ALGEBRAIC TOPOLOGY, EXERCISE SHEET 4, 16.10.2015

Exercise 1. Let $f: X \rightarrow Y$ be a continuous map and let $i: X \rightarrow C X$ be the inclusion of X into its cone as defined in Lecture 4 . Let \sim_{f} be the equivalence relation on the disjoint union $Y \sqcup C X$ generated by $f(x) \sim_{f} i(x)$ for all $x \in X$. We define the mapping cone of the map f as the quotient space $C_{f}:=Y \sqcup C X / \sim_{f}$. Let $q: Y \sqcup C X \rightarrow C_{f}$ be the canonical quotient map. Let $p: Y \rightarrow C_{f}$

be the composition of q with the inclusion $Y \rightarrow Y \sqcup C X$. Show that for every continuous map $g: Y \rightarrow Z$ such that $g \circ f$ is homotopic to a constant map there is a map $h: C_{f} \rightarrow Z$ such that $h \circ p=g$. More diagrammatically:

Exercise 2 (The category of pairs of topological spaces).
(1) Define the category Top ${ }^{2}$ of pairs of topological spaces.
(2) Show that the formation of relative singular chain complexes and relative singular homology groups define functors $C: \mathrm{Top}^{2} \rightarrow \mathrm{Ch}(\mathbb{Z})$ and $H_{n}: \mathrm{Top}^{2} \rightarrow \mathrm{Ab}$ respectively.
Exercise 3 (Alternative description of relative singular homology). Let (X, A) be a pair of spaces. Recall that the relative homology groups $H_{n}(X, A)$ are defined as the homology groups of the chain complex with components $C_{n}(X) / C_{n}(A)$. For each n, we define subsets of $C_{n}(X)$ by

$$
\begin{aligned}
& Z_{n}(X, A)=\left\{\sigma \in C_{n}(X) \mid \partial(\sigma) \in C_{n-1}(A)\right\} \\
& B_{n}(X, A)=\left\{\sigma \in C_{n}(X) \mid \exists \sigma^{\prime} \in C_{n}(A): \sigma-\sigma^{\prime} \in B_{n}(X)\right\}
\end{aligned}
$$

Show that
(1) $Z_{n}(X, A)$ is a subgroup of $C_{n}(X)$ and $B_{n}(X, A)$ is a subgroup of $Z_{n}(X, A)$.
(2) $H_{n}(X, A) \cong Z_{n}(X, A) / B_{n}(X, A)$ for each $n \geq 0$.

Exercise 4 (Chain homotopy). Let C, D and E be chain complexes.
(1) Show that chain homotopy defines an equivalence relation on the set $\mathrm{Ch}(C, D)$ of chain maps from C to D. Denote by $[C, D]:=\mathrm{Ch}(C, D) / \sim$ be the set of chain homotopy classes of maps from C to D.
(2) Let $f_{1}, f_{2}, g_{1}, g_{2}: C \rightarrow D$ be chain maps such that f_{1} is chain homotopic to f_{2} and g_{1} is chain homotopic to g_{2}. Show that $f_{1}+g_{1}$ is chain homotopic to $f_{2}+g_{2}$ and that $-f_{1}$ is chain homotopic to $-f_{2}$. Conclude from this that $[C, D]$ has the natural structure of an abelian group.
(3) Let $C=\mathbb{Z}[n]$ be the chain complex with $C_{n}=\mathbb{Z}$ and $C_{m}=0$ for all $m \neq n$ (with zero differentials). Try to identify the abelian group $[\mathbb{Z}[n], D]$.
(4) Let $f_{1}, f_{2}: C \rightarrow D$ be chain homotopic maps and let $g: D \rightarrow E$ be a chain map. Show that $h \circ f_{1}$ is chain homotopic to $h \circ f_{2}$.

Dually, if $f: C \rightarrow D$ is a chain map and $g_{1}, g_{2}: D \rightarrow E$ are chain homotopic, show that $g_{1} \circ f$ is chain homotopic to $g_{2} \circ f$. Conclude from this that there is a well-defined composition map

$$
\circ:[D, E] \times[C, D] \longrightarrow[C, E]
$$

We recall the definition of split exact sequence. Given two abelian groups A^{\prime} and $A^{\prime \prime}$, there is always the short exact sequence

$$
0 \longrightarrow A^{\prime} \xrightarrow{i} A^{\prime} \oplus A^{\prime \prime} \xrightarrow{p} A^{\prime \prime} \longrightarrow 0
$$

where i is the inclusion $a^{\prime} \mapsto\left(a^{\prime}, 0\right)$ and p the projection $\left(a^{\prime} ; a^{\prime \prime}\right) \mapsto a^{\prime \prime}$. A short exact sequence $0 \longrightarrow A^{\prime} \xrightarrow{j} A \xrightarrow{q} A^{\prime \prime} \longrightarrow 0$ is split if there is an isomorphism $f: A \mapsto A^{\prime} \oplus A^{\prime \prime}$ such that the following diagram commutes:

Exercise 5 (Splitting exact sequences).
(1) Let $0 \longrightarrow A^{\prime} \xrightarrow{i} A \xrightarrow{p} A^{\prime \prime} \longrightarrow 0$ be a short exact sequence of abelian groups. Show that the following statements are equivalent:
(a) The map q admits a section, i.e., there is a homomorphism $s: A^{\prime \prime} \rightarrow A$ such that $q s=\mathrm{id}: A^{\prime \prime} \rightarrow A^{\prime \prime}$;
(b) The map j admits a retraction, i.e., there is a homomorphism $r: A \rightarrow A^{\prime}$ such that $r j=\mathrm{id}: A^{\prime} \rightarrow A^{\prime}$;
(c) The short exact sequence is split.
(2) Let $0 \longrightarrow A^{\prime} \xrightarrow{i} A \xrightarrow{p} A^{\prime \prime} \longrightarrow 0$ be a short exact sequence of abelian groups with $A^{\prime \prime}=\mathbb{Z}$ (or more generally: any free abelian group). Show that this short exact sequence is split.
(3) Try to find an example of a short exact sequence of abelian groups that is not split.
(4) State and prove a statement analogous to (1) for chain complexes.
(5) Show that if B is a retract of space X then $H_{n}(X) \simeq H_{n}(A) \oplus H_{n}(X, A)$ for every $n \in \mathbb{N}$.

Warning: (2) is not true when $A^{\prime \prime}$ is a chain complex consisting of free abelian groups.
Exercise 6. Use the previous exercise and the long exact sequence of pairs to show that $H_{1}(\mathbb{R}, \mathbb{Q})$ is free abelian and specify a basis for it.

