LECTURE 7: PROOF OF EXCISION PROPERTY OF SINGULAR
HOMOLOGY

In this lecture we will give a proof of the excision property of singular homology. For convenience,
let us quickly recall the statement.

Theorem 1. Let U C A C X be subspaces such that the closure U of U lies in the interior A° of A.
Then the inclusion (X\U, A\U) — (X, A) induces isomorphisms on relative homology groups:

H,(X\U,A\U) > H,(X,4), n>0

The proof of this theorem uses the notion of small chains in X. In the situation of the theorem,
let us call a generator a: A™ — X small if:
alA")CA  or  a(AMNU=0
The second condition is obviously equivalent to a(A™) C X\U. This notion is extended to singular
n-chains in the obvious way: such a chain is small if it is a linear combination of small generators.
Let us denote the subgroup of small singular n-chains by:
C(X) € Cn(X)
This clearly defines a subcomplex of C'(X) since the boundary of a small chain is again small. Let
us define C/ (X, A) by the following short exact sequence of abelian groups:
0—Ch(A) = CH(X)—CL(X,A) =0

The inclusion C,(A4) C CJ(X) is part of a morphism of chain complexes. It is thus immediate
that the C/ (X, A) can be uniquely assembled into a chain complex such that we have a short exact
sequence of chain complexes:

0—C(A)—=C'(X)—>C(X,A) =0

There are now two quotient complexes in sight: the relative singular chain complex C(X\U, A\U)
and C’'(X, A). The two defining short exact sequences are related in the following way:

0 —— Cp(A\T) —— Co (X\U) —— Coo (X\U, A\U) —— 0

J | ¢

0——C(A) —— C)(X) ——— C (X, A) ——— 0

The two solid vertical arrows are the obvious ones and since the square commutes we get an induced
morphism of chain complexes C(X\U, A\U) — C'(X, A).

Lemma 2. The induced chain map C(X\U, A\U) — C'(X, A) is an isomorphism of chain com-
plexes.

Proof. We have to check that we have an isomorphism in each degree. The injectivity is left as

an easy exercise. For the surjectivity each element [«] € C/, (X, A) can be represented by a small

chain « € C/(X). But such an « can be decomposed as a sum o =  + v where 5 € C,,(A4) and

v € Cp(X\U). Thus, the element of C,, (X \U, A\U) represented by ~ is sent to [a]. O
1
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The proof of excision is now based on the following proposition.

Proposition 3. The inclusion of chain complezes C'(X) — C(X) induces isomorphisms in ho-
mology.

Let us assume this proposition for the moment and let us see how we can deduce Theorem 1
from this.

Proof. (of Theorem 1 assuming Proposition 3)
By definition of the chain complexes C'(X, A) and C(X, A) there are the following two short exact
sequences of chain complexes:

0 C(A) C'(X) C'(X, A) —— 0
|
- !

0 C(A) C(X) C(X, A) —— 0

Since the square on the left commutes we get an induced map on the quotients as indicated by the
dashed arrow. By the last proposition, the vertical map in the middle induces isomorphisms on all
homology groups. Moreover, this is obviously also the case for the vertical map on the left. The
naturality of the long exact sequence induced in homology can now be used to conclude that also
the chain map C'(X,A) — C(X,A) induces isomorphisms in homology. Finally, the chain map
C(X\U, A\U) — C(X, A) which we consider in the statement of the excision theorem factors as a
composition:
C(X\U,A\U) = C'(X,A) = C(X, A)

By the above and by Lemma 2 we know that both maps induce isomorphisms in homology which
concludes the proof. |

The main work is thus to establish Proposition 3. The proof of the proposition is based on the
construction of two natural maps: a morphism of chain complexes

bs™: C(X) = C(X)
for any space X (bs stands for barycentric subdivision) and a chain homotopy
RX: Cy(X) = Cor1(X)
between bs® and the identity. Thus, for any a € Cp(X) we want to have:
ORX(a) + RX_,(0a) = bsi(a)—a
Note that the existence of the chain homotopy implies that bs”™ induces the identity in homology, i.e.,
bsX(a)] = [a] € Ha(X)
for any o € C,,(X) with da = 0. It will follow from the construction that

(1) For any o € C(X), if we apply bs™ to a sufficiently many —say k- times, we get a small
chain, i.e.,
(bs; ) (a) € CL(X), k large enough.

(2) For any small « the chain R («) is also small.

Exercise 4. Show that the existence of such maps would indeed imply Proposition 3.
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Let us begin with a preliminary construction, the cone construction. Let K be a convex set
(in some RY, say) and let p € K. For a: A" — K, let

Cone,(a): A" — K
be the map:
Conep () (to, .- tny1) = top+ (L —to)a(ty, .. t41)
Here, t; = t;/(1 —tg), to < 1. More geometrically, A" is the convex hull of its zeroth vertex and
the n-simplex opposite to that vertex (which is spanned by the remaining n 4 1 vertices). We want
Conep(a) to map the zeroth vertex to p and we want it to be o on the opposite n-simplex. This is

forced by defining Cone, () to be the convex linear extension in the ty-direction of these two maps.
The linear extension of Cone, to chains will be denoted by the same notation:

Conep,: Cp(K) = Cpi1(K)
Notice the important cone formula:
(1) 0Conep(a) =« — Conep(da), a € Cp(K)

This formula and these constructions should remind you of the way we prepared the proof of the
homotopy invariance of singular homology (see Lecture 5, Lemma 5 and Proposition 6).

We now turn to the actual construction of the maps bs® and RX. Note first that naturality
means that the following squares commute for any f: X — Y:

Cu(X) 2 €, () Cu(X) —15 G (X)
f{ lf* f{ lf*
Cn(Y) T Cn(Y) Crn(Y) T Cny1(Y)

This naturality together with the linearity of these maps has the consequence that bs and R are
completely determined by their effect on the identity maps 7,:
n = (id: A" = A™) € C,(A™)

Indeed, given a generator o € Cp,(X), a: A™ — X, we have:

n

(2) bsy (@) = au(bsy (ma))  and R (a) = au(Ry" (1))

We begin by defining bsff for all X by induction on n. For n = 0 let us put bsOAO (no) = nmo. This
defines bsj () for all spaces X and all & € Co(X). For the induction step, let us suppose that
bs2 () has already been defined for all X and all o. Define

n+1 n+1
bsﬁ+1 (n+1) = Cone, (bsﬁ (ONn+1))

where z = z,,; is the barycenter of A", Naturality forces the definition of bs;- 11(a) for any
generator a € Cp,41(X) by the above formulas, which is linearly extended to arbitrary (n+1)-chains.
This concludes the definition of the barycentric subdivision operators bs;: : C,,(X) — C,(X).

Exercise 5. Draw some low-dimensional pictures to convince yourself that this is a good definition
for a barycentric subdivision. Do the exercise!

Lemma 6. The maps bs\ : C,,(X) = Cp(X),n >0, define a chain map C(X) — C(X).
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Proof. We prove d o bsX (o) = bsir_; 0 d(«) by induction on n. For n = 0 it is clear. Suppose the
formula holds for all X and «, for a fixed n. Then for n+ 1 we have the following chain of identities
where the first three are given by definition and by the fact that a, is a chain map:

do bsﬁrl(a) = Jdoayo bsﬁlil (Mn+1)

= JoayoCone, (bsﬁwrl (OMn+1))
= «,o0doCone, (bsﬁwrl (OMn+1))
= a,o bsﬁn+1 (Onnt1) — axoCone, (0o bsﬁwrl (OMn+1))
= a.obsh (Onsa)
— b5 0@ (Onat1)
= bsy 0d(a)
The fourth and the fifth step are given by the cone formula (1) and the induction assumption

respectively while the remaining steps again follow from the definition. ]

The next step is to define the chain homotopies R.X: C,,(X) — C,.1(X), again by induction
on n and in such a way that the homotopy formula will hold. In this construction we use the
so-called method af acyclic models. Recall from Lecture 4, Proposition 6 that contractible spaces
have trivial homology groups in positive dimensions which applies, in particular, to simplices. In
dimension 0 we set:

Ry () = (A" = A%) € C1(A")

Since the boundary of ROAO (no) is zero the homotopy formula is satisfied in this dimension. This
defines Ry for all spaces X (by means of (2)). For the inductive step, let us now suppose that R:X

has already been defined for all X, in such a way that the homotopy formula
doRX+RX 108 = bsy —id

n

holds for all X. As we already know, to define R;\, ; for all X, it is enough to find an element

n+t1 "
B= Ryt (Mt1) € Crpa(A™H).

This 3 should satisfy the formula 88 + RA™" (9n,41) = bsﬁ_:l (Mmt1) — Mg, Lee.,
nt1 n+1 X "
op = *Rﬁ (Onnt1) + bs’rAL—'rl (Mn+1) = Mt in Cppq (A",

To prove that such a [ exists, it is enough to show that the right-hand-side is a cycle. We can
then use that H,1(A"!) = 0 (since n is at least 0!) in order to conclude that this cycle has to
be a boundary, i.e., that such a g exists. The fact that the right-hand-side is a cycle follows from

the following calculation using the homotopy formula in dimension n and the fact that bs2" " is a

chain map:

n+1 n+1
O(— RA" (Onr1) + 1By (1) = Tngt)
n+1 n+1 n+41
= (RA"(00mn41) = bS5 (Onsr) + Onnin) + ODsEL L (Mag1) — Ot

0

Thus, we can find such a 8 and this concludes the inductive construction of the natural chain
homotopy R¥ for all X.
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As a final step, given an arbitrary generator a.: A™ — X it only remains to show that (bsf Ve ()
is small for k large enough and that R:X sends small simplices to small simplices. Let us observe
first that (bs2")*(n,) is a linear combination of affine maps A™ — A". Moreover, the diameter
of the images of these affine maps becomes arbitrarily small as k increases. Thus, the smallness of
(b )¥ () will follow from the existence of a Lebesgue number (see the next lemma) applied to the
open cover of A™ given by

a1 (A°) and a (X -TD).
(This is an open cover by our assumption in the exicision theorem: U C A°.) The fact that RX (a)
is small if o is small follows immediately from the fact that R:X () lies in the image of ... Thus,
this concludes the proof of Proposition 3 and hence of the excision property.

Lemma 7. Let (Y,d) be a compact metric space and let (U;);cr be an open cover of Y. Then there
s a positive real number \, called a Lebesgue number of the cover, such that every subset of Y
of diameter less than X is entirely contained in U; for some i.

Proof. This is one of the exercises of the exercise sheet. O

It might be enlightening for the reader to again have a look at the proof of the homotopy
invariance in Lecture 5. That proof was based on the construction of the chain-level cross product
which in turn was also given by the method of acyclic models. Thus, two of the key features of
singular homology (homotopy invariance and excision) have been established by this method.

Moreover, the method of acyclic models itself uses in an essential way that the homology of
simplices (or contractible spaces) is trivial in positive dimensions. To get this vanishing result
we already used the cone construction in Lecture 4. Thus, judged from this perspective the cone
construction is one of the essential ingredients at least in our treatment of singular homology theory.



