TOPOLOGICAL K-THEORY, EXERCISE SHEET 4, 26.02.2015

Exercise 1. Show that (complex/real) K-theory defines a functor $K: \mathsf{CTop}^{\mathrm{op}} \to \mathsf{Ring}$.

Exercise 2. Recall that we can identify $\mathbb{R}P^n$ with the quotient of S^n by the relation $x \sim -x$. Define the (total space of the) tangent bundle $T\mathbb{R}P^n$ of $\mathbb{R}P^n$ as the quotient of the space

$$TS^n = \left\{ (x, v) \in S^n \times \mathbb{R}^{n+1} : v \perp x \right\}$$

by the relation $(x, v) \sim (-x, -v)$.

- (1) Show that the canonical projection $\tau: T\mathbb{R}P^n \to \mathbb{R}P^n; [(x,v)] \mapsto [x]$ gives a vector bundle over $\mathbb{R}P^n$.
- (2) Let γ be the canonical line bundle over $\mathbb{R}P^n$ and let γ^{\perp} be the bundle

$$\left\{ (l,v) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} : v \perp l \right\}$$

Show that there is an isomorphism of vector bundles over $\mathbb{R}P^n$

$$\tau \xrightarrow{\simeq} \operatorname{Hom}(\gamma, \gamma^{\perp}).$$

Hint: by the 'calculus of vector bundles', giving a map $\tau \to \text{Hom}(\gamma, \gamma^{\perp})$ is equivalent to giving a map $\phi: \tau \otimes \gamma \to \gamma^{\perp}$. Let [x] be the line through the unit vector x. Given a vector $\lambda \cdot x$ in [x] and a vector v orthogonal to x, define

$$\phi(v \otimes \lambda \cdot x) = \lambda \cdot v \in [x]^{\perp}$$

Check that this is a well defined map of vector bundles, which induces an isomorphism between τ and Hom (γ, γ^{\perp}) .

(3) Use (2) to prove that $\tau \oplus \mathbb{R} \simeq \mathbb{R}^{n+1}$ is a trivial vector bundle of rank n+1.

Exercise 3. Let X be a paracompact Hausdorff space and let $E \to X$ be a vector bundle over X.

(1) Let $A \subseteq X$ be a closed subset of X over which E admits a section s. Shows that this section extends to a section of E over the whole space X.

Hint: let $U_i \subseteq X$ be opens such that the $A \cap U_i$ cover A and such that E is trivial over U_i . Over each $U_i \cap A$, we can identify the section s with a \mathbb{R}^n -valued function. But on a paracompact Hausdorff space (such as U_i) we can always extend real-valued functions from a closed subset to the whole space (Tietze's extension theorem).

Use this to extend the section $s|_{U_i \cap A}$ to a section of E over U_i . Finally, use a partition of unity to construct from these local extensions a global extension of s to the whole of X.

(2) Let $F \to X$ be another vector bundle over X. Suppose that there is a closed subset $A \subseteq X$ over which there exists an isomorphism of vector bundles $\phi: F|_A \to E|_A$. Show that there is an open $U \subseteq X$ containing A, over which there exists an isomorphism of vector bundles

$$\tilde{\phi} \colon F\big|_U \longrightarrow E\big|_U$$

which extends the isomorphism ϕ we already had on A.

Hint: ϕ determines a section of Hom(F, E) over A, which takes values in linear isomorphisms.