ALGEBRAIC TOPOLOGY, EXERCISE SHEET 1, 18.09.2015

For the first exercise recall that

- a subset $C \subseteq \mathbb{R}^n$ is *convex* if for every pair of points $a, b \in C$ the segment between them lies in C, i.e., $ta + (1-t)b \in C$ for every $0 \le t \le 1$.
- a convex combination of points $p_0, p_1, \ldots, p_m \in \mathbb{R}^n$ is a sum of the form:

$$x = \sum_{i=0}^{m} t_i p_i \qquad t_0 + \ldots + t_m = 1, \ t_i \ge 0 \tag{(\star)}$$

The subset of all such convex combinations is denoted by $C(p_0, \ldots, p_m) \subset \mathbb{R}^n$.

• the convex hull $[p_0, \ldots, p_m]$ of points $p_0, \ldots, p_m \in \mathbb{R}^n$ is the smallest convex subset of \mathbb{R}^n containing these points (i.e., every convex set containing p_0, \ldots, p_m also contains $[p_0, \ldots, p_m]$).

Exercise 1. The aim of this exercise is to show that Δ^m is up to homeomorphism the subspace of \mathbb{R}^n given by the convex hull of m + 1 affinely independent points.

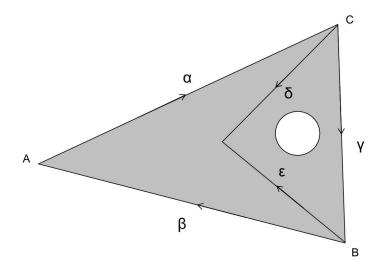
- (1) For m+1 points $p_0, p_1, \ldots, p_m \in \mathbb{R}^n$ we have $C(p_0, \ldots, p_m) = [p_0, \ldots, p_m]$. [Hint: to prove that $C(p_0, \ldots, p_m) \subseteq [p_0, \ldots, p_m]$ you can try to reason by induction on the number of points.]
- (2) Every convex combination of p_0, \ldots, p_m has a unique expression of the form (\star) if and only if p_0, \ldots, p_m are affinely independent, i.e., the vectors $p_1 p_0, p_2 p_0, \ldots, p_m p_0$ are linearly independent.
- (3) Given affinely independent points $p_0, \ldots, p_m \in \mathbb{R}^n$ and $q_0, \ldots, q_m \in \mathbb{R}^k$ then $[p_0, \ldots, p_m]$ and $[q_0, \ldots, q_m]$ are homeomorphic.

Exercise 2. Recall the definition of a free abelian group generated by a set as given in the lecture.

- (1) Prove that for every set S there exists a free abelian group $(F(S), i_S)$ generated by S.
- (2) Show that if $(F(S), i_S)$ and $F(S)', i'_S$ are free abelian groups generated by a set S then there is a unique isomorphism of groups $g: F(S) \to F'(S)$ such that $g \circ i_S = i'_S$.
- (3) Show that the assignment $S \mapsto F(S)$ can be extended to a functor from Set (the category of sets and maps) to Ab (the category of abelian groups and group homomorphisms).
- (4) Use the previous results to show that we have a functor $C_n: \text{Top} \to \text{Ab}$ sending a space to its *n*-th singular chain group. Moreover, the inclusion of a subspace $i: A \to X$ induces an injection $C_n(i): C_n(A) \to C_n(X)$.

Exercise 3. Let * be the one-point space. Calculate $H_n(*)$ for every $n \ge 0$.

Exercise 4. Let us consider the singular 1-chains $c_1 = \alpha + \beta + \gamma$ and $c_2 = \gamma + \epsilon - \delta$ in the following subspace X of \mathbb{R}^2 (see next page!). Show that $c_1, c_2 \in Z_1(X)$ and that they represent the same element in $H_1(X)$.



Exercise 5. Let A be a subspace of a space X and let $i: A \to X$ be the inclusion map. We say that A is a *deformation retract* of X if there is a function $r: X \to A$ such that $ri = 1_A$ and ir is homotopic to 1_X .

- (1) Let I = [0, 1] be the interval. Show that $\{(x, y) \in I \times I : x = 0 \text{ or } x = 1 \text{ or } y = 0\}$ is a deformation retract of $I \times I$.
- (2) Let $X = \{(x, y) \in \mathbb{R}^2: x^2 + y^2 \le 36, (x-3)^2 + y^2 \ge 1, (x+3)^2 + y^2 \ge 1\}$ be a disc with two 'holes'. Convince yourself that the subspace

 $A = \{(x, y) \in X: (x - 3)^2 + y^2 = 2 \text{ or } (x + 3)^2 + y^2 = 2 \text{ or } (y = 0, -1 \le x \le 1)\}$ is a deformation retract of X.

Is a deformation retract of A.

(3) Let Y and Z be subspaces of a space X such that $Z \subseteq Y$. Show that if Y is a deformation retract of X then Z is a deformation retract of X if and only if Z is a deformation retract of Y.