ALGEBRAIC TOPOLOGY, EXERCISE SHEET 2, 02.10.2015

In this exercise sheet we formalize the 'naturality' of morphisms as already mentioned in the lectures. Let \mathcal{C} and \mathcal{D} be categories and $F, G : \mathcal{C} \to \mathcal{D}$ functors. A *natural transformation* $\alpha : F \to G$ from F to G is a family of morphisms $\alpha_X : F(X) \to G(X)$ in \mathcal{D} indexed by objects X of \mathcal{C} satisfying the (so-called) naturality condition

$$\alpha_Y \circ F(f) = G(f) \circ \alpha_X$$

for each morphism $f: X \to Y$ in \mathcal{C} . Put more diagrammatically, this amounts to saying that the following diagram commutes:

Exercise 1 (Lemma 4 of Lecture 2). Let G be a group and let [G, G] be the subgroup of G generated by the commutators in G.

- (1) The subgroup [G, G] is normal and the quotient group $G^{ab} = G/[G, G]$ is abelian. The subgroup [G, G] is the *commutator subgroup of* G and the quotient group $G^{ab} = G/[G, G]$ is called the *abelianization* of G.
- (2) The pair (G^{ab}, q) consisting of the abelianization G^{ab} and the canonical group homomorphism $q: G \to G^{ab}$ has the following universal property: Given a further pair (A, r) consisting of an abelian group A and a group homomorphism $r: G \to A$ then there is unique group homomorphism $g: G^{ab} \to A$ such that $g \circ q = r$.
- (3) Let Gr denote the category of groups and group homomorphisms. The abelianization defines a functor $(-)^{ab}: \mathsf{Gr} \to \mathsf{Ab}$.
- (4) Let $U: Ab \to Gr$ be the functor that includes the abelian groups into all groups. Show that the canonical maps $G \to G^{ab}$ determine a natural transformation from the identity functor on Gr to the functor $U \circ (-)^{ab}: Gr \to Gr$.

Exercise 2.

- (1) Show that for every topological space X we have an isomorphism $\epsilon_X \colon H_0(X) \to \mathbb{Z}\pi_0(X)$, where $\mathbb{Z}\pi_0(X)$ is the free abelian group generated by the set $\pi_0(X)$. **Hint:** have a look at the path-connected case as discussed in the lecture.
- (2) Show that the isomorphisms constructed in (1) constitute a natural isomorphism $\epsilon: H_0 \to \mathbb{Z}\pi_0$ of functors $\mathsf{Top} \to \mathsf{Ab}$.
- (3) Show that the Hurewicz isomorphisms $\tilde{h}_{(X,x_0)} : \pi_1^{ab}(X,x_0) \to H_1(X)$ assemble into a natural transformation $\tilde{h} : \pi_1(-)^{ab} = (-)^{ab} \circ \pi_1 \to H_1$ of functors $\mathsf{Top}_* \to \mathsf{Ab}$.
- (4) Find more examples of natural transformations in the lecture notes and exercises. Do you know other examples from algebra?

Exercise 3.

(1) Show that the map $p: \mathbb{R} \to S^1$ given by $p(x) = e^{ix}$ has the following unique path lifting property: given a path on the circle $\gamma: [0,1] \to S^1$ and a point $x \in \mathbb{R}$ such that $\gamma(0) = p(x)$, there is a unique (continuous) path $\tilde{\gamma}: [0,1] \to \mathbb{R}$ with $\tilde{\gamma}(0) = x$ and $p(\tilde{\gamma}(t)) = \gamma(t)$.

Hint: p maps each interval in \mathbb{R} of diameter $< 2\pi$ homeomorphically to a subspace of S^1 . (2) Use (1) to argue that $\pi_1(S^1, 1) \cong \mathbb{Z}$.

- (3) Let X be a bouquet of two circles (i.e. the space ∞) and let x be the point where both circles meet. Convince yourself that $\pi_1(X, x)$ is a free group on two generators a and b, i.e. each element in $\pi_1(X, x)$ can be written uniquely as a word in a, a^{-1}, b and b^{-1} .
- **Hint:** each loop in X decomposes into loops that take value in only one of the two circles.
- (4) Describe the first homology group of the bouquet of two circles. How does it differ from the first homotopy group?

In the remaining exercises we recall some notions from point-set topology that will be useful in the upcoming lectures. A quotient map $q: X \to Y$ is a surjection between topological spaces satisfying that a subset $U \subseteq Y$ is open if and only if $q^{-1}(U)$ is open in X. If ~ is an equivalence relation on the underlying set of a topological space X then we can endow the set of equivalence classes $X/_{\sim}$ with the unique topology such that the canonical surjection $q: X \to X/_{\sim}$ is a quotient map. Note that any quotient map can be obtained this way. We continue to use this notation in the next exercise.

Exercise 4. Show that for any continuous map $f: X \to Z$ which satisfies f(x) = f(x') for all $x, x' \in X$ with $x \sim x'$ there is a unique continuous map $h: X/_{\sim} \to Z$ such that $h \circ q = f$. More diagrammatically:

Recall that a map of spaces is *open* if it sends open subsets to open subsets. Similarly, a map of spaces is *closed* if it sends closed subsets to closed subsets.

Exercise 5.

- (1) Show that a continuous surjection which is open or closed is a quotient map.
- (2) Let X and Y be compact Hausdorff spaces and let $f: X \to Y$ be a continuous surjection. Show that f is a quotient map.
- (3) Let X be a compact Hausdorff space and let f: X → Y be a closed continuous surjection. Show that Y is a compact Hausdorff space.
 Hint: use that every compact Hausdorff space X is normal, i.e., that for every two disjoint

closed subsets Z, Z' of X there are disjoint open subsets U, U' in X with $Z \subseteq U, Z' \subseteq U'$.

(4) Using part (2) show that the sphere S^n is homeomorphic to the quotient D^n/S^{n-1} of the disk with respect to its boundary.