ALGEBRAIC TOPOLOGY, EXERCISE SHEET 5, 23.10.2015

Exercise 1 (Naturality of the connecting homomorphism).
(1) Show that the (algebraic) connecting homomorphism associated to a short exact sequence of chain complexes is natural. In other words, show that for every commutative diagram of abelian groups

in which the rows are exact, the diagram

commutes for every $n \geq 1$.
(2) Define a category of short exact sequences of chain complexes of abelian groups and a category of long exact sequences of abelian groups. Show that homology defines a functor between these categories.

Exercise 2 (Homology long exact sequence of a triple). A triple of spaces (X, A, B) is a space X together with subspaces $B \subseteq A \subseteq X$.
(1) Show that for each triple of spaces (X, A, B) there is a long exact sequence

$$
\ldots \rightarrow H_{n}(A, B) \rightarrow H_{n}(X, B) \rightarrow H_{n}(X, A) \rightarrow H_{n-1}(A, B) \rightarrow \ldots \rightarrow H_{0}(X, A)
$$

(2) Give a definition of a morphism of triples with the property that each such morphism $(X, A, B) \rightarrow\left(X^{\prime}, A^{\prime}, B^{\prime}\right)$ induces a commutative diagram of pairs of spaces:

(3) Show that associated to each morphism of triples $(X, A, B) \rightarrow\left(X^{\prime}, A^{\prime}, B^{\prime}\right)$ we have a commutative diagram with exact rows as in:

We define the suspension of a chain complex $\left(K ., \partial_{K}\right)$ as the chain complex $S K$. such that $S K_{n}:=K_{n-1}$ for every $n>0$ and $S K_{0}=0$. The n-th differential of $S K$. is $-\partial_{K, n-1}$ for $n>0$, the 0-th differential is just the trivial map. It follows that $H_{n}(S K)=H_{n-1}(K)$.

Exercise 3 (Mapping cone). Suppose that $\left(K, \partial_{K}\right),\left(L, \partial_{L}\right)$ are chain complexes and a chain map $f: K \rightarrow L$ is given. We define a new chain complex C_{f} by letting $C_{f, n}:=L_{n} \oplus K_{n-1}$ for $n>0$ and $C_{f, 0}=L_{0}$. The boundary operator of C_{f} is defined by the matrix

$$
\left(\begin{array}{cc}
\partial_{L} & f \\
0 & -\partial_{K}
\end{array}\right)
$$

In other words the boundary of an element $(l, k) \in C_{f, n}=L_{n} \oplus K_{n-1}$ is $\partial((l, k))=\left(\partial_{L}(l)+\right.$ $\left.f(k),-\partial_{K}(k)\right) \in L_{n-1} \oplus K_{n-2}=C_{f, n-1}$.
(1) Show that C_{f} is indeed a chain complex.
(2) Show that there is a exact sequence of chain complexes
and that the n-th connecting homomorphism of the associated long exact sequence $\delta_{n}: H_{n}(S K) \simeq$ $H_{n-1}(K) \rightarrow H_{n-1}(L)$ is just $H_{n-1}(f)$.
(3) Show that if C_{f} is contractible then f is a chain homotopy equivalence.

Exercise 4 (Prism operator). Recall from exercise sheet 1 that given a convex space $X \subseteq \mathbb{R}^{m}$, each $n+1$-tuple of points $\left(a_{0}, \ldots, a_{n}\right) \in X^{n+1}$ determines an n-simplex $\left[a_{0}, \ldots, a_{n}\right]: \Delta^{n} \rightarrow X$ whose image is the convex hull of a_{0}, \ldots, a_{n}. The boundary of this simplex is

$$
\partial\left(\left[a_{0}, \ldots, a_{n}\right]\right)=\sum_{i=0}^{n}(-1)^{i}\left[a_{0}, \ldots, \hat{a_{i}}, \ldots, a_{n}\right]
$$

where $\left[a_{0}, \ldots, \hat{a_{i}}, \ldots, a_{n}\right]$ is the n-simplex associated to the sequence $\left(a_{0}, \ldots, a_{n}\right)$ with a_{i} removed.
Consider the prism $\Delta^{n} \times[0,1] \subset \mathbb{R}^{n+1} \times[0,1] \subset \mathbb{R}^{n+2}$, where we identify the n-simplex Δ^{n} with the convex hull of the $n+1$-basis vectors $u_{0}, \ldots, u_{n} \in \mathbb{R}^{n+1}$. If we define $v_{i}=\left(u_{i}, 0\right)$ and $w_{i}=\left(u_{i}, 1\right)$, then $\Delta^{n} \times[0,1]$ is the convex hull of $\left\{v_{0}, \ldots, v_{n}, w_{0}, \ldots, w_{n}\right\}$.
(1) Show that $\Delta^{n} \times[0,1]=\bigcup_{i=0}^{n} S_{i}$ where S_{i} is the $(n+1)$-simplex $\left[v_{0}, \ldots, v_{i}, w_{i}, \ldots, w_{n}\right]$, for every $0 \leq i \leq n$.
(2) Given an homotopy $F: I \times X \rightarrow Y$ let us define P_{n} as

$$
\begin{aligned}
P_{n}: C_{n}(X) & \longrightarrow C_{n+1}(Y) \\
\sigma & \longmapsto \sum_{i=0}^{n}(-1)^{i} F_{*}(\sigma \times \mathrm{id})_{*}\left(S_{i}\right) .
\end{aligned}
$$

Show that the P_{n} 's define a chain homotopy from $f=\left.F\right|_{\{0\} \times X}$ to $g=\left.F\right|_{\{1\} \times X}$.

