
ALGEBRAIC TOPOLOGY, EXERCISE SHEET 3, 09.10.2015

Exercise 1. Conclude the proof of Proposition 9 from Lecture 3 by showing:

(1) the connecting homomorphism δn : Hn(C ′′) → Hn−1(C ′) is well-defined and a homomor-
phism of groups.

(2) the resulting long sequence of homology groups is exact at Hn(C) and at Hn(C ′).

Exercise 2.

(1) Show that the category Ch has coproducts. In detail, given a set I and chain complexes Ci ∈
Ch, i ∈ I, then there is a chain complex C such that for all D ∈ Ch there is an isomorphism
natural in D:

homCh(C,D)→
∏
i∈I

homCh(C
i, D)

Any chain complex C with this universal property is called a coproduct of the chain com-
plexes Ci and will be denoted

⊕
i∈I C

i.
Hint: recall the corresponding statement for abelian groups first, this gives a hint how to
define C.

(2) Try to justify why it is reasonable to call any chain complex C constructed in (1) the
coproduct of the Ci as opposed to a coproduct of the Ci. This will also justify why we use
the same notation

⊕
i∈I C

i for them.

Exercise 3 (Homology is additive).

(1) Given chain complexes Ci ∈ Ch, i ∈ I, and n ∈ Z then there is a (natural) isomorphism of
abelian groups

⊕
i∈I Hn

(
Ci
)
→ Hn

(⊕
i∈I C

i
)
.

(2) Let X be a topological space and Xi, i ∈ I be its path components. Show that for every
n ≥ 0 there is a natural isomorphism

⊕
i∈I Hn(Xi)→ Hn(X).

Exercise 4 (Universal property of the cokernel).

(1) Given a homomorphism of abelian group f : A→ B, let Q = B/f(A) be the quotient group
and q : B → Q the canonical homomorphism. Show that q ◦ f = 0 and that the pair (Q, q)
has the following universal property: for every further such pair (R, r) consisting of an
abelian group R and a homomorphism r : B → D with r ◦ f = 0 there exist a unique
homomorphism r′ : Q→ R such that r′ ◦ q = r. More diagrammatically:

A
f

//

0
��

??
??

??
??

B
q

//

r

��

Q

∃!r′
���

�
�

�

R

Any such pair (Q, q) with this universal property is referred to as the cokernel of f .
(2) Let f : C ′ → C be a map of chain complexes and let qn : Cn → C ′′n = Cn/fn(C ′n) be

the (levelwise) quotient map. Use the previous point to show that there is a unique way
to turn the (C ′′n)n≥0 into a chain complex such that the (qn)n≥0 assemble into a chain
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map q : C → C ′′. Moreover, if f is an inclusion (a levelwise injective map), then the

sequence 0→ C ′
f→C

q→C ′′→0 is exact.
(3) Define the notion of the cokernel of a morphism of chain complexes. Why does it make

sense to speak of ‘the’ cokernel? In the notation of (2) show that (C ′′, q) is the cokernel
of f .

Exercise 5 (Five lemma). Let us consider the following commutative diagram of abelian groups
with exact rows:

A1
a1 //

f1

��

A2
a2 //

f2

��

A3
a3 //

f3

��

A4
a4 //

f4

��

A5

f5

��

B1
b1 // B2

b2 // B3
b3 // B4

b4 // B5

Use the technique of ‘diagram chasing’ to show that:

(1) if f2 and f4 are surjective and f5 is injective then f3 is surjective.
(2) if f2 and f4 are injective and f1 is surjective then f3 is injective.
(3) if f1, f2, f4, and f5 are isomorphisms then so is f3.

Exercise 6 (Snake lemma). Let us consider the following commutative diagram of abelian group
with exact rows:

A0

a

��

f0 // B0

b

��

g0 // C0

c

��

// 0

0 // A1
f1 // B1

g1 // C1
.

Show that there is an exact sequence of abelian groups

ker(a)
f̃

// ker(b)
g̃

// ker(c) // coker(a)
f̂

// coker(b)
ĝ

// coker(c)

and furthermore:

(1) f̃ is injective if and only if f0 is injective.
(2) ĝ is surjective if and only if g1 is surjective.

Try to solve this exercise both by ’diagram chasing’ and as a corollary of Proposition 9, Lecture 3.


