ALGEBRAIC TOPOLOGY, EXERCISE SHEET 7, 13.11.2015

Exercise 1. Let $U \subseteq A \subseteq X$ be subspaces of X such that $\overline{U} \subseteq A^{\circ}$ and let $i: C'(X) \to C(X)$ be the inclusion of the corresponding subcomplex of small chains. Recall from Lecture 7 that there exists a chain map $bs^X: C(X) \to C(X)$, as well as a chain homotopy $R^X: C_{\bullet}(X) \to C_{\bullet+1}(X)$ between bs^X and the identity such that

- after applying bs^X sufficiently many times, one obtains a small chain.
- if $\alpha \in C_n(X)$ is a small chain, then $R^X(\alpha)$ is a small chain as well.

Use this to prove that the inclusion $i: C'(X) \to C(X)$ is a chain homotopy equivalence, along the following lines:

- (1) show that for each k, there is a chain homotopy $R_k^X : C_{\bullet}(X) \to C_{\bullet+1}(X)$ between the k-fold composition $(bs^X)^k = bs^X \circ \cdots \circ bs^X$ and the identity. Also prove that R_k^X preserves small chains.
- (2) for each simplex $\sigma: \Delta^n \to X$, define $h(\sigma) := R^X_{\phi(\sigma)}(\sigma) \in C_{n+1}(X)$, where $\phi(\sigma)$ is the smallest k such that $(bs^X)^k(\sigma)$ is a small chain. Show that h extends to a well-defined map of graded abelian groups $C_{\bullet}(X) \to C_{\bullet+1}(X)$.
- (3) prove that there is a map of chain complexes $\rho: C(X) \to C(X)$ such that h is a chain homotopy between ρ and the identity map.
- (4) prove that ρ takes values in the subcomplex C'(X) of small chains and prove that the resulting map $\rho: C(X) \to C'(X)$ provides a homotopy inverse to the inclusion *i*.

Exercise 2. Compute the homology groups of the two-dimensional real projective space $\mathbb{R}P^2$.

Hint: recall that $\mathbb{R}P^2$ can be obtained as the quotient of the square $[0,1] \times [0,1]$ by the relations $(s,0) \sim (1-s,1)$ and $(0,t) \sim (1,1-t)$.

Exercise 3 (Colimits of sequences of abelian groups). Given a sequence of abelian groups and group homomorphisms

$$A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} A_n \xrightarrow{f_n} \cdots$$

let us define $f_{ji}: A_i \to A_j$ to be the composition $f_{j-1} \circ f_{j-2} \circ \cdots \circ f_i: A_i \to A_j$ for i < j. We define a new abelian group colim_n A_n which is called the *colimit of the above sequence*. Elements of this abelian group are equivalence classes [x, n] of pairs (x, n) with $n \in \mathbb{N}$ and $x \in A_n$. Two such pairs (x, n), (y, m) are equivalent if there exists $k \ge n, m$ such that $f_{kn}(x) = f_{km}(y)$.

(1) Check that there is a well-defined group structure on $\operatorname{colim}_n A_n$ given by:

$$[x, n] + [x, m] = [f_{kn}(x) + f_{km}(y), k]$$
 where $k \ge m, n$

Moreover, for every $n \in \mathbb{N}$, the assignments $\iota_j \colon A_j \to \operatorname{colim}_n A_n \colon a \mapsto [a, j]$ define group homomorphisms which satisfy $\iota_j \circ f_{ji} = \iota_i$.

(2) Check that for any abelian group B and any family of group homomorphisms $\beta_n \colon A_n \to B$ such that for i < j we have $\beta_j \circ f_{ji} = \beta_i$, there exists a unique homomorphism $\beta \colon \operatorname{colim}_n A_n \to B$ such that $\beta \circ \iota_n = \beta_n$ for every $n \in \mathbb{N}$.

In the next exercise we consider a sequence of chain complexes as in

$$C_{\bullet,0} \xrightarrow{f_{\bullet,0}} C_{\bullet,1} \xrightarrow{f_{\bullet,1}} C_{\bullet,2} \xrightarrow{f_{\bullet,2}} \cdots \xrightarrow{f_{\bullet,n-1}} C_{\bullet,n} \xrightarrow{f_{\bullet,n}} \cdots$$

and let us write $f_{\bullet,ji}: C_{\bullet,i} \to C_{\bullet,j}$ for the morphism of chain complexes obtained by composition.

Exercise 4 (Colimits of sequences of chain complexes).

(1) Define homomorphisms ∂_n : $\operatorname{colim}_m C_{n,m} \to \operatorname{colim}_m C_{n-1,m}$ for all n > 0 using the universal property of the colimit of abelian groups and check that these maps define a new chain complex $\operatorname{colim}_m C_{\bullet,m}$:

$$\cdots \xrightarrow{\partial_{n+1}} \operatorname{colim}_m C_{n,m} \xrightarrow{\partial_n} \operatorname{colim}_m C_{n-1,m} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_1} \operatorname{colim}_m C_{0,m}$$

- (2) Show that for every fixed $m \in \mathbb{N}$ the collection $\{\iota_{n,m} : C_{n,m} \to \operatorname{colim}_m C_{n,m}\}_{n \in \mathbb{N}}$ defines a map of chain complexes $\iota_k : C_{\bullet,k} \to \operatorname{colim}_m C_{\bullet,m}$ and check that for i < j we have $\iota_j \circ f_{\bullet,ji} = \iota_i$.
- (3) Prove that there is a (natural) isomorphism:

$$\operatorname{colim}_{m} H_n(C_{\bullet,m}) \cong H_n(\operatorname{colim}_{m} C_{\bullet,m})$$

Exercise 5 (Local homology groups). Let X be the subspace of Δ_3 formed by the union of all the six edges (in other words, if we express the points of Δ_3 in baricentric coordinates, X is the subspace of points that have at least two baricentric coordinates equal to 0).

Consider the cone CX; we can think of it as the subspace of Δ_3 formed by the union of all the line segments joining a point in X to the baricenter of Δ_3 .

- (1) Compute all the local homology groups $H_n(CX, CX \{x\})$ for every point $x \in CX$.
- (2) Compute all the local homology groups $H_n(X, X \{x\})$ for every point in X.
- (3) Use the computations above to find subspaces $A \subseteq CX$ such that $f(A) \subseteq A$ for every homeomorphism $f: CX \to CX$.

