
LECTURE 11: CELLULAR HOMOLOGY

In this lecture we continue the study of homological properties of CW complexes, culminating in
the definition of cellular homology for such complexes, and the proof that this alternative homology
theory is naturally isomorphic to singular homology and that it is useful in explicit calculations.

We begin by recalling some basics about (homological) orientations. Recall that Hn(Sn) ∼= Z. An
orientation of Sn is a choice of generator in Hn(Sn); so there are two orientations. The boundary
∂∆n of the n-simplex is a model of Sn−1, and has a canonical orientation given by the order of its
vertices

v0, . . . , vn

where vi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn+1 with 1 in the i-th place, i = 0, . . . , n. More precisely, the
(n−1)-cycle

∑
(−1)i∂i is a generator, where ∂i : ∆n−1 → ∆n is the face opposite to the i-th vertex,

∂i(x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi, . . . , xn−1).

An orientation of the n-cell en is a generator of Hn(en, ∂en) (note that Hn(en, ∂en) ∼= Z by the
long exact sequence of the pair and the contractibility of en). Each homeomorphism α : ∆n → en

determines an orientation, since the map α itself is a cycle and represents an element of Hn(en, ∂en).
An oriented n-cell in a CW complex X is a pair (e, θ) consisting of an n-cell e in X and an

orientation θ of e. We write Cor
n (X) for the free abelian group generated by the oriented n-cells

of X. Let Ccell
n (X) be the quotient of Cor

n (X) obtained by identifying (e, θ) and −(e, θ′) if θ and θ′

are the two possible orientations of e. So Ccell
n (X) is isomorphic to the free abelian group on the

set of n-cells (but the isomorphism would require a choice of orientations).
In the final lecture we will prove the following theorem.

Theorem 1. Let X be a CW complex. The abelian groups Ccell
• (X) can be turned into a chain

complex, the homology of which is isomorphic to the singular homology Hn(X) of X.

Of course a complete statement of the theorem, and its proof, requires an explicit description of
the (cellular) boundary operator

∂ : Ccell
n (X)→ Ccell

n−1(X).

This description will be given in the next lecture and is based on the homological degree of maps
Sn → Sn. But even as it stands, it is already clear that the theorem is useful in calculations. For
example, for the complex projective space CPn we had a CW decomposition with one 2i-cell for
each 0 ≤ i ≤ n. Thus, for the homology we obtain

Hk(CPn) ∼=
{

Z , k = 2l, 0 ≤ l ≤ n,
0 , otherwise.

Let us say that a CW complex has dimension bounded by n if it has no cells in dimension larger
than n. Using this terminology, the following is immediate for a CW complex X:

(1) If dim(X) ≤ n, then Hk(X) ∼= 0 for all k > n.
(2) If X is dimension-wise finite, then all Hk(X) are finitely generated.

For our further study of the homology of CW complexes let us recall the following two results.
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Lemma 2. Let X be obtained from A by attaching an n-cell along f : ∂en → A, X = A ∪f en.
Then

Hk(X,A) ∼=
{

Z , k = n
0 , otherwise.

Moreover, the attaching map applied to any orientation class of (en, ∂en) gives us a generator of
Hn(X,A).

Using this lemma, we can draw some consequences for the homology of CW complexes by ‘in-
duction on the number of cells’. In the case of finitely many n-cells the following result was already
established in the previous lecture. We leave it to the reader to deduce the general case from this
using filtered colimits.

Proposition 3. For any CW complex X, Hk(X(n), X(n−1)) ∼= 0 for all k 6= n.

We now continue establishing some interesting facts about the singular homology of CW com-
plexes.

Proposition 4. For any CW-complex X and any n ≥ 0 we have Hi(X,X
(n)) ∼= 0, for i ≤ n.

Proof. It suffices to prove this result for finite CW complexes X. The general case will follow by
an argument using filtered colimits. The proof will be by induction over the number of cells in X.
If X has dimension 0, the assertion is clear. Let us suppose that the proposition holds for A, and
let us consider X = A ∪ ek. Then by excision as in the previous lecture, if n ≥ k then

Hi(X,X
(n)) ∼= Hi(A,A

(n)).

If k > n let us again consider the long exact sequence in singular homology associated to the triple

A(n) = X(n) ⊆→ A
⊆→ A ∪ ek = X,

a part of which looks like:

. . .→ Hi(A,A
(n))→ Hi(X,A

(n)) = Hi(X,X
(n))→ Hi(X,A)→ . . .

By Lemma 2 the group Hi(X,A) is nonzero only for i = k > n. Moreover, by induction the group
Hi(A,A

(n)) is zero for i ≤ n. So surely the group in the middle is zero for i ≤ n as intended. �

Let us now show that the range in which the singular homology of a CW complex is possibly
nontrivial is bounded by its dimension.

Proposition 5. Let X be a CW complex of dimension ≤ n. Then Hi(X) ∼= 0 for i > n.

Proof. Again, we prove the result for finite CW complexes by induction on the number of cells.
The case of an infinite CW complex will follow by a colimit-argument. If dim(X) = 0 then the
proposition is clear. Suppose the proposition holds for A, and let X = A ∪ ek, so in particular
k ≤ n. A typical part of the long exact homology sequence of the pair (X,A) looks like:

. . .→ Hi(A)→ Hi(X)→ Hi(X,A)→ . . .

Now the group Hi(X,A) is trivial for i 6= k (so surely for i > n) as is the group Hi(A) for i > n by
induction assumption. Thus also Hi(X) ∼= 0 for i > n concluding the proof. �

We can now prove a more explicit addendum to Proposition 3. If X is a CW complex, let us
choose for each n-cell a characteristic map f and a homeomorphism α as in

∆n α→ en
f→ X.
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Then f ◦α is a cycle in Cn(X(n), X(n−1)), so we obtain a homology class [f ◦α] ∈ Hn(X(n), X(n−1)).
Doing this for each n-cell gives a well-defined homomorphism

φn : Ccell
n (X)→ Hn(X(n), X(n−1)).

It might be helpful to refamiliarize yourself with the proof of Proposition 3 (as given in the previous
lecture) before reading the proof of the following proposition.

Proposition 6. For all CW complexes X and all n, the map φn : Ccell
n (X)→ Hn(X(n), X(n−1)) is

an isomorphism.

Proof. Again, it suffices to prove this for finite CW complexes X, the case where X has dimension
zero is clear, and we consider only the induction step X = A ∪ ek. If k 6= n then

Hn(X(n), X(n−1)) ∼= Hn(A(n), A(n−1))

(as we saw in the proof of Proposition 3 in the previous lecture) and also Ccell
n (A) = Ccell

n (X). So
we only need to look at the case k = n. But here we have a commutative diagram of the following
form

0 // Hn(A(n), A(n−1)) // Hn(X(n), X(n−1)) // Hn(X(n), A(n)) // 0

0 // Ccell
n (A) //

φn

OO

Ccell
n (X) //

φn

OO

Z //

∼=

OO

0.

It is obvious that the last row is exact but also the first row is exact: for this consider the long
exact sequence associated to the triple

A(n−1) = X(n−1) ⊆→ A(n) ⊆→ X(n)

and use that both groups Hn+1(X(n), X(n−1)) and Hn−1(A(n), A(n−1)) vanish. The fact that this
diagram commutes follows from the explicit description of the isomorphism Z ∼= Hn(X(n), A(n)).
But by our induction assumption the vertical map on the left is an isomorphism. Thus we can
deduce by the 5-lemma that also the vertical map in the middle is an isomorphism, completing the
induction step. �

Thus, these relative homology groups are just free abelian groups generated by the various
indexing sets of the cell structure. We now want to show that these relative homology groups
themselves assemble into a chain complex, and in the next lecture we show that the homology of
this new complex again calculates the homology of the space. A priori this does not seem to be
an efficient idea: we build a complex consisting of relative homology groups of a space in order to
calculate the homology groups of that same space. However, as we saw these relative homology
groups have an easy explicit description and we will see that this alternative way of calculating the
homology is very convenient. This is also due to the fact that the differential can be given in quite
explicit geometric terms. If one has a good understanding of the attaching maps of a given CW
complex, then this allows for the calculation of its homology.

Here, we give an abstract description of the differentials. The translation into more geometric
terms will be given in the following lecture. Let us recall that associated to a triple of spaces
(X,A,B) there is a connecting homomorphism

∆n : Hn(X,A)
δ→ Hn−1(A)→ Hn−1(A,B),
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were δ is the connecting homomorphism of the pair (X,A) and the undecorated morphism belongs
to the long exact sequence of the pair (A,B).

Let X be a CW complex. For each n ≥ 1 there is the triple of spaces (X(n), X(n−1), X(n−2))
(we use the standard convention X(−1) = ∅). Let us denote the connecting homomorphism of this
triple by

∂celln : Hn(X(n), X(n−1))→ Hn−1(X(n−1), X(n−2)).

A key property of these maps is given by the following lemma.

Lemma 7. For a CW complex X and n ≥ 2 we have

0 = ∂celln−1 ◦ ∂celln : Hn(X(n), X(n−1))→ Hn−2(X(n−2), X(n−3)).

Proof. This follows since the composition of these cellular boundary homomorphisms is given by

Hn(X(n), X(n−1))

δ

��

Hn−1(X(n−1)) //

0
,,

Hn−1(X(n−1), X(n−2))

δ

��

Hn−2(X(n−2)) // Hn−2(X(n−2), X(n−3)).

But the composition of the second and the third morphism is trivial since these are two subsequent
morphisms belonging to the long exact homology sequence of the pair (X(n−1), X(n−2)). �

From now on we will use these relative homology groups as definitions of Ccell
• (X), but keep in

mind that these are isomorphic to the groups described at the beginning of this lecture. Thus we
make the following definition.

Definition 8. The cellular chain complex Ccell
• (X) of a CW complex X is given by the cellular

chain groups

Ccell
n (X) = Hn(X(n), X(n−1)), n ≥ 0,

together with the cellular boundary homomorphisms

∂celln : Ccell
n (X) = Hn(X(n), X(n−1))→ Ccell

n−1(X) = Hn−1(X(n−1), X(n−2)).

The cellular homology Hcell
n (X) of X is given by

Hcell
n (X) = Hn(Ccell(X)), n ≥ 0.

Note that cellular homology is functorial with respect to cellular maps of CW complexes. This
follows from the naturality of the connecting homomorphism of a triple since any cellular map
f : X → Y induces maps of triples

f : (X(n), X(n−1), X(n−2))→ (Y (n), Y (n−1), Y (n−2)).

Thus, cellular homology defines a functor on the category of CW complexes and cellular maps.
Note that this definition of the cellular chain complex of a CW complex does not only depend

on the underlying space but also on the chosen CW structure. In fact, by definition the cellular
chain groups are relative homology groups of subsequent filtration steps in the skeleton filtration.
Thus, one might wonder whether the resulting cellular homology is an invariant of the underlying
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space only (in that it would be independent of the actual choice of a CW structure). Theorem 10
tells us, in particular, that this is indeed the case.

We split off a preliminary lemma.

Lemma 9. Let X be a CW complex. The canonical map Hn+1(X(n+1), X(n)) → Hn+1(X,X(n))
is surjective for every n ≥ 0.

Proof. For this it suffices to consider the long exact homology sequences associated to the triple
(X,X(n+1), X(n)). The relevant part of it is given by

Hn+1(X(n+1), X(n))→ Hn+1(X,X(n))→ Hn+1(X,X(n+1)).

But by Proposition 4, the group Hn+1(X,X(n+1)) is trivial, concluding the proof. �

Theorem 10. (Singular and cellular homology are isomorphic.)
Let X be a CW complex. Then there is an isomorphism Hn(X) ∼= Hcell

n (X), n ≥ 0, which is natural
with respect to cellular maps.

Proof. Let us begin by identifying the cellular cycles, i.e., the kernel of the cellular boundary
operator,

Zcell
n (X) = ker(Hn(X(n), X(n−1))→ Hn−1(X(n−1), X(n−2))).

By definition, this boundary operator factors as

Hn(X(n), X(n−1))→ Hn−1(X(n−1))→ Hn−1(X(n−1), X(n−2)).

But the second map in this factorization is injective as one easily checks using the long exact
homology sequence of the pair (X(n−1), X(n−2)) together with the fact that Hn−1(X(n−2)) vanishes.
This implies that Zcell

n (X) is simply the kernel ofHn(X(n), X(n−1))→ Hn−1(X(n−1)). If we consider
the long exact homology sequence of (X(n), X(n−1)), then the interesting part reads as

Hn(X(n−1))→ Hn(X(n))→ Hn(X(n), X(n−1))→ Hn−1(X(n−1)).

Using that Hn(X(n−1)) is trivial, we conclude that there is a canonical isomorphism

Hn(X(n))
∼=→ Zcell

n (X),

and that this isomorphism is induced by the map Hn(X(n))→ Hn(X(n), X(n−1)).
Let us now describe the cellular boundaries, i.e., the image of the cellular boundary operator,

Bcell
n (X) = im(Hn+1(X(n+1), X(n))→ Hn(X(n), X(n−1))).

Again, by definition this map is Hn+1(X(n+1), X(n)) → Hn(X(n)) → Hn(X(n), X(n−1)). By the
first part of this proof, we know that Hcell

n (X) is canonically isomorphic to the cokernel of the first
map Hn+1(X(n+1), X(n)) → Hn(X(n)), the connecting homomorphism of the pair (X(n+1), X(n)).
Recall that these connecting homomorphisms are natural with respect to maps of pairs, hence
applied to the map (X(n+1), X(n))→ (X,X(n)) this yields the following commutative diagram

Hn+1(X(n+1), X(n)) //

��

Hn(X(n))

=

��

Hn+1(X,X(n)) // Hn(X(n)) // Hn(X) // Hn(X,X(n)),

in which the lower row is part of the long exact sequence of the pair (X,X(n)). By Lemma 1, the
vertical map on the left is surjective, and Hcell

n (X) is thus canonically isomorphic to the cokernel of
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Hn+1(X,X(n)) → Hn(X(n)). But since Hn(X,X(n)) vanishes, the above exact sequence allows us
to conclude that Hcell

n (X) is isomorphic to Hn(X). It follows from this proof that the isomorphism
is compatible with cellular maps. �


