ALGEBRAIC TOPOLOGY, EXERCISE SHEET 1, 18.09.2015

For the first exercise recall that

- a subset $C \subseteq \mathbb{R}^{n}$ is convex if for every pair of points $a, b \in C$ the segment between them lies in C, i.e., $t a+(1-t) b \in C$ for every $0 \leq t \leq 1$.
- a convex combination of points $p_{0}, p_{1}, \ldots, p_{m} \in \mathbb{R}^{n}$ is a sum of the form:

$$
x=\sum_{i=0}^{m} t_{i} p_{i} \quad t_{0}+\ldots+t_{m}=1, t_{i} \geq 0
$$

The subset of all such convex combinations is denoted by $\mathrm{C}\left(p_{0}, \ldots, p_{m}\right) \subset \mathbb{R}^{n}$.

- the convex hull $\left[p_{0}, \ldots, p_{m}\right]$ of points $p_{0}, \ldots, p_{m} \in \mathbb{R}^{n}$ is the smallest convex subset of \mathbb{R}^{n} containing these points (i.e., every convex set containing p_{0}, \ldots, p_{m} also contains $\left[p_{0}, \ldots, p_{m}\right]$).

Exercise 1. The aim of this exercise is to show that Δ^{m} is up to homeomorphism the subspace of \mathbb{R}^{n} given by the convex hull of $m+1$ affinely independent points.
(1) For $m+1$ points $p_{0}, p_{1}, \ldots, p_{m} \in \mathbb{R}^{n}$ we have $\mathrm{C}\left(p_{0}, \ldots, p_{m}\right)=\left[p_{0}, \ldots, p_{m}\right]$. [Hint: to prove that $\mathrm{C}\left(p_{0}, \ldots, p_{m}\right) \subseteq\left[p_{0}, \ldots, p_{m}\right]$ you can try to reason by induction on the number of points.]
(2) Every convex combination of p_{0}, \ldots, p_{m} has a unique expression of the form (\star) if and only if p_{0}, \ldots, p_{m} are affinely independent, i.e., the vectors $p_{1}-p_{0}, p_{2}-p_{0}, \ldots, p_{m}-p_{0}$ are linearly independent.
(3) Given affinely independent points $p_{0}, \ldots, p_{m} \in \mathbb{R}^{n}$ and $q_{0}, \ldots, q_{m} \in \mathbb{R}^{k}$ then $\left[p_{0}, \ldots, p_{m}\right]$ and $\left[q_{0}, \ldots, q_{m}\right]$ are homeomorphic.

Exercise 2. Recall the definition of a free abelian group generated by a set as given in the lecture.
(1) Prove that for every set S there exists a free abelian group $\left(F(S), i_{S}\right)$ generated by S.
(2) Show that if $\left(F(S), i_{S}\right)$ and $F(S)^{\prime}, i_{S}^{\prime}$) are free abelian groups generated by a set S then there is a unique isomorphism of groups $g: F(S) \rightarrow F^{\prime}(S)$ such that $g \circ i_{S}=i_{S}^{\prime}$.
(3) Show that the assignment $S \mapsto F(S)$ can be extended to a functor from Set (the category of sets and maps) to Ab (the category of abelian groups and group homomorphisms).
(4) Use the previous results to show that we have a functor C_{n} : Top $\rightarrow \mathrm{Ab}$ sending a space to its n-th singular chain group. Moreover, the inclusion of a subspace $i: A \rightarrow X$ induces an injection $C_{n}(i): C_{n}(A) \rightarrow C_{n}(X)$.

Exercise 3. Let $*$ be the one-point space. Calculate $H_{n}(*)$ for every $n \geq 0$.
Exercise 4. Let us consider the singular 1-chains $c_{1}=\alpha+\beta+\gamma$ and $c_{2}=\gamma+\epsilon-\delta$ in the following subspace X of \mathbb{R}^{2} (see next page!). Show that $c_{1}, c_{2} \in Z_{1}(X)$ and that they represent the same element in $H_{1}(X)$.

Exercise 5. Let A be a subspace of a space X and let $i: A \rightarrow X$ be the inclusion map. We say that A is a deformation retract of X if there is a function $r: X \rightarrow A$ such that $r i=1_{A}$ and $i r$ is homotopic to 1_{X}.
(1) Let $I=[0,1]$ be the interval. Show that $\{(x, y) \in I \times I: \quad x=0$ or $x=1$ or $y=0\}$ is a deformation retract of $I \times I$.
(2) Let $X=\left\{(x, y) \in \mathbb{R}^{2}: \quad x^{2}+y^{2} \leq 36, \quad(x-3)^{2}+y^{2} \geq 1, \quad(x+3)^{2}+y^{2} \geq 1\right\}$ be a disc with two 'holes'. Convince yourself that the subspace

$$
A=\left\{(x, y) \in X: \quad(x-3)^{2}+y^{2}=2 \quad \text { or } \quad(x+3)^{2}+y^{2}=2 \quad \text { or } \quad(y=0,-1 \leq x \leq 1)\right\}
$$ is a deformation retract of X.

(3) Let Y and Z be subspaces of a space X such that $Z \subseteq Y$. Show that if Y is a deformation retract of X then Z is a deformation retract of X if and only if Z is a deformation retract of Y.

