
LECTURE 12: THE DEGREE OF A MAP AND THE CELLULAR

BOUNDARIES

In this lecture we will study the (homological) degree of self-maps of spheres, a notion which
generalizes the usual degree of a polynomial. We will study many examples, establish basic proper-
ties of the degree, and discuss some of the typical applications. We will also see how the boundary
operator of the cellular chain complex of a space can be defined in terms of the degrees of self-maps
of the spheres.

1. Degrees of maps between spheres

Let us recall from Lecture 6 that for each n ≥ 1 we have isomorphisms

Hk(Dn, Sn−1) ∼= H̃k(Sn) ∼= Hk(Sn, ∗) ∼=
{

Z , k = n
0 , otherwise.

Generators of the respective free abelian groups of rank one are fundamental classes or orientation
classes. Note that these are well-defined up to a sign and we will now make coherent choices which
will then be denoted by

[Dn, Sn−1] ∈ Hn(Dn, Sn−1), [Sn] ∈ H̃n(Sn) or [Sn] ∈ Hn(Sn, ∗)

respectively. Now, the n-sphere is obtained by gluing the ‘north’ hemisphere Dn
N and the ‘south’

hemisphere Dn
S along their common boundary (the ‘equator’). Both hemispheres are just copies of

the unit ball Dn and as such homeomorphic to ∆n. To be more specific, we take the homeomorphism
σ : ∆n → Dn which is essentially given by a rescaling: Dn is homeomorphic by a translation and a
rescaling to a disc of dimension n centered at the barycenter of ∆n and with the radius chosen such
that all vertices of ∆n lie on the boundary of that disc; given this disc then we choose σ to be just
the obvious homeomorphism given by rescaling. Using these homeomorphisms we obtain singular
n-simplices

σN : ∆n σ→ Dn ∼= Dn
N
⊂→ Sn and σS : ∆n σ→ Dn ∼= Dn

S
⊂→ Sn,

where the undecorated homeomorphisms are obtained by projection into Rn × {0}. One can check
that the formal difference zn = σS − σN ∈ Zn(Sn) is a cycle which actually represents a gen-

erator [Sn] ∈ H̃n(Sn). Under the above isomorphisms this also defines the fundamental classes
[Dn, Sn−1] ∈ Hn(Dn, Sn−1) and [Sn] ∈ Hn(Sn, ∗).

Recall from Lecture 2 the definition of the Hurewicz homomorphism: for every pointed space
(X,x0) there is a natural group homomorphism h : π1(X,x0) → H1(X). Given a homotopy class
α ∈ π1(X,x0) represented by a loop γ : S1 → X, h(α) ∈ H1(X) is the well-defined homology class
represented by the cycle

γ ◦ e : ∆1 → ∆1/∂∆1 ∼= S1 → X

where e : ∆1 → ∆1/∂∆1 denotes the quotient map. The fundamental class [S1] which we con-
structed above boils down to endowing S1 with the ‘usual’ counter-clockwise orientation. The
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quotient map e : ∆1 → S1 can be chosen to be the concatenation e = σS ∗ σ−1
N . Considering e as a

1-cycle in S1 and using Lemma 3 of Lecture 2 we see that e is homologous to z1:

e = σS ∗ σ−1
N ∼ σS + σ−1

N ∼ σS − σN = z1

Thus, the Hurewicz homomorphism associated to a pointed space (X,x0) is given by

h : π1(X,x0)→ H1(X) : α 7→ α∗([S
1])

where α∗ : H1(S1) → H1(X) denotes the induced map in homology. Of course, the homotopy
invariance of singular homology motivated us to write α∗ (no matter which representing loop we
choose we get the same map in homology!).

This description of the Hurewicz homomorphism suggests an extension to higher dimensions.
Given a pointed homotopy class α of maps (Sn, ∗)→ (X,x0), we obtain the homology class

α∗([S
n]) ∈ Hn(X).

In order to give a precise definition of this higher dimensional Hurewicz homomorphism, one has
first to introduce higher dimensional analogues of the fundamental group. This is done in any
standard course on Homotopy Theory, and the thusly defined Hurewicz homomorphisms do play
an important role.

Definition 1. Let f : Sn → Sn be a map. The unique integer deg(f) ∈ Z such that

f∗([S
n]) = deg(f) · [Sn] ∈ H̃n(Sn)

is called the degree of f : Sn → Sn.

In this definition we used of course that H̃n(Sn) ∼= Z so that every self-map of H̃n(Sn) is given
by multiplication by an integer. Note that the definition of the degree is independent of the actual
choice of fundamental classes: a different choice would amount to replacing [Sn] by −[Sn] and hence
would give rise to the same value for deg(f).

Lemma 2. (1) If f, g : Sn → Sn are homotopic, then deg(f) = deg(g).
(2) For maps g, f : Sn → Sn we have deg(g ◦ f) = deg(g) deg(f) and deg(idSn) = 1.

Proof. This is immediate from the definition. �

The second statement of this lemma is referred to by saying that the degree is multiplicative.

Example 3. (1) Let f : S1 → S1 : (x0, x1) = (−x0, x1) be the reflection in the axis x0 = 0.
Then deg(f) = −1. One way to see this is as follows. Let σW , σE : ∆1 → S1 be paths
from the ‘south pole’ to the ‘north pole’ in the clockwise and the counterclockwise sense
respectively. Obviously σW − σE is a cycle and it can be checked (using a minor variant of
Lemma 4 of Lecture 2: see the exercises) that

[σW − σE ] = −[S1] ∈ H1(S1).

In particular, we can use [σW − σE ] to calculate degrees. Since f∗([σW − σE ]) = [σE − σW ]
we deduce deg(f) = −1. It follows that a map S1 → S1 given by a reflection in an arbitrary
line through the origin has degree −1.

(2) Let a : S1 → S1 : (x0, x1) 7→ (−x0,−x1) be the antipodal map. Then deg(a) = 1. This
follows from the previous example and the multiplicativity of the degree since the antipodal
map is the composition of two reflections.

(3) Let τ : S1 → S1 be given by τ(x0, x1) = (x1, x0). Then deg(τ) = −1. Indeed, τ is a
reflection in a line.
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In order to extend these examples to higher dimensions, let us recall that we can construct Sn+1

as the suspension of Sn,

Sn+1 ∼= S(Sn).

If we write Sn = {(x0, . . . , xn) ∈ Rn+1 |
∑
x2
i = 1} then Sn+1 = S(Sn) is homeomorphic to the

quotient of Sn× [−1, 1] obtained by identifying all (x0, . . . , xn, 1) to a point N , the north pole, and
all (x0, . . . , xn,−1) to a point S, the south pole. The homeomorphism is induced by the map

Sn × [−1, 1]→ Sn+1 : ((x0, . . . , xn), t) 7→ (x′0, . . . , x
′
n, t)

where x′i =
√

1− t2 · xi. Under this isomorphism, it is clear that the suspension of f : Sn → Sn in
the standard coordinates for Sn+1 is

Sf : Sn+1 → Sn+1 : (x0, . . . , xn+1) 7→ (rf(r−1x0, . . . , r
−1xn), xn+1)

where r =
√

1− x2
n+1. In particular, Sf restricts to f on the ‘meridian’ xn+1 = 0.

Proposition 4. For any f : Sn → Sn and the associated Sf : Sn+1 → Sn+1, we have an equality
of degrees deg(Sf) = deg(f).

Proof. Write Sn+1 = S(Sn) = A ∪ B for the northern and southern hemispheres A and B (given
by xn+1 ≥ 0, resp. xn+1 ≤ 0). Then A ∩ B = Sn is the meridian. Since A and B are contractible,
the Mayer-Vietoris sequence (for slight extensions to open neighborhoods of A and B which are
homotopy equivalent to A and B) gives:

Hn+1(Sn+1)
∆
∼=

//

(Sf)∗

��

Hn(Sn)

f∗

��

Hn+1(Sn+1)
∆

∼= // Hn(Sn)

The square commutes by naturality of the Mayer-Vietoris sequence. From this, the statement follows
by tracing the generator [Sn+1] through this diagram. In more detail, since ∆ is an isomorphism,
we have ∆([Sn+1]) = ε · [Sn] with ε ∈ {−1,+1}, and hence

(f∗ ◦∆)([Sn+1]) = f∗(ε · [Sn]) = ε · f∗([Sn]) = ε · deg(f) · [Sn].

Similarly, if we trace [Sn+1] through the lower left corner, we calculate

(∆ ◦ (Sf)∗)([S
n+1]) = ∆(deg(Sf) · [Sn+1]) = deg(Sf) ·∆([Sn+1]) = deg(Sf) · ε · [Sn].

Comparing these two expressions concludes the proof. �

This proof is a further instance of a calculation showing that naturality of certain long exact
sequences is not just a technical issue but actually useful in calculations. With this preparation we
now obtain the following higher-dimensional versions of Example 3.

Proposition 5. (1) The degree of the map f : Sn → Sn : (x0, x1, . . . , xn) 7→ (−x0, x1, . . . , xn)
is −1. More generally, the degree of the any reflection at an arbitrary hyperplane through
the origin is −1.

(2) Let f : Sn → Sn be given by f(x0, x1, . . . , xn) = (ε0x0, ε1x1, . . . , εnxn) for some signs εi.
Then deg(f) = ε0 · . . . · εn. In particular, if f = a is the antipodal map (thus all εi are −1)
then deg(a) = (−1)n+1.

(3) Let f : Sn → Sn be given by f(x0, x1, . . . , xn) = (x1, x0, x2, x3, . . . , xn). Then deg(f) = −1.
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(4) Let f : Sn → Sn : (x0, . . . , xn) 7→ (xτ(0), . . . , xτ(n)) for some permutation τ ∈ Σn+1. Then
deg(f) = sg(f) is the signature of the permutation τ .

Proof. Part (1) follows Example 3.(1) and Proposition 4 together with the observation that all
reflections at hyperplanes are homotopic. The remaining parts are an immediate consequence
of (1) and the multiplicativity of the degree (to obtain (4), write an arbitrary permutation as a
sequence of transpositions). �

Lemma 6. Let f, g : X → Sn ⊆ Rn+1. If f(x) 6= −g(x) for all x ∈ X then f ' g.

Proof. Let H : X × [0, 1]→ Rn+1 be given by H(x, t) = (1− t)f(x) + tg(x). Then for a fixed x, the
partial map H(x,−) : [0, 1]→ Rn+1 is the line from f(x) to g(x). By assumption, this line does not
pass through the origin, so we can normalize H to obtain the map

K : X × [0, 1]→ Sn : (x, t) 7→ H(x, t)/||H(x, t)||,

a well-defined homotopy from f to g. �

Corollary 7. Let f : Sn → Sn.

(1) If f has no fixed point, then deg(f) = (−1)n+1.
(2) If f has no antipodal point (a point x with f(x) = −x), then deg(f) = 1.

Proof. For the first statement, if f(x) 6= x for all x, then f is homotopic to the antipodal map a
defined by a(x) = −x, according to the lemma. But since the degree is homotopy-invariant we can
conclude by Proposition 5.(2). The proof of the second statement is similar, since by the lemma,
f(x) 6= −x for all x implies that f is homotopic to the identity. �

Corollary 8. If n is even, then any f : Sn → Sn has a fixed point or an antipodal point.

Proof. If f has neither a fixed point nor an antipodal point, then, by the previous corollary, the
degree of f has to be −1 and 1 which is impossible. �

Corollary 9. Let n ∈ N be even, then any vector field v on Sn has a zero.

Proof. Such a vector field assigns to any x ∈ Sn a vector v(x) based at x and lying in the hyperplane
tangent to Sn ⊆ Rn+1 at x. If v(x) 6= 0 for all x, then the map v̄ = v/||v|| : Sn → Sn (obtained by
normalizing the vector field and considering the vectors as attached to the origin of Rn+1) is such
that each v̄(x) is a unit vector parallel to the hyperplane tangent to Sn at x. But this contradicts
the previous corollary, since v̄ would have neither a fixed point nor an antipodal point. �

For n = 2 this is sometimes referred to as the hairy ball theorem: you cannot comb a hairy
ball without a parting. The corollary tells us that there are no no-where vanishing vector fields on
even-dimensional spheres. Thus one might wonder what happens for odd-dimensional spheres. It
is easy to construct a no-where vanishing vector field on S2n+1,

v(x0, x1, . . . x2n, x2n+1) = (−x1, x0,−x2, x3, . . . ,−x2n+1, x2n).

For a long time it was an open problem in algebraic topology to determine the maximal number of
everywhere linearly independent vector field on spheres, which was finally solved by Adams using
fairly advanced techniques. Using singular homology we managed to obtain first partial results in
that direction.
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2. The cellular boundary operator

If we want to be able to calculate the cellular homology of CW complexes which have cells
in subsequent dimensions, then it is helpful to have a more geometric description of the cellular
boundary homomorphism. Such a description can be obtained by means of the homological degrees
of self-maps of the spheres, as discussed in Section 1. Let us recall that the cellular chain groups
are free abelian groups, i.e., we have isomorphisms

⊕
Jn

Z ∼= Ccell
n (X) where Jn denotes the index

set for the n-cells of X. Under these isomorphisms, the cellular boundary maps hence correspond
to homomorphisms ⊕

Jn

Z ∼= Ccell
n (X)

∂cell
n→ Ccell

n−1(X) ∼=
⊕
Jn−1

Z.

This composition sends every n-cell σ of X to a sum

σ 7→ Στ∈Jn−1
zσ,ττ

for suitable integer coefficients zσ,τ . To conclude the description of this assignment we thus have to
specify these coefficients. For that purpose, let us fix an n-cell σ and an (n− 1)-cell τ . The n-cell σ
comes with an attaching map

Sn−1

��

χσ // X(n−1)

��

Dn // X(n).

Now, associated to this attaching map we can consider the following composition

fσ,τ : Sn−1 χσ→ X(n−1) → X(n−1)/X(n−2) ∼=
∨
Jn−1

Sn−1 → Sn−1

in which the last arrow maps all copies of the spheres constantly to the base point except the one
belonging to the index τ ∈ Jn−1 on which the map is the identity. Thus, for each such pair of cells
we obtain a pointed self-map fσ,τ of Sn−1 and its degree turns out to coincide with zσ,τ . Note that
since Sn−1 is compact it follows that for any n-cell σ there are only finitely many (n − 1)-cells τ
such that fσ,τ is not the constant map. Thus, the sums in the next proposition are well-defined.
Working out the details, by using the long exact sequence of the homology of the pair, one can
easily verify the following result:

Proposition 10. Under the above isomorphisms the cellular boundary homomorphism is given by
the map ⊕

Jn

Z→
⊕
Jn−1

Z : σ 7→ Στ∈Jn−1
deg(fσ,τ )τ.

Hence in the context of a specific CW complex in which we happen to be able to calculate all the
degrees showing up in the proposition, the problem of calculating the homology of the CW complex
is reduced to a purely algebraic problem.

Let us give a brief discussion the example of the real projective spaces RPn, n ≥ 0. We begin by
recalling that RPn is obtained from Sn by identifying antipodal points. Hence, there are quotient
maps p = pn : Sn → RPn. The real projective space RPn can be endowed with a CW structure such
that there is a unique k-cell in each dimension 0 ≤ k ≤ n. One can check that the cellular boundary
homomorphism ∂ : Ccell

k (RPn)→ Ccell
k−1(RPn), 0 < k ≤ n is zero if k is odd and multiplication by 2

if k is even. From this one can derive the following calculation.
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Example 11. The homology of an even-dimensional real projective space is given by

Hk(RP 2m) ∼=

 Z , k = 0,
Z/2Z , k odd, 0 < k < 2m
0 , otherwise.

In particular, the top-dimensional homology group H2m(RP 2m) is zero. The homology of odd-
dimensional real projective spaces looks differently and is given by

Hk(RP 2m+1) ∼=

 Z , k = 0, 2m+ 1
Z/2Z , k odd, 0 < k < 2m+ 1
0 , otherwise.

In this case, the top-dimensional homology group is again simply a copy of the integers. Any
generator of this group is called fundamental class of RP 2m+1.

Note that these are our first examples of spaces in which the homology groups have non-trivial
torsion elements. This should not be considered as something exotic but instead it is a general
phenomenon. We conclude this lecture with a short outlook. There is an axiomatic approach to
homology which is due to Eilenberg and Steenrod. By definition a homology theory consists of
functors hn, n ≥ 0, from the category of pairs of topological spaces to abelian groups together with
natural transformations (called connecting homomorphisms)

δ : hn(X,A)→ hn−1(A, ∅), n ≥ 1.

This data has to satisfy the long exact sequence axiom, the homotopy axiom, the excision axiom,
and the dimension axiom. We let you guess the precise form of the first three axioms, but we want
to be specific about the dimension axiom. It asks that hk(∗, ∅) is trivial in positive dimensions.
Thus, the only possibly non-trivial homology group of the point sits in degree zero and that group
h0(∗, ∅) is referred to as the group of coefficients of the homology theory. So, parts of this course
can be summarized by saying that singular homology theory defines a homology theory in the sense
of Eilenberg-Steenrod with integral coefficients. In the sequel to this course we study closely related
algebraic invariants of spaces, namely homology groups with coefficients and cohomology groups.


