TOPOLOGICAL K-THEORY, EXERCISE SHEET 6, 12.03.2015

Exercise 1.

(1) Let $f, g: (X, x) \to (Y, y)$ be two pointed homotopic maps between pointed compact spaces. Show that

$$f^* = g^* \colon \widetilde{K}^{-n}(Y) \to \widetilde{K}^{-n}(X)$$

for all $n \ge 0$. Conclude that the reduced K-groups define functors

$$\widetilde{K}^{-n}(-) \colon \mathsf{Ho}(\mathsf{Top}_*)^{\mathrm{op}} \longrightarrow \mathsf{Ab}$$

where Top_* is the category of pointed compact Hausdorff spaces.

Hint: at some point you may need to use that the functor $(-) \times I$ preserves quotients, i.e. if $X/_{\sim}$ is a Hausdorff quotient of a compact Hausdorff space, then $X/_{\sim} \times I$ is homeomorphic to $X \times I/_{\sim}$, where we identify $(x, t) \sim (y, t)$ for all $x \sim y$.

(2) Similarly, show that two homotopic maps between compact spaces induce isomorphisms on K-groups (in all non-positive degrees). Conclude that the K-groups define functors

$$K^{-n}(-) \colon \mathsf{Ho}(\mathsf{Top})^{\mathrm{op}} \longrightarrow \mathsf{Ab}$$

where Top is the category of compact Hausdorff spaces.

(3) Finally, prove that the relative K-groups are invariant under homotopies of pairs and conclude that they define functors

$$K(-,-)\colon \mathsf{Ho}(\mathsf{Top}^2)^{\mathrm{op}} \longrightarrow \mathsf{Ab}$$

where Top^2 is the category of pairs (X, A) of spaces, where X is compact Hausdorff and A is closed in X.

Exercise 2. Recall that a clutching function $f: S^k \to \operatorname{GL}(n, \mathbb{C})$ determines a vector bundle E_f of rank n over the suspension $\Sigma S^k \simeq S^{k+1}$. Let $f: S^k \to \operatorname{GL}(n, \mathbb{C})$ and $g: S^k \to \operatorname{GL}(m, \mathbb{C})$ be two maps.

(1) Show that the direct sum $E_f \oplus E_g$ is isomorphic to the vector bundle associated to the clutching function

$$S^k \longrightarrow \operatorname{GL}(n+m,\mathbb{C}); \ x \longmapsto \begin{pmatrix} f(x) & 0\\ 0 & g(x) \end{pmatrix}$$

(2) Suppose that n = 1, so that the clutching function f takes values in $GL(1, \mathbb{C}) = \mathbb{C} - \{0\}$. Show that the tensor product $E_f \otimes E_g$ is isomorphic to the rank m vector bundle associated to the clutching function

$$S^k \longrightarrow \operatorname{GL}(m, \mathbb{C}); \quad x \longmapsto f(x) \cdot g(x)$$

Exercise 3 (Algebraic Mayer-Vietoris sequence). Consider the following commuting diagram of abelian groups in which the rows are exact sequences and all the maps f'_n are isomorphisms:

Show that there is an exact sequence

$$\cdots \longrightarrow C_n \xrightarrow{(i_n, f_n)} C''_n \oplus D_n \xrightarrow{f''_n - j_n} D''_n \xrightarrow{\Delta_n} C_{n+1} \longrightarrow \cdots$$

where $\Delta_n = p_{n+1} \circ f'_{n+1}^{-1} \circ \delta'_n$.

Exercise 4 (Mayer-Vietoris sequence for K-theory). Let X be a compact space Hausdorff space and let $i_A: A \subseteq X$ and $i_B: B \subseteq X$ be two closed subspaces of X such that $X = A \cup B$. Show that there is a long exact sequence of the form

$$\cdots \longrightarrow K^{i-1}(A \cap B) \xrightarrow{\delta} K^{i}(X) \xrightarrow{(i_{A}^{*}, i_{B}^{*})} K^{i}(A) \oplus K^{i}(B) \longrightarrow K^{i}(A \cap B) \longrightarrow K^{i+1}(X) \longrightarrow \cdots$$

where the map $K^i(A) \oplus K^i(B)$ sends (α, β) to $j_A^* \alpha - j_B^* \beta$, with $j_A \colon A \cap B \to A$ and $j_B \colon A \cap B \to B$ the natural inclusions.

Hint: use that the map $B/A \cap B \to X/A$ is a continuous bijection between compact Hausdorff spaces.