ALGEBRAIC TOPOLOGY, EXERCISE SHEET 7, 13.11.2015

Exercise 1. Let $U \subseteq A \subseteq X$ be subspaces of X such that $\bar{U} \subseteq A^{\circ}$ and let $i: C^{\prime}(X) \rightarrow C(X)$ be the inclusion of the corresponding subcomplex of small chains. Recall from Lecture 7 that there exists a chain map bs ${ }^{X}: C(X) \rightarrow C(X)$, as well as a chain homotopy $R^{X}: C_{\bullet}(X) \rightarrow C_{\bullet+1}(X)$ between bs^{X} and the identity such that

- after applying bs ${ }^{X}$ sufficiently many times, one obtains a small chain.
- if $\alpha \in C_{n}(X)$ is a small chain, then $R^{X}(\alpha)$ is a small chain as well.

Use this to prove that the inclusion $i: C^{\prime}(X) \rightarrow C(X)$ is a chain homotopy equivalence, along the following lines:
(1) show that for each k, there is a chain homotopy $R_{k}^{X}: C_{\bullet}(X) \rightarrow C_{\bullet+1}(X)$ between the k-fold composition $\left(\mathrm{bs}^{X}\right)^{k}=\mathrm{bs}^{X} \circ \cdots \circ \mathrm{bs}^{X}$ and the identity. Also prove that R_{k}^{X} preserves small chains.
(2) for each simplex $\sigma: \Delta^{n} \rightarrow X$, define $h(\sigma):=R_{\phi(\sigma)}^{X}(\sigma) \in C_{n+1}(X)$, where $\phi(\sigma)$ is the smallest k such that $\left(\mathrm{bs}^{X}\right)^{k}(\sigma)$ is a small chain. Show that h extends to a well-defined map of graded abelian groups $C_{\bullet}(X) \rightarrow C_{\bullet+1}(X)$.
(3) prove that there is a map of chain complexes $\rho: C(X) \rightarrow C(X)$ such that h is a chain homotopy between ρ and the identity map.
(4) prove that ρ takes values in the subcomplex $C^{\prime}(X)$ of small chains and prove that the resulting map $\rho: C(X) \rightarrow C^{\prime}(X)$ provides a homotopy inverse to the inclusion i.

Exercise 2. Compute the homology groups of the two-dimensional real projective space $\mathbb{R} P^{2}$.
Hint: recall that $\mathbb{R} P^{2}$ can be obtained as the quotient of the square $[0,1] \times[0,1]$ by the relations $(s, 0) \sim(1-s, 1)$ and $(0, t) \sim(1,1-t)$.
Exercise 3 (Colimits of sequences of abelian groups). Given a sequence of abelian groups and group homomorphisms

$$
A_{0} \xrightarrow{f_{0}} A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} A_{n} \xrightarrow{f_{n}} \cdots
$$

let us define $f_{j i}: A_{i} \rightarrow A_{j}$ to be the composition $f_{j-1} \circ f_{j-2} \circ \cdots \circ f_{i}: A_{i} \rightarrow A_{j}$ for $i<j$. We define a new abelian group colim ${ }_{n} A_{n}$ which is called the colimit of the above sequence. Elements of this abelian group are equivalence classes $[x, n]$ of pairs (x, n) with $n \in \mathbb{N}$ and $x \in A_{n}$. Two such pairs $(x, n),(y, m)$ are equivalent if there exists $k \geq n, m$ such that $f_{k n}(x)=f_{k m}(y)$.
(1) Check that there is a well-defined group structure on $\operatorname{colim}_{n} A_{n}$ given by:

$$
[x, n]+[x, m]=\left[f_{k n}(x)+f_{k m}(y), k\right] \quad \text { where } \quad k \geq m, n
$$

Moreover, for every $n \in \mathbb{N}$, the assignments $\iota_{j}: A_{j} \rightarrow \operatorname{colim}_{n} A_{n}: a \mapsto[a, j]$ define group homomorphisms which satisfy $\iota_{j} \circ f_{j i}=\iota_{i}$.
(2) Check that for any abelian group B and any family of group homomorphisms $\beta_{n}: A_{n} \rightarrow$ B such that for $i<j$ we have $\beta_{j} \circ f_{j i}=\beta_{i}$, there exists a unique homomorphism $\beta: \operatorname{colim}_{n} A_{n} \rightarrow B$ such that $\beta \circ \iota_{n}=\beta_{n}$ for every $n \in \mathbb{N}$.

In the next exercise we consider a sequence of chain complexes as in

$$
C_{\bullet, 0} \xrightarrow{f_{\bullet}, 0} C_{\bullet, 1} \xrightarrow{f_{\bullet}, 1} C_{\bullet, 2} \xrightarrow{f_{\bullet}, 2} \cdots \xrightarrow{f_{\bullet}, n-1} C_{\bullet, n} \xrightarrow{f_{\bullet}, n} \cdots
$$

and let us write $f_{\bullet, j i}: C_{\bullet, i} \rightarrow C_{\bullet, j}$ for the morphism of chain complexes obtained by composition.
Exercise 4 (Colimits of sequences of chain complexes).
(1) Define homomorphisms $\partial_{n}: \operatorname{colim}_{m} C_{n, m} \rightarrow \operatorname{colim}_{m} C_{n-1, m}$ for all $n>0$ using the universal property of the colimit of abelian groups and check that these maps define a new chain complex $\operatorname{colim}_{m} C_{\bullet}, m$:

$$
\cdots \xrightarrow{\partial_{n+1}} \operatorname{colim}_{m} C_{n, m} \xrightarrow{\partial_{n}} \operatorname{colim}_{m} C_{n-1, m} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{1}} \operatorname{colim}_{m} C_{0, m}
$$

(2) Show that for every fixed $m \in \mathbb{N}$ the collection $\left\{\iota_{n, m}: C_{n, m} \rightarrow \operatorname{colim}_{m} C_{n, m}\right\}_{n \in \mathbb{N}}$ defines a map of chain complexes $\iota_{k}: C_{\bullet}, k \rightarrow \operatorname{colim}_{m} C_{\bullet}, m$ and check that for $i<j$ we have $\iota_{j} \circ f_{\bullet, j i}=\iota_{i}$.
(3) Prove that there is a (natural) isomorphism:

$$
\operatorname{colim}_{m} H_{n}\left(C_{\bullet}, m\right) \cong H_{n}\left(\operatorname{colim}_{m} C_{\bullet}, m\right)
$$

Exercise 5 (Local homology groups). Let X be the subspace of Δ_{3} formed by the union of all the six edges (in other words, if we express the points of Δ_{3} in baricentric coordinates, X is the subspace of points that have at least two baricentric coordinates equal to 0).

Consider the cone $C X$; we can think of it as the subspace of Δ_{3} formed by the union of all the line segments joining a point in X to the baricenter of Δ_{3}.
(1) Compute all the local homology groups $H_{n}(C X, C X-\{x\})$ for every point $x \in C X$.
(2) Compute all the local homology groups $H_{n}(X, X-\{x\})$ for every point in X.
(3) Use the computations above to find subspaces $A \subseteq C X$ such that $f(A) \subseteq A$ for every homeomorphism $f: C X \rightarrow C X$.

