
LECTURE 2: LOW-DIMENSIONAL IDENTIFICATIONS

The aim of this lecture is to show that the zeroth singular homology group H0(X) can be
constructed from π0(X) in a purely algebraic way. Similarly, for a connected pointed space (X,x0)
the first singular homology group H1(X) can be obtained from π1(X,x0) by algebraic means only.

We begin with the case of H0(X). Let us recall from the last lecture that associated to a
connected space X we have the following (natural) augmentation map ϵ:

ϵ : C0(X) → Z :
k∑

i=1

nixi 7→
k∑

i=1

ni

By our convention, we have C0(X) = Z0(X). Since the augmentation map vanishes on all 0-
boundaries there is a unique induced group homomorphism ϵ∗ as indicated in:

B0(X)

=

i //

0 ..

Z0(X)

=ϵ

��

q
// H0(X)

ϵ∗ppZ

Proposition 1. (1) Let X be a path-connected topological space. Then the augmentation in-
duces a (natural) isomorphism ϵ∗ : H0(X) → Z.

(2) Let X be a topological space. Then we have a (natural) isomorphism H0(X) ∼= Zπ0(X).

Proof. (1): Let us show that ϵ∗ is surjective. Given an integer n ∈ Z, we can choose an arbitrary
point x ∈ X and consider the 0-cycle z = nx. We then have ϵ∗([z]) = ϵ(z) = n.
We now show that ϵ∗ is injective. So let us assume that the homology class [z] represented by

z =
∑k

j=1 njxj lies in the kernel of ϵ∗, i.e., that we have
∑k

j=1 nj = 0. Since X is connected we

can find a point x0 ∈ X and paths σj : ∆
1 → X such that σj(0) = x0 and σj(1) = xj . Let us form

the singular 1-chain σ =
∑k

j=1 njσj . The following calculation shows that the homology class [z] is
trivial:

∂(σ) =
k∑

j=1

nj(xj − x0) =
k∑

j=1

njxj −
k∑

j=1

njx0 =
k∑

j=1

njxj = z

(2): The proof of this part is very similar and uses the additivity of singular homology. It is left as
an exercise to the reader. �

We now continue with the relation between π1 and H1. Let us begin by recalling some basic
terminology concerning the manipulation of paths in a space. Two paths γ0, γ1 : ∆

1 → X are called
composable if they satisfy γ0(1) = γ1(0). If we have two such composable paths γ0 and γ1, then we
denote their concatenation by

γ0 ∗ γ1 : ∆1 → X.

This is the path obtained by first running through γ0 and then through γ1, and both at a double
speed. The inverse path γ−1 of a path γ is defined by

γ−1 : ∆1 → X : t 7→ γ(1− t).
1
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Let us next construct the so-called Hurewicz homomorphism π1(X,x0) → H1(X) associated to
a pointed space (X,x0). So, let us consider a homotopy class α = [γ] ∈ π1(X,x0) represented by a
pointed loop γ : S1 → X, 1 7→ x0. The quotient map

e : ∆1 → S1 = ∆1/∂∆1

allows us to associate a singular 1-chain γ ◦ e ∈ C1(X) to such a loop γ:

γ ◦ e : ∆1 e→ S1 γ→ X

Since γ is a loop it is immediate that γ◦e is a 1-cycle and hence represents a homology class. Thus, we
could try to associate the homology class [γ◦e] ∈ H1(X) to the homotopy class α = [γ] ∈ π1(X,x0).
In order to see that this assignment is well-defined we have to check the following: if two loops γ0
and γ1 are homotopic relative to the base point, then the singular 1-cycles γ0 ◦ e and γ1 ◦ e are
homologous, i.e., their difference is a boundary. But a 2-chain realizing this can be constructed
from such a pointed homotopy H : ∆1 ×∆1 → X. In fact, the homotopy satisfies the relations

H(0,−) = γ0 ◦ e, H(1,−) = γ1 ◦ e, and H(t, 0) = H(t, 1) = x0, t ∈ ∆1.

If we set w(t) = H(t, t) then the above relations of the homotopy can be graphically depicted by

κx0 //

γ0◦e
OO

κx0

//

w

??��������
γ1◦e
OO

where κx0 denotes the constant map with value x0. The restrictions of the homotopy H to the
upper left and the lower right 2-simplex give us maps σ1 : ∆

2 → X and σ2 : ∆
2 → X respectively.

We can conclude by calculating the boundary of σH = σ1 − σ2 ∈ C2(X):

∂(σH) = ∂σ1 − ∂σ2

= (κx0
− w + γ0 ◦ e)− (γ1 ◦ e− w + κx0

)

= γ0 ◦ e− γ1 ◦ e

Thus, we obtain γ0 ◦ e ∼ γ1 ◦ e as intended.

Proposition 2. If (X,x0) is a pointed topological space then the assignment

h : π1(X,x0) → H1(X) : [γ] 7→ [γ ◦ e]

defines a (natural) homomorphism of groups, the Hurewicz homomorphism of (X,x0).

Proof. By the above discussion the map of sets h : π1(X,x0) → H1(X) is well-defined. Let us
now check that it is a group homomorphism. The homotopy class of the constant loop κS1,x0

at x0 is the neutral element of π1(X,x0). It’s image under h is the homology class of the 1-cycle
κS1,x0

◦ e = κ∆1,x0
where the latter denotes the constant path at x0. But the boundary of the

constant 2-simplex κ∆2,x0
: ∆2 → X is given by

∂(κ∆2,x0
) = κ∆1,x0

− κ∆1,x0
+ κ∆1,x0

= κ∆1,x0
.

We thus deduce that h(1) = 0 as intended.
For the compatibility with the group structures let us consider two homotopy classes α1 = [γ1]

and α2 = [γ2] in π1(X,x0). Note that the paths γ1 ◦ e, γ2 ◦ e, and (γ1 ∗ γ2) ◦ e can be used to define
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a map from the (geometric) boundary of ∆2 to X. This is indicated in the next diagram (strictly
speaking we have to use some linear reparametrizations of the paths but we will ignore this issue):

γ2◦e

��
??

??
??

??
γ1◦e

??��������
(γ1∗γ2)◦e

//

We can extend this to a continuous map σ : ∆2 → X which is constant along the ‘vertical lines’.
But this singular 2-simplex σ implies the intended relation h(α1α2) = h(α1) + h(α2). �

As a preparation for the main theorem of this lecture, let us collect a few convenient facts.

Lemma 3. Let X be a topological space.

(1) A constant path κ : ∆1 → X is a boundary.
(2) If two paths γ0, γ1 : ∆

1 → X are homotopic relative to the boundary then γ0 ∼ γ1.
(3) If γ0, γ1 : ∆

1 → X are composable then γ0 + γ1 − γ0 ∗ γ1 is a boundary.
(4) If γ0 : ∆

1 → X is a path then γ0 + γ−1
0 is a boundary.

Proof. (1): We proved this already when we showed that the Hurewicz homomorphism h preserves
neutral elements.
(2): This was already proved when we checked that the Hurewicz homomorphism is well-defined.
(3): We established the corresponding result for loops when we showed that h is multiplicative.
But that proof never used that we considered loops as opposed to more general paths.
(4): This is a combination of the previous results:

γ0 + γ−1
0

iii)∼ γ0 ∗ γ−1
0

ii)∼ κγ0(0)
i)∼ 0 �

The Hurewicz homomorphism is a group homomorphism whose target is an abelian group while
the source itself is not necessarily abelian. Let us shortly abstract from this specific situation and
consider a group G, an abelian group A, and a group homomorphism f : G → A. The group G will
be written multiplicatively while A will be written additively. Then, for two elements g1 and g2
of G we obtain:

f(g1g2) = f(g1) + f(g2) = f(g2) + f(g1) = f(g2g1)

Hence, all elements of the form g1g2g
−1
1 g−1

2 ∈ G are sent to the neutral element 0 ∈ A. Such an
element is called a commutator and we will denote by [G,G] the subgroup of G generated by the
commutators:

[G,G] = ⟨{g1g2g−1
1 g−1

2 | g1, g2 ∈ G}⟩ ⊆ G

Lemma 4. In the above notation we have the following facts:

(1) The subset [G,G] is a normal subgroup of G and the quotient group Gab = G/[G,G] is
abelian. The subgroup [G,G] is the commutator subgroup of G and the quotient group
Gab = G/[G,G] is called the abelianization of G.

(2) The pair (Gab, q) consisting of the abelianization Gab and the canonical group homomor-
phism q : G → Gab has the following universal property: Given a further pair (A, r) con-
sisting of an abelian group A and a group homomorphism r : G → A then there is unique
group homomorphism g : Gab → A such that g ◦ q = r.

Proof. Exercise. �
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More diagrammatically, this universal property can be visualized as follows:

G

=

q
//

∀r --

Gab

g

��
�
�
� Gab

∃!g
��

A A

Note again that the two parts of this diagram take place in different categories: the diagram on the
left lives in the category of groups while the one on the right is a diagram in the category of abelian
groups. Thus, we can think of the abelianization as ‘the’ best approximation of an arbitrary group
by an abelian group.

Let us now return to the context of the Hurewicz homomorphism

h : π1(X,x0) → H1(X)

associated to a pointed space (X,x0). The above lemma implies that h factors uniquely through a

homomorphism h̃ : π1(X,x0)
ab → H1(X), i.e., we have

h : π1(X,x0) → π1(X,x0)
ab h̃→ H1(X).

Theorem 5. Let (X,x0) be a path-connected pointed space. Then the (natural) group homomor-

phism h̃ : π1(X,x0)
ab → H1(X) induced by the Hurewicz homomorphism is an isomorphism.

Proof. We have seen that h induces a well-defined group homomorphim h̃, sinceH1(X) is an abelian
group. To construct a map in the opposite direction, choose first for each x ∈ X a path τx from the
basepoint x0 to x. Then, to every path α in X from x to y we can associate a loop φ(α) at x0 by
defining φ(α) = τx ∗ α ∗ τ−1

y . This induces a homomorphism φ : C1(X) → π1(X,x0)
ab. Moreover,

φ induces a group homomorphism

φ̃ : H1(X) −→ π1(X,x0)
ab

because it vanishes on the image of C2(X)
∂→ C1(X). Indeed, if σ ∈ C2(X), then we can define a

homotopy from d2σ ∗ d0σ to d1σ:

x

y

z

x0

τz
τx

τy

d2σ
d0σ

d1σ

σ

0

2

1
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so that
τx ∗ d2σ ∗ τ−1

y ∗ τy ∗ d0σ ∗ τ−1
z ≃ τx ∗ d2σ ∗ d0σ ∗ τ−1

z ≃ τx ∗ d1σ ∗ τ−1
z .

That is, φ̃(d2σ) · φ̃(d0σ) = φ̃(d1σ) in π1(X,x0), so φ̃(∂σ) = 0 in π1(X,x0)
ab.

Now we will prove that h̃ and φ̃ are mutually inverses. Remember that we choose τx to be a
path from x0 to x. Let’s agree to choose τx to be the constant path κx0 if x = x0. Then clearly,
for a loop α based at x0 we have that

(φ̃ ◦ h̃)(α) = κx0
∗ α ∗ κx0

≃ α.

On the other hand, let α ∈ C1(X). Then we have that (h̃ ◦φ)(α) = h̃(τx ∗α ∗ τ−1
y ) = τx +α− τy =

α+τx−τy. Let’s take a class [β] in H1(X) represented by β =
∑

niαi ∈ C1(X) with ∂β = 0. Then

(h̃ ◦ φ)(β) =
∑

niαi +
∑

ni(τxi − τyi) = β +
∑

ni(τxi − τyi) = β,

the latter because ∂β =
∑

ni(xi − yi) = 0. Thus (h̃ ◦ φ̃)([β]) = [β] also, which concludes the
proof. �

The theorem allows us to do some first calculations for several spaces, if you already know their
fundamental groups. Let RPn denote the real projective space of dimension n and let Tn denote
the n-dimensional torus, i.e., Tn is an n-fold product of 1-spheres S1.

Corollary 6. The Hurewicz homomorphism induces the following identifications:

(1) H1(S
1) ∼= Z,

(2) H1(S
n) ∼= 0, n ≥ 2,

(3) H1(RPn) ∼= Z/2Z, n ≥ 2,
(4) H1(Tn) ∼= Zn.


