## TOPOLOGICAL K-THEORY, EXERCISE SHEET 3, 19.02.2015

**Exercise 1.** Let  $\xi \colon E \to X$  be a complex vector bundle over X of rank n. Define the *frame bundle* F(E) of  $\xi$  to be the subspace of the Hom-bundle  $\operatorname{Hom}(X \times \mathbb{C}^n, E)$  consisting of those linear maps  $\mathbb{C}^n \to E_x$  that are linear isomorphisms. Let  $\pi \colon F(E) \to X$  be the canonical projection to X.

- (1) There is a canonical (fiberwise) right action of  $GL(n,\mathbb{C})$  on the frame bundle F(E): an element  $g \in GL(n,\mathbb{C})$  acts on a linear isomorphism  $f:\mathbb{C}^n \to E_x$  by precomposition. Show that this action turns the bundle  $F(E) \to X$  into a principal  $GL(n,\mathbb{C})$ -bundle.
- (2) Conversely, let  $\pi: P \to X$  be a principal  $\mathrm{GL}(n,\mathbb{C})$ -bundle. Let  $P \times_{\mathrm{GL}(n,\mathbb{C})} \mathbb{C}^n$  be the quotient of  $P \times \mathbb{C}^n$  by the relation  $(p \cdot g, v) \sim (p, g \cdot v)$ . Show that the canonical map

$$P \times_{\mathrm{GL}(n,\mathbb{C})} \mathbb{C}^n \longrightarrow X; \qquad (p,v) \longmapsto \pi(p)$$

has the structure of a vector bundle over X.

## Exercise 2.

- (1) Let  $E \to X$  be a (real) vector bundle over a compact Hausdorff space. Show that there exists a vector bundle  $F \to X$  with the property that  $E \oplus F$  is a trivial vector bundle over X.
- (2) We say a (real) vector bundle over a space X admits a (stable) n-framing if it can be realized as a subbundle of the trivial bundle  $X \times \mathbb{R}^n \to X$ . If a vector bundle  $E \to X$  of rank k admits an n-framing, show that there is a map  $f: X \to \operatorname{Gr}_k(\mathbb{R}^n)$  such that E is isomorphic to the pullback along f of the canonical k-plane bundle over  $\operatorname{Gr}_k(\mathbb{R}^n)$ .

**Exercise 3.** The infinite Stiefel manifold  $V_k(\mathbb{R}^{\infty})$  is the union of the sequence of inclusions

$$V_k(\mathbb{R}^k) \longrightarrow V_k(\mathbb{R}^{k+1}) \longrightarrow V_k(\mathbb{R}^{k+2}) \longrightarrow \cdots$$

equipped with the weak topology.

(1) Show that  $V_k(\mathbb{R}^{\infty})$  is contractible. Proceed as follows: consider the map  $\mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$  sending a vector  $(v_1, v_2, ....)$  to the vector  $(0, 0, ..., 0, v_1, v_2, ...)$  starting with k zeros. Show that this induces a homotopy equivalence between the identity on  $V_k(\mathbb{R}^{\infty})$  and the map f that sends a k-tuple of linearly independent vectors to the k-tuple of linearly independent vectors with k zeros added as first coordinates.

Next, show that the map f is homotopic to the constant map with value  $(e_1, ..., e_k)$  (where  $e_i$  has 1 as its i-th coordinate and zeros as all other coordinates).

- (2) Recall from the course on homotopy theory that each quotient map  $V_k(\mathbb{R}^n) \to \operatorname{Gr}_k(\mathbb{R}^n)$  is a principal  $\operatorname{GL}(n,\mathbb{R})$ -bundle, where  $\operatorname{GL}(n,\mathbb{R})$ . Conclude from this that  $V_k(\mathbb{R}^\infty) \to \operatorname{Gr}_k(\mathbb{R}^\infty)$  is a principal  $\operatorname{GL}(n,\mathbb{R})$ -bundle.
- (3) Show that  $\pi_0(\operatorname{Gr}_k(\mathbb{R}^{\infty}))$  is trivial and that

$$\pi_i(\operatorname{Gr}_k(\mathbb{R}^\infty)) \simeq \pi_{i-1}(\operatorname{GL}(n,\mathbb{R}))$$

for all  $i \geq 1$ .