
ALGEBRAIC TOPOLOGY, EXERCISE SHEET 8, 20.11.2015

Exercise 1 (Pushout of topological spaces). Let C be a category and let f : A→ B and g : A→ C
be morphisms in C with a common domain. A pair of maps i : B → X and j : C → X is called a
pushout of f and g if

• i ◦ f = j ◦ g and
• for every other pair i′ : B → X ′, j′ : C → X ′ such that i′ ◦ f = j′ ◦ g, there exists a unique

morphism t : X → X ′ such that t ◦ i = i′ and t ◦ j = j′.

More diagrammatically:
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(1) Let (i : B → X, j : C → X) and (i′ : B → Y, j′ : C → Y ) both be pushouts of morphisms f
and g. Show that there is a unique isomorphism p : X → Y such that i′ = p ◦ i, j′ = p ◦ j.
This justifies that we talk about the pushout of f and g.

(2) Show that for every two continuous maps of topological spaces with a common domain
there is a pushout of these maps.
Hint: use disjoint unions and quotients of spaces.

(3) Let (i : B → X, j : C → X) be a pushout of f and g in Top. Show that U is open in X if
and only if i−1(U) and j−1(U) are open in B and C respectively.

(4) Let (i : B → X, j : C → X) be a pushout of f and g in Top. Show that if g is a closed
embedding then this is also the case for i.

Exercise 2.

(1) The torus can be obtained from the square by identifying opposite sides. Use an adapted
CW decomposition of the square to also turn the torus into a CW complex.

(2) Similarly we can obtain the Klein bottle from the unit square by identifying (0, t) ∼ (1, t)
and (s, 0) ∼ (1− s, 1). Show that there is a similar CW decomposition of the Klein bottle.

(3) Can you come up with CW decompositions of the torus and the Klein bottle which have
the same number of cells in each dimension? In particular this shows the obvious fact that
the number of cells does not determine the space.

(4) Give a CW-structure on the real line, the real line without a finite number of points and
the plane without one point.

Exercise 3 (Hawaiian earrings). Let En ⊂ R2 be the circle with radius 1/n centered at (1/n, 0)
and radius 1/n. Moreover, let E =

⋃
n∈NEn be topologized as subspace of R2. Show that there is

no CW structure on E.
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Recall from Lecture 6 that the reduced homology of the spheres is given by

H̃k(Sn) ∼=
{

Z k = n
0 k 6= n

Any map f : Sn → Sn induces a group homomorphism f∗ : H̃n(Sn) → H̃n(Sn). If we choose a

generator ω of H̃n(Sn), then we can write f∗(ω) = p · ω for a unique integer p. We will call this
integer p the degree of f and denote it by deg(f). Note that this is independent of the chosen
generator ω.

Exercise 4 (Degrees of maps between spheres).

(1) Show that two homotopic maps between Sn have the same degree. Use this to prove that
for any line l in Rn+1 through the origin, the map fl,θ : Sn → Sn obtained by rotating the
sphere by θ degrees around the line l has degree 1.

(2) Let f, g : Sn → Sn. Show that deg(fg) = deg(f) · deg(g) and that deg(idSn) = 1.
(3) If f : Sn → Sn is not surjective, show that deg(f) = 0.
(4) Recall that the unreduced suspension Σ(Sn) of Sn is the quotient of Sn×[−1, 1] by identify-

ing Sn×{1} and Sn×{−1} with points. Show that there is a well-defined homeomorphism

Σ(Sn) // Sn+1; [v, t]
� // (

√
1− t2 · v, t)

where we think of Sn as the unit sphere in Rn+1.
(5) It follows from (4) that any map f : Sn → Sn induces a map Σ(f) : Sn+1 → Sn+1. Show

that deg(f) = deg(Σ(f)).
Hint: use Exercise 4 of sheet 6.

(6) Show that for any p ∈ Z, there exists a map f : Sn → Sn which has degree p.
(7) Let H ⊆ Rn+1 be a hyperplane through the origin. Show that reflection at H induces a

map Sn → Sn of degree −1.
Hint: use (1) to prove that all reflections at hyperplanes have the same degree. Now use
(5) to prove that the map Sn → Sn; (x0, x1, · · · , xn) 7→ (−x0, x1, · · · , xn) has degree −1.

Exercise 5 (Fundamental theorem of algebra). Realize S2 as the one point compactification of C,
where we will call the extra point ∞.

(1) Show that every non-constant polynomial map f : C→ C can be continuously extended to

a map f̂ : S2 → S2 that sends ∞ to ∞.
Hint: use that the open neighbourhoods of ∞ correspond to complements of compact
subspaces of C.

(2) Let f : C → C be a polynomial of degree k with leading coefficient 1 and let g : C → C be

given by g(z) = zk. Show that f̂ and ĝ are homotopic and conclude that they have the
same degree.

(3) Let ĝ : S2 → S2 be the map induced by g(z) = zk. Notice that ĝ preserves the subspaces
S2\{∞} and S2\{0}. Use this, together with the naturality of the Mayer-Vietoris sequence,
to prove that ĝ has degree k.

(4) Conclude that every non-constant polynomial f : C→ C has a zero.

Remark 6. Recall that S2 ∼= CP 1 and that the inclusion C → CP 1; z 7→ [z : 1] realizes CP 1

at the one point compactification of C. Using this, the map f̂ associated to a polynomial f(z) =
akz

k + · · ·+ a0 is simply the holomorphic map

CP 1 // CP 1;
[
z0 : z1

] � //
[
akz

k
0 + ak−1z

k−1
0 z1 + · · ·+ a0z

k
1 : zk1

]
.


