ALGEBRAIC TOPOLOGY, EXERCISE SHEET 11, 11.12.2015

Exercise 1.

(1) Let X and Y be finite CW-complexes. Show that the product $X \times Y$ has the structure of a CW-complex as well.
Hint: every n-cell $e_{\alpha}^{n} \rightarrow X$ and every m-cell $e_{\beta}^{m} \rightarrow Y$ together determine an $(n+m)$-cell

$$
e_{(\alpha, \beta)}^{n+m} \simeq e_{\alpha}^{n} \times e_{\beta}^{m} \longrightarrow X \times Y
$$

Use this to construct a CW-complex Z, equipped with a continuous bijection $Z \rightarrow X \times Y$ and conclude that $X \times Y$ admits a CW-structure.
(2) Compute the homology of $\mathbb{C} P^{n} \times \mathbb{C} P^{m}$ for all m and n.
(3) Compute the homology of $\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$ using the fact that

$$
\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}=\operatorname{colim}_{n} \mathbb{C} P^{n} \times \mathbb{C} P^{n}
$$

Exercise 2.

(1) Recall that $\mathbb{R} P^{n}$ admits a CW-structure with one cell in each degree $\leq n$, obtained from the CW-structure on S^{n} with 2 cells in each degree $\leq n$. In particular, note that each

$$
\left(\mathbb{R} P^{n}\right)^{(k)} /\left(\mathbb{R} P^{n}\right)^{(k-1)} \simeq S^{k}
$$

can be identified with the quotient of an upper hemisphere by the equator. Use this to argue that each attaching map

$$
\chi_{k}: S^{k} \longrightarrow\left(\mathbb{R} P^{n}\right)^{(k)} /\left(\mathbb{R} P^{n}\right)^{(k-1)} \simeq S^{k}
$$

behaves on one half of S^{k} as the identity map, while on the other half of S^{k} it behaves as the antipodal map.
(2) Compute the homology of $\mathbb{R} P^{n}$ for any $0 \leq n \leq \infty$.

Exercise 3. Let M be the Möbius strip, obtained as a quotient of $[0,1] \times[-1,1]$ by identifying $(0, t) \sim(1,-t)$. The Möbius strip comes equipped with two inclusions of the circle

$$
c: S^{1} \longrightarrow M, \quad \partial: S^{1} \longrightarrow M
$$

where the image of c is the central circle $[0,1] \times\{0\} / \sim$ and the image of ∂ is the boundary circle $[0,1] \times\{ \pm 1\} / \sim$.
(1) Give a CW-structure for the Möbius strip such that both maps c and ∂ are inclusions of CW-subcomplexes (draw a picture!).
(2) Show that c is the inclusion of a strong deformation retract. If $p: M \rightarrow S^{1}$ is the associated retraction, prove that

$$
S^{1} \xrightarrow{\partial} M \xrightarrow{p} S^{1}
$$

provides a factorization of the map $\beta_{2}: S^{1} \rightarrow S^{1}$ defined as $\beta_{2}\left(e^{i \theta}\right)=e^{2 i \theta}$ as the inclusion of a subcomplex, followed by a homotopy equivalence.

We will inductively define spaces $M_{(n)}$ by taking n Möbius strips and gluing the central circle of the k-th Möbius strip to the boundary circle of the $(k+1)$-st Möbius strip. The inclusion of the central circle of the n-th Möbius strip then provides an inclusion $c_{(n)}: S^{1} \rightarrow M_{(n)}$.

More precisely, let $c_{(1)}: S^{1} \rightarrow M_{(1)}$ be the inclusion of the central circle of the Möbius strip. Assuming we have defined $c_{(n)}: S^{1} \rightarrow M_{(n)}$, we define $M_{(n+1)}$ as the pushout

Let $c_{(n+1)}$ be the composite map $S^{1} \xrightarrow{c} M \longrightarrow M_{(n+1)}$. In this way, we obtain a sequence of spaces $M_{(1)} \rightarrow M_{(2)} \rightarrow M_{(3)} \rightarrow \cdots$ with colimit $M_{(\infty)}$.
(3) Show that $M_{(n)}$ is a CW-complex for each $1 \leq n \leq \infty$ and that $M_{(m)} \rightarrow M_{(n)}$ is the inclusion of a CW-subcomplex for all $1 \leq m<n \leq \infty$.
(4) Show that each $c_{(n)}$ is the inclusion of a strong deformation retract and that the associated retractions $p_{(n)}$ fit into a commutative diagram

Compute the homology groups of M_{∞}.

