX are naturally weakly equivalent as P-algebras;
- LX and TX are naturally weakly equivalent as P_{∞} -algebras;

• $\eta_{\mathbf{X}}$ and $\xi_{\mathbf{X}}$ are naturally weakly equivalent as $(Mor_P)_{\infty}$ -algebras.

・ ロ ト ・ 同 ト ・ 三 ト ・ 二 ト

Let (L, η) be a homotopical localization on the model category M of symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a *P*-algebra such that X(c) is cofibrant for each $c \in C$, and let $\eta_{\mathbf{X}} : \mathbf{X} \longrightarrow L\mathbf{X}$ be the localization map.

Suppose that $(\eta_{\mathbf{X}})_{c_1} \wedge \cdots \wedge (\eta_{\mathbf{X}})_{c_n}$ is an L-equivalence.

Then there is a map $\xi_X : DX \longrightarrow TX$ of *P*-algebras, depending functorially on **X**, such that:

- X and DX are naturally weakly equivalent as P-algebras;
- LX and TX are naturally weakly equivalent as P_{∞} -algebras;
- $\eta_{\mathbf{X}}$ and $\xi_{\mathbf{X}}$ are naturally weakly equivalent as $(Mor_P)_{\infty}$ -algebras.

Let (L, η) be a homotopical localization on the model category M of symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a *P*-algebra such that X(c) is cofibrant for each $c \in C$, and let $\eta_{\mathbf{X}} : \mathbf{X} \longrightarrow L\mathbf{X}$ be the localization map.

Suppose that $(\eta_{\mathbf{X}})_{c_1} \wedge \cdots \wedge (\eta_{\mathbf{X}})_{c_n}$ is an L-equivalence.

Then there is a map $\xi_X : DX \longrightarrow TX$ of *P*-algebras, depending functorially on **X**, such that:

- X and DX are naturally weakly equivalent as P-algebras;
- LX and TX are naturally weakly equivalent as P_{∞} -algebras;

• $\eta_{\mathbf{X}}$ and $\xi_{\mathbf{X}}$ are naturally weakly equivalent as $(Mor_P)_{\infty}$ -algebras.

Let (L, η) be a homotopical localization on the model category M of symmetric spectra with the positive model structure.

Let P be a C-coloured operad in simplicial sets and consider the extension of (L, η) over \mathcal{M}^{C} away from an ideal $J \subseteq C$ relative to P.

Let **X** be a *P*-algebra such that X(c) is cofibrant for each $c \in C$, and let $\eta_{\mathbf{X}} : \mathbf{X} \longrightarrow L\mathbf{X}$ be the localization map.

Suppose that $(\eta_{\mathbf{X}})_{c_1} \wedge \cdots \wedge (\eta_{\mathbf{X}})_{c_n}$ is an L-equivalence.

Then there is a map $\xi_X : DX \longrightarrow TX$ of *P*-algebras, depending functorially on **X**, such that:

- X and DX are naturally weakly equivalent as P-algebras;
- LX and TX are naturally weakly equivalent as P_{∞} -algebras;
- $\eta_{\mathbf{X}}$ and $\xi_{\mathbf{X}}$ are naturally weakly equivalent as $(Mor_P)_{\infty}$ -algebras.

Rectification results for spectra

Symmetric spectra

- Let *R* be a ring spectrum and *M* a left *R*-module. Suppose either that *L* commutes with suspension or that *R* is connective. Then η_M: *M* → *LM* is naturally weakly equivalent to a morphism ξ_M: *DM* → *TM* of left *R*-modules where *DM* ≃ *M* as *R*-modules.
- Same is true for ring spectra, ring maps, algebras over commutative ring spectra . . .
- For every commutative connective ring spectrum *R*, each connective *R*-algebra has a Postnikov tower consisting of *R*-algebras (previously proved by [Lazarev, 2001]).

Rectification results for spectra

Symmetric spectra

- Let *R* be a ring spectrum and *M* a left *R*-module. Suppose either that *L* commutes with suspension or that *R* is connective. Then η_M: *M* → *LM* is naturally weakly equivalent to a morphism ξ_M: *DM* → *TM* of left *R*-modules where *DM* ≃ *M* as *R*-modules.
- Same is true for ring spectra, ring maps, algebras over commutative ring spectra ...
- For every commutative connective ring spectrum *R*, each connective *R*-algebra has a Postnikov tower consisting of *R*-algebras (previously proved by [Lazarev, 2001]).

Rectification results for spectra

Symmetric spectra

- Let *R* be a ring spectrum and *M* a left *R*-module. Suppose either that *L* commutes with suspension or that *R* is connective. Then η_M: *M* → *LM* is naturally weakly equivalent to a morphism ξ_M: *DM* → *TM* of left *R*-modules where *DM* ≃ *M* as *R*-modules.
- Same is true for ring spectra, ring maps, algebras over commutative ring spectra ...
- For every commutative connective ring spectrum *R*, each connective *R*-algebra has a Postnikov tower consisting of *R*-algebras (previously proved by [Lazarev, 2001]).

Outline of the talk

1) Introduction

- 2 Coloured operads and their algebras
- 3 Homotopical localization functors

4 Main results

不同 とうちょうちょう

• Consider operads with values in symmetric spectra.

- Homotopical colocalizations (right Bousfield localizations).
- More general situation. Consider an *E*-enriched Quillen pair

 $F: \mathfrak{M} \rightleftharpoons \mathfrak{N}: U$

where \mathcal{E} is a monoidal model category, \mathcal{M} and \mathcal{N} are \mathcal{E} -enriched monoidal model categories and F is strict monoidal.

If *P* is a cofibrant *C*-coloured operad in *E* and **X** is a *P*-algebra that is cofibrant in \mathcal{M}^{C} , then <u>*RULFX*</u> admits a *P*-algebra structure such that

$$X \longrightarrow \underline{R}U\underline{L}FX$$

is a map of *P*-algebras. (The case of a left Bousfield localization is Id: $\mathcal{M} \leftrightarrows \mathcal{M}_{\mathcal{L}}$: Id.)

< □ > < 同 > < 回 > < 回 > < 回 >

- Consider operads with values in symmetric spectra.
- Homotopical colocalizations (right Bousfield localizations).
- More general situation. Consider an *E*-enriched Quillen pair

 $F: \mathfrak{M} \rightleftharpoons \mathfrak{N}: U$

where \mathcal{E} is a monoidal model category, \mathcal{M} and \mathcal{N} are \mathcal{E} -enriched monoidal model categories and F is strict monoidal.

If *P* is a cofibrant *C*-coloured operad in *E* and **X** is a *P*-algebra that is cofibrant in \mathcal{M}^{C} , then <u>*RULFX*</u> admits a *P*-algebra structure such that

$$X \longrightarrow \underline{R}U\underline{L}FX$$

is a map of *P*-algebras. (The case of a left Bousfield localization is Id: $\mathcal{M} \leftrightarrows \mathcal{M}_{\mathcal{L}}$: Id.)

< ロ > < 同 > < 回 > < 回 >

- Consider operads with values in symmetric spectra.
- Homotopical colocalizations (right Bousfield localizations).
- More general situation. Consider an *E*-enriched Quillen pair

 $F: \mathfrak{M} \rightleftharpoons \mathfrak{N}: U$

where \mathcal{E} is a monoidal model category, \mathcal{M} and \mathcal{N} are \mathcal{E} -enriched monoidal model categories and F is strict monoidal.

If *P* is a cofibrant *C*-coloured operad in *E* and **X** is a *P*-algebra that is cofibrant in \mathcal{M}^C , then <u>*RULFX*</u> admits a *P*-algebra structure such that

$$X \longrightarrow \underline{R}U\underline{L}FX$$

is a map of *P*-algebras. (The case of a left Bousfield localization is Id : $\mathcal{M} \leftrightarrows \mathcal{M}_{\mathcal{L}}$: Id.)

- Consider operads with values in symmetric spectra.
- Homotopical colocalizations (right Bousfield localizations).
- More general situation. Consider an *E*-enriched Quillen pair

 $F: \mathfrak{M} \rightleftharpoons \mathfrak{N}: U$

where \mathcal{E} is a monoidal model category, \mathcal{M} and \mathcal{N} are \mathcal{E} -enriched monoidal model categories and F is strict monoidal.

If *P* is a cofibrant *C*-coloured operad in \mathcal{E} and **X** is a *P*-algebra that is cofibrant in \mathcal{M}^C , then <u>*RULFX*</u> admits a *P*-algebra structure such that

$$\mathbf{X} \longrightarrow \underline{R}U\underline{L}F\mathbf{X}$$

is a map of *P*-algebras.

(The case of a left Bousfield localization is Id : $\mathcal{M}\leftrightarrows \mathcal{M}_\mathcal{L}\colon$ Id.)

Monoidal model categories

Definition

A model category \mathcal{E} is **monoidal** if it has an associative internal product \otimes with a unit *I* and an internal hom $\text{Hom}_{\mathcal{E}}(-, -)$, satisfying the *pushout-product axiom*, that is, if $f: X \to Y$ and $g: U \to V$ are cofibrations in \mathcal{E} , then the induced map

$$(X \otimes V) \prod_{X \otimes U} (Y \otimes U) \longrightarrow Y \otimes V$$

is a cofibration which is a weak equivalence if f or g are.

Back

< ロ > < 同 > < 回 > < 回 > < 回 > <

Simplicial model categories

Definition

A model category \mathcal{E} is **simplicial** if it is enriched, tensored and cotensored over simplicial sets in such a way that Quillen's *SM7 axiom* holds, namely, if $f: X \to Y$ is a cofibration and $g: U \to V$ is a fibration in \mathcal{E} , then the induced map

$$Map(Y, U) \longrightarrow Map(Y, V) \times_{Map(X, V)} Map(X, U)$$

is a fibration which is a weak equivalence if f or g are.

Back

< □ > < 同 > < 回 > < 回 > < 回 >