ALGEBRAIC TOPOLOGY, EXERCISE SHEET 4, 16.10.2015

Exercise 1. Let $f: X \to Y$ be a continuous map and let $i: X \to CX$ be the inclusion of X into its cone as defined in Lecture 4. Let \sim_f be the equivalence relation on the disjoint union $Y \sqcup CX$ generated by $f(x) \sim_f i(x)$ for all $x \in X$. We define the mapping cone of the map f as the quotient space $C_f := Y \sqcup CX/_{\sim_f}$. Let $q: Y \sqcup CX \to C_f$ be the canonical quotient map. Let $p: Y \to C_f$

be the composition of q with the inclusion $Y \to Y \sqcup CX$. Show that for every continuous map $g: Y \to Z$ such that $g \circ f$ is homotopic to a constant map there is a map $h: C_f \to Z$ such that $h \circ p = g$. More diagrammatically:

Exercise 2 (The category of pairs of topological spaces).

- (1) Define the category Top^2 of pairs of topological spaces.
- (2) Show that the formation of relative singular chain complexes and relative singular homology groups define functors $C: \operatorname{Top}^2 \to \operatorname{Ch}(\mathbb{Z})$ and $H_n: \operatorname{Top}^2 \to \operatorname{Ab}$ respectively.

Exercise 3 (Alternative description of relative singular homology). Let (X, A) be a pair of spaces. Recall that the relative homology groups $H_n(X, A)$ are defined as the homology groups of the chain complex with components $C_n(X)/C_n(A)$. For each n, we define subsets of $C_n(X)$ by

$$Z_n(X, A) = \{ \sigma \in C_n(X) \mid \partial(\sigma) \in C_{n-1}(A) \},\$$

$$B_n(X, A) = \{ \sigma \in C_n(X) \mid \exists \sigma' \in C_n(A) \colon \sigma - \sigma' \in B_n(X) \}.$$

Show that

- (1) $Z_n(X, A)$ is a subgroup of $C_n(X)$ and $B_n(X, A)$ is a subgroup of $Z_n(X, A)$.
- (2) $H_n(X, A) \cong Z_n(X, A)/B_n(X, A)$ for each $n \ge 0$.

Exercise 4 (Chain homotopy). Let C, D and E be chain complexes.

(1) Show that chain homotopy defines an equivalence relation on the set Ch(C, D) of chain maps from C to D. Denote by $[C, D] := Ch(C, D) / \sim$ be the set of chain homotopy classes of maps from C to D.

- (2) Let $f_1, f_2, g_1, g_2: C \to D$ be chain maps such that f_1 is chain homotopic to f_2 and g_1 is chain homotopic to g_2 . Show that $f_1 + g_1$ is chain homotopic to $f_2 + g_2$ and that $-f_1$ is chain homotopic to $-f_2$. Conclude from this that [C, D] has the natural structure of an abelian group.
- (3) Let $C = \mathbb{Z}[n]$ be the chain complex with $C_n = \mathbb{Z}$ and $C_m = 0$ for all $m \neq n$ (with zero differentials). Try to identify the abelian group $[\mathbb{Z}[n], D]$.
- (4) Let $f_1, f_2: C \to D$ be chain homotopic maps and let $g: D \to E$ be a chain map. Show that $h \circ f_1$ is chain homotopic to $h \circ f_2$.

Dually, if $f: C \to D$ is a chain map and $g_1, g_2: D \to E$ are chain homotopic, show that $g_1 \circ f$ is chain homotopic to $g_2 \circ f$. Conclude from this that there is a well-defined composition map

$$\circ : [D, E] \times [C, D] \longrightarrow [C, E]$$

We recall the definition of *split* exact sequence. Given two abelian groups A' and A'', there is always the short exact sequence

$$0 \longrightarrow A' \stackrel{i}{\longrightarrow} A' \oplus A'' \stackrel{p}{\longrightarrow} A'' \longrightarrow 0$$

where *i* is the inclusion $a' \mapsto (a', 0)$ and *p* the projection $(a'; a'') \mapsto a''$. A short exact sequence $0 \longrightarrow A' \xrightarrow{j} A \xrightarrow{q} A'' \longrightarrow 0$ is *split* if there is an isomorphism $f: A \mapsto A' \oplus A''$ such that the following diagram commutes:

Exercise 5 (Splitting exact sequences).

- (1) Let $0 \longrightarrow A' \xrightarrow{i} A \xrightarrow{p} A'' \longrightarrow 0$ be a short exact sequence of abelian groups. Show that the following statements are equivalent:
 - (a) The map q admits a section, i.e., there is a homomorphism $s: A'' \to A$ such that $qs = \text{id}: A'' \to A'';$
 - (b) The map j admits a retraction, i.e., there is a homomorphism $r: A \to A'$ such that $rj = id: A' \to A';$
 - (c) The short exact sequence is split.
- (2) Let $0 \longrightarrow A' \xrightarrow{i} A \xrightarrow{p} A'' \longrightarrow 0$ be a short exact sequence of abelian groups with $A'' = \mathbb{Z}$ (or more generally: any free abelian group). Show that this short exact sequence is split.
- (3) Try to find an example of a short exact sequence of abelian groups that is not split.
- (4) State and prove a statement analogous to (1) for chain complexes.
- (5) Show that if B is a retract of space X then $H_n(X) \simeq H_n(A) \oplus H_n(X, A)$ for every $n \in \mathbb{N}$.

Warning: (2) is not true when A'' is a *chain complex* consisting of free abelian groups.

Exercise 6. Use the previous exercise and the long exact sequence of pairs to show that $H_1(\mathbb{R}, \mathbb{Q})$ is free abelian and specify a basis for it.