
LECTURE 6: K-THEORY AS A COHOMOLOGY THEORY

In this lecture we will prove that K-theory is a generalized cohomology theory.
For this we will need to use the Bott periodicity theorem in order to define the
positive K-groups. A detailed proof of Bott periodicity will be given in the third
part of the course.

6.1. Eilenberg–Steenrod axioms for cohomology

Eilenberg and Steenrod introduced in 1945 an axiomatic approach to cohomol-
ogy (and homology) theory by abstracting the fundamental properties that any
cohomology theory should satisfy.

6.1.1. A cohomology theory h∗ on Top2 (or any nice subcategory like compact pairs,
pairs of CW-complexes, . . .) is a collection of contravariant functors

hn : Top2 −→ Ab, n ∈ Z,

where Ab denotes the category of abelian groups, and natural transformations

δn : hn ◦R −→ hn+1,

where R : Top2 → Top2 is the functor that sends (X,A) to (A, ∅) and f to f |A,
satisfying the following axioms:

(i) Homotopy invariance. If f ' g, then hn(f) = hn(g) for every n in Z.
(ii) Excision. For every pair (X,A) and U ⊆ A such that the closure U is

contained in the interior Ao, the inclusion (X \U,A \U)→ (X,A) induces
and isomorphism

hn(X \ U,A \ U) ∼= hn(X,A), for every n ∈ Z.

(iii) Exactness. For every par (X,A), consider the inclusions i : A → X and
j : (X, ∅)→ (X,A). Then there is a long exact sequence

· · · −→ hn−1(A)
δn−1

−→ hn(X,A)
j∗−→ hn(X)

i∗−→
i∗−→ hn(A)

δn−→ hn+1(X,A)
j∗−→ hn+1(X)

i∗−→ hn+1(A) −→ · · ·

If moreover h∗ satisfies the dimension axiom, that is, hn(∗) = 0 for every n in Z,
then h∗ is called an ordinary cohomology theory ; otherwise it is called an generalized
or extraordinary cohomology theory.

For example, singular, cellular, de Rham and Čech cohomology are all ordinary
cohomology theories. They all coincide on finite CW-pairs. However, K-theory will
be a generalized cohomology theory.

6.1.2. A reduced cohomology theory h̃∗ on Top∗ is a collection of contravariant
functors

h̃n : Top∗ −→ Ab, n ∈ Z

and natural equivalences h̃n ◦ Σ
∼=→ h̃n+1 satisfying the following axioms:

(i) Homotopy invariance. If f ' g, then h̃n(f) = h̃n(g) for every n in Z.
1
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(ii) Exactness. For every pair (X,A) in Top2 and A in Top∗ there is an exact
sequence

h̃n(X ∪ CA)
j∗−→ h̃n(X)

i∗−→ h̃n(A), for every n ∈ Z,

where i : A→ X and j : X → X ∪ CA denote the inclusions.

Theorem 6.1.3. K-theory and reduced K-theory are a generalized cohomology
theory and a reduced cohomology theory, respectively.

Proof. We have already defined the negative K-groups (see Definition 5.2.1). To
define the positive ones, we have to use the Bott periodicity theorem. This theorem
states that there is an isomorphism

β : K̃−n(X)
∼=−→ K̃−n−2(X), for all n ≥ 0.

Since, for a space X in Top we have that K−n(X) = K̃−n(X+) there is also an
isomorphism K−n(X) ∼= K−n−2(X) in the unreduced case.

Thus, for a space X in Top∗, we can define

K̃2n(X) = K̃0(X) and K̃2n+1(X) = K̃−1(X) for every n in Z.

And similarly, for a space X in Top, we define

K2n(X) = K0(X) and K2n+1(X) = K−1(X) for every n in Z.

This allows to extend all the results about exact sequences from the previous lec-
tures to all the integers. In particular we can extend the long exact sequence of
Corollary 5.3.6 to an infinite long exact sequence also on the right.

Homotopy invariance for K∗ and K̃∗ follows from the fact that if we have a vector
bundle and we pullback along homotopic maps, then we get isomorphic bundles,
and is left as an exercise.

Exactness for K∗ is precisely Corollary 5.3.6 and for K̃∗ it follows from Corol-
lary 5.3.3.

The excision axiom is essentially the fact that Kn(X,A) = K̃(X/A). To prove
it, let X = X1 ∪X2 and also X = Xo

1 ∪Xo
2 . Then X1/X1 ∩X2

∼= X/X2 and thus

Kn(X1, X1 ∩X2) = K̃n(X1/X1 ∩X2) ∼= K̃n(X/X2) = Kn(X,X2).

Now, let X1 = X \ U and X2 = A and observe that

(X \ U)o ∪Ao = (X \ U) ∪Ao ⊇ (X \Ao) ∪Ao = X.

So, we can apply the previous result to get excision. �

Remark 6.1.4. Due to Bott periodicity we have only two different K-groups K0 and
K1. So, alternatively, the long exact sequence of Corollary 5.3.6 can be written as
an exact sequence of six terms

K0(X,A) // K0(X) // K0(A)

��

K1(A)

OO

K1(X)oo K1(X,A).oo

Corollary 6.1.5. Let X and Y in Top∗. Then K̃−n(X ∨Y ) ∼= K̃−n(X)⊕K̃−n(Y )
for every n ≥ 0.
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Proof. We have (pointed) inclusions i1 : X → X ∨ Y and i2 : Y → X ∨ Y and
surjections r1 : X ∨ Y → X and r2 : Y → X ∨ Y . They satisfy that r1i1 = idX and

r2i2 = idY . So taking K̃−n we have maps

K̃−n(X)⊕ K̃−n(Y )
r∗1+r

∗
2−→ K̃−n(X ∨ Y )

(i∗1 ,i
∗
2)−→ K̃−n(X)⊕ K̃−n(Y )

and (i∗1, i
∗
2) ◦ (r∗1 + r∗2) = id. This means that (i∗1, i

∗
2) is surjective.

To prove that it is also injective, let ξ ∈ ker(i∗1, i
∗
2). Then i∗1(ξ) = 0 and i∗2(ξ) = 0.

Consider the pair (X ∨ Y,X) and apply Corollary 5.3.5 to get an exact sequence

K−n(X ∨ Y,X) = K̃−n(X ∨ Y/X) ∼= K̃−n(Y )
r∗2−→ K̃−n(X ∨ Y )

i∗1−→ K̃−n(X).

Since ξ ∈ ker i∗1, there exists an element η ∈ K̃−n(Y ) such that r∗2(η) = ξ. But
η = i∗2r

∗
2(η) = i∗2(ξ) = 0. Hence η = 0 and so ξ = 0 too. �

Corollary 6.1.6. Let (X,A) in Top2 and A in Top∗. If A is contractible, then

K̃−n(X/A) ∼= K̃−n(X) for every n ≥ 0.

Proof. Use the long exact sequence of Corollary 5.3.5 and the fact that if A is

contractible, then ΣnA is also contractible, hence K̃−n(A) = 0 for every n ≥ 0. �

Corollary 6.1.7. Let X and Y in Top∗ and Y be a retract of X. Then

K̃−n(X) ∼= K−n(X,Y )⊕ K̃−n(Y )

for every n ≥ 0.

Proof. Since Y is a retract of X, there exists a map r : X → Y such that ri = idY ,
where i denotes the inclusion. This means that i∗r∗ = id and hence that i∗ in
injective. Thus, in the long exact sequence of Corollary 5.3.5 the map δ factors
through the zero map and therefore we have split short exact sequences

0 −→ K−n(X,Y )
j∗−→ K̃−n(X)

i∗−→ K̃−n(Y ) −→ 0,

since r∗ is a section. So K̃−n(X) ∼= K−n(X,Y )⊕ K̃−n(Y ). �

Remark 6.1.8. The same result is true in the unreduced case for X and Y in Top
and Y a retract of X. Namely,

K−n(X) ∼= K−n(X,Y )⊕K−n(Y )

for every n ≥ 0. It can be deduced from the previous case by replacing X and Y

by X+ and Y+, respectively, and using that K̃−n(X+) = K−n(X).

Corollary 6.1.9. Let X and Y in Top∗. Then the projection maps π1 : X×Y → X,
π2 : X × Y → Y and the quotient map q : X × Y → X × Y/X ∨ Y = X ∧ Y induce
an isomorphism

K̃−n(X × Y ) ∼= K̃−n(X ∧ Y )⊕ K̃−n(X)⊕ K̃−n(Y )

for every n ≥ 0.

Proof. Using the map X → X ×Y that sends x to (x, y0) and the projection π1 we
can see that X is a retract of X × Y . By Corollary 6.1.7 we have that

K̃−n(X × Y ) ∼= K−n(X × Y,X)⊕ K̃−n(X).
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Now, K−n(X × Y,X) = K̃−n(X × Y/X). But Y is a retract of X × Y/X, so
applying Corollary 6.1.7 again, we obtain

K̃−n(X × Y/X) ∼= K−n(X × Y/X, Y )⊕ K̃−n(Y ).

But K−n(X × Y/X, Y ) = K̃−n(X ∨ Y ) yielding the result. �

Remark 6.1.10. If we assume Bott periodicity, then all of the previous corollaries

hold for Kn and K̃n for n ∈ Z.

6.2. The external product for reduced K-theory

6.2.1. Let X and Y in Top∗ and consider the external product

K0(X)⊗K0(X) −→ K0(X × Y )
ξ ⊗ ξ′ 7−→ ξ ∗ ξ′ = π∗1(ξ) · π∗2(ξ′),

where π1 and π2 denote the projections. This external product is induced by the
tensor product of vector bundles

VectC(X)×VectC(Y ) −→ VectC(X × Y )
E ⊗ F 7−→ π∗1(E)⊗ π∗2(F ).

6.2.2. Now, let us see what happens if we restrict this external product to elements

in K̃0(X)⊗ K̃0(Y ). Recall that K̃0(X) = ker(K0(X)→ K0(x0)). Let ξ ∈ K̃0(X)

and ξ′ ∈ K̃0(Y ). Then from the following commutative diagram

K0({x0} × Y ) K0(X × Y )oo K0(X)
π∗
1oo

ss
K0(x0)

OO

it follows that π∗1(ξ) that lies in K0(X × Y ) restricts to zero in K0({x0} × Y ).
Similarly π∗2(ξ′) restricts to zero in K0(X ×{y0}). So, π∗1(ξ) ·π∗2(ξ′) restrict to zero
in K0(X ∨ Y ) and hence, it lies in the kernel of K0(X × Y ) → K0(∗) which is

K̃0(X × Y ). By Corollary 6.1.9 there is a split short exact sequence

0 −→ K̃0(X ∧ Y ) −→ K̃0(X × Y ) −→ K̃0(X)⊕ K̃0(Y ) ∼= K̃0(X ∨ Y ) −→ 0.

Since π∗1(ξ) · π∗2(ξ′) lies in K̃0(X × Y and is zero in K̃0(X × Y ) it lies in the kernel

of the third map in the above sequence, which is K̃0(X ∧ Y ). So we have defined
a map

(1) K̃0(X)⊗ K̃0(Y ) −→ K̃0(X ∧ Y ).

This map is, in fact the restriction of the exterior product on K0 as we can see in
the following diagram

K0(X)⊗K0(Y ) ∼= K̃0(X)⊗ K̃0(Y )⊕ K̃0(X)⊕ K̃0(Y )⊕ Z

����

K0(X × Y ) ∼= K̃0(X ∧ Y )⊕ K̃0(X)⊕ K̃0(Y )⊕ Z,

where the first isomorphism is obtained by using that K0(X) ∼= K̃0(X) ⊕ Z and
similarly for Y , and the isomorphism on the second row is obtained by using Corol-
lary 6.1.9.
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6.2.3. We can replace X by ΣnX and Y by ΣmY in (1) to obtain a pairing

K̃−n(X)⊗ K̃−m(Y ) −→ K̃−n−m(X ∧ Y ).

If X and Y are in Top, we can replace X by X+ and Y by Y+ in the previous
pairing to obtain a pairing

K−n(X)⊗K−m(Y ) −→ K−n−m(X ∧ Y ),

in the unreduced case.

6.3. Vector bundles on spheres and clutching functions

The only computation we have so far for the K-groups is K0(X) ∼= Z if X is a
contractible space. The next natural step is to consider spheres.

6.3.1. We can decompose the sphere Sk as the union of the upper and the lower
hemisphere. Since each hemisphere is contractible (it is homotopy equivalent to a
disk) every fiber bundle on Sk restricts to a trivial bundle on each of the hemi-
spheres. So a fiber bundle on Sk “should be determined” by a map from the
intersection of the two hemispheres to GLn(C).

Definition 6.3.2. A clutching function for Sk is a map f : Sk−1 → GLn(C), where
GLn(C) is the group of invertible n× n matrices with coefficients in C.

6.3.3. Every clutching function f : Sk−1 → GLn(C) gives rise to a vector bundle
Ef over Sk of rank n. We define

Ef = (D− × Cn) ∪Sk−1×Cn (D+ × Cn),

where D− = {(x1, . . . , xk+1) ∈ Sk | xk+1 ≤ 0} is the lower hemisphere, and
similarly, D+ = {(x1, . . . , xk+1) ∈ Sk | xk+1 ≥ 0} is the upper hemisphere. If
x ∈ Sk−1, then we identify (x, v) in D− × Cn with (x, f(x)v) in D+ × Cn. If f is
homotopic to g, then Ef ∼= Eg.

In fact, as we saw in the exercises, there is a bijection between homotopy classes
of clutching functions from a space X to GLn(C) and VectnC(ΣX). In the case of
spheres, this particularizes to the following result.

Proposition 6.3.4. There is an isomorphism VectnC(Sk) ∼= [Sk−1,GLn(C)] for
every n, k ≥ 1. �

Lemma 6.3.5. The group GLn(C) is path-connected for every n ≥ 1.

Proof. The case n = 1 is trivial since GL1(C) = C \ {0} ∼= R2 \ {0}, which is
path-connected. Let n ≥ 2 and let A ∈ GLn(C). We are going to show that A is
connected to the identity matrix by a path. Let B be the Jordan canonical form of
A, that is,

B =


J1 0

. . .

0 Jk

 , where Ji =

 λi 1 1
. . . 1

0 λi

 ,

and there exists and invertible matrix C such that A = CBC−1.
For each λi ∈ C, let γi : I → C be a path from λi to 1 not passing through the

origin. Let B(t) be matrix obtained from B by replacing λi by γi and multiplying
by (1− t) all the elements above the diagonal.
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Now define the path γ : I → GLn(C) by γ(t) = CB(t)C−1. This path satisfies
that γ(0) = CBC−1 = A and γ(1) = CC−1 = Id. �

Corollary 6.3.6. Every complex vector bundle over S1 is trivial. In particular,
K0(S1) ∼= Z.

Proof. By Proposition 6.3.4 we know that VectnC(S1) ∼= [S0,GLn(C)] consists of
one element only, since GLn(C) is path-connected by Lemma 6.3.5. �

Corollary 6.3.7. Every complex line bundle over Sk for k > 2 is trivial.

Proof. By Proposition 6.3.4 we know that Vect1C(Sk) ∼= [Sk−1,GL1(C)] ∼= [Sk−1, S1],
since GL1(C) ' U(1) = S1, where U(1) is the unitary group of order one (in fact,
GLn(C) ' U(n) for every n).

The sphere Sk−1 is simply connected for k > 2, hence any map Sk−1 → S1

factors through the universal cover R → S1. Since R is contractible, any map
Sk−1 → S1 is homotopic to a constant map. But any two constant maps on S1 are
homotopic because S1 is path-connected. So [Sk−1, S1] has one element only. �

Corollary 6.3.8. As abelian group under the tensor product Vect2C(S2) ∼= Z.

Proof. By Proposition 6.3.4 we know that Vect2C(S2) ∼= [S1, S1] ∼= Z, since there is
an isomorphism π1(S1, x) ∼= [S1, S1]. �
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