
LECTURE 7: K-THEORY GROUPS OF THE SPHERES

In the previous lecture we proved that K0(S1) ∼= Z. The aim of this lecture is
to compute the K-theory groups of all spheres and to state in a precise way the
Bott periodicity theorem, that we used to prove that K-theory is a generalized
cohomology theory.

7.1. Clutching functions for vector bundles over S2

7.1.1. Recall that vector bundles over Sk are determined by clutching functions
Sk−1 → GLn(C). Thus, for vector bundles over the sphere S2, we have to study
functions S1 → GLn(C).

Recall also that for CP 1 = S2 we have the canonical line bundle, that we denote
by H,

{(`, v) | ` ∈ CP 1, v ∈ `} −→ CP 1 = S2

that sends (`, v) to `. This vector bundle has clutching function f : S1 → GLn(C)
defined by f(z) = z, that is, f(z)(v) = zv for every z ∈ S1 and v ∈ C.

The clutching function of the sum of two vector bundles is the block sum of
the clutching functions of the two bundles. Thus, the bundle H ⊕H has clutching
function given by

f(z) =

(
z 0
0 z

)
.

The tensor product H ⊗ H has clutching function z2 and so (H ⊗ H) ⊕ τ1 has
clutching function

g(z) =

(
z2 0
0 1

)
.

7.1.2. Although it does not seem so, the clutching functions f and g give rise
to isomorphic bundles over S2. Indeed, we can construct an explicit homotopy
between g and f as follows. Let H : S1 × [0, 1] → GL2(C) be the map that sends
(z, t) to the product(

z 0
0 1

)(
cosπt/2 − sinπt/2
sinπt/2 cosπt/2

)(
z 0
0 1

)(
cosπt/2 sinπt/2
− sinπt/2 cosπt/2

)
.

For every z ∈ S1 and t ∈ [0, 1] the matrix H(z, t) is invertible and H(z, 0) = g(z)
and H(z, 1) = f(z). So, we have proved the following

Proposition 7.1.3. Let H be the canonical line bundle over S2. Then we have
that H ⊕H ∼= (H ⊗H)⊕ τ1 as bundles of rank 2 over S2. �

7.1.4. Observe that the isomorphism of Proposition 7.1.3 shows that in K0(S2) we
have that

([H]− [τ1])⊗ ([H]− [τ1]) = [H ⊗H]− [H ⊕H] + [τ1] = 0.

This means that we have a well-defined ring homomorphism

µ : Z[H]/(H − 1)2 −→ K0(S2)
1
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that sends H to [H] and 1 to [τ1] and which allows to formulate the Bott periodicity
theorem:

Theorem 7.1.5 (Bott periodicity theorem —product version). For every space X
in Top, the morphism

µ̃ : K0(X)⊗ Z[H]/(H − 1)2
1⊗µ−→ K0(X)⊗K0(S2) −→ K0(X × S2),

where the second map is the external product, is an isomorphism.

We will not prove the theorem in its full generality, but will restrict to the proof
in the case X = ∗, which will give a computation of K0(S2).

Theorem 7.1.6. The map µ : Z[H]/(H − 1)2 → K0(S2) is an isomorphism.

7.2. The proof of Theorem 7.1.6

7.2.1. We will divide the proof in several parts. Since every vector bundle is
determined by a clutching function we will proceed according to the following steps:

(i) Prove that if f is linear clutching function, then the associated bundle is
isomorphic to a linear combination of H and τ1 (that is, it is in the image
of µ).

(ii) Extend the previous result to polynomial clutching functions.
(iii) Extend the previous result to Laurent polynomial clutching functions.
(iv) Prove that any clutching function is homotopic to a Laurent polynomial

clutching function.

This will show that µ is surjective. And finally:

(v) Prove that if µ is injective.

7.2.2. We will start by considering simple functions of the form f(z) = Id z + B,
where Id denotes the identity matrix. Observe that f is a clutching function if and
only if det(Id z+B) 6= 0 for all z ∈ S1, or equivalently if and only if (Id z+B)(v) 6= 0
for all z ∈ S1 and all v 6= 0. This happens if and only if Bv 6= −zv for all z ∈ S1

and all v 6= 0, that is, when the matrix B has no eigenvalues in S1.

Lemma 7.2.3. Let f(z) = Id z +B be a clutching function. Then:

(i) The matrix B has all eigenvalues outside S1 if and only if H(z, t) = Id tz+B
is a homotopy of clutching functions between B and f(z).

(ii) The matrix B has all eigenvalues inside S1 if and only if H(z, t) = Id z+tB
is a homotopy of clutching functions between Id z and f(z).

Proof. We prove only part (i). Part (ii) is proved similarly and is left as an exercise.
The map H(z, t) is a clutching function for every t if and only if (Id tz+B)(v) 6= 0
for every t ∈ [0, 1], z ∈ S1 and v 6= 0. This happens if and only if −tz is not an
eigenvalue of B for every t ∈ [0, 1] and z ∈ S1, that is, if and only if all eigenvalues
of B are outside S1. �

Thus, if f(z) = Id z +B is a clutching function and

(i) B has all eigenvalues outside S1, then f(z) ' B and the bundle associated
to f is isomorphic to nτ1 for some n ≥ 0 (recall that GLn(C) is path
connected and so B is connected by a path to the identity matrix);

(ii) B has all eigenvalues inside S1, then f(z) ' Id z and the bundle associated
to f is isomorphic to nH for some n ≥ 0.
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7.2.4. In general, B will have eigenvalues inside and outside S1. To deal with this
case, we will use the following result that we will not prove.

Lemma 7.2.5. Let B be an n×n matrix with coefficients in C and no eigenvalues
in S1. Then there are subspaces V+ and V− of Cn such that

(i) C = V+ ⊕ V−.
(ii) V+ and V− are invariant under B.
(iii) The restriction B+ of B to V+ has all eigenvalues outside S1 and the re-

striction B−of B to V− has all eigenvalues inside S1. �

This means that the matrix B is similar (that is, conjugate) to the block matrix(
B+ 0
0 B−

)
.

Hence, the matrix Id z +B is similar to the matrix(
Id z +B+ 0

0 Id z +B−

)
.

By Lemma 7.2.3, the bundle associated to this last clutching function is isomorphic
to kτ1 ⊕ (n− k)H for some k ≥ 0. Thus, we have proved

Lemma 7.2.6. Any vector bundle over S2 with clutching function f(z) = Id z+B
is a linear combination of τ1 and H. �

7.2.7. Now, we want to extend the previous lemma to linear clutching functions of
the form f(z) = Az+B. The idea is to reduce to the case of a function of the form
Id z+B′. We could try to multiply f(z) by A−1, but A is not invertible in general.
However, f(z) will be homotopic to a linear map in which the first coefficient is
invertible.

Lemma 7.2.8. Any bundle over S2 with clutching function f(z) = Az + B is a
linear combination of τ1 and H.

Proof. Consider the function H(z, t) = (A + tB)z + (tA + B). We have that
H(z, 0) = f(z), but H(z, 1) is not a clutching function, since H(−1, 1) = 0. So
H(z, t) give a homotopy of clutching functions for t < 1. Indeed, to see that H(z, t)
is invertible for all z ∈ S1 and t < 1 we write

H(z, t) = A(z + t) +B(1 + tz) = (1 + tz)

(
A
z + t

1 + tz
+B

)
,

and note that (z + t)/(1 + tz) is in S1 for all z ∈ S1 and t < 1, since

|z + t|
|1 + tz|

=
|zz + tz|
|1 + tz|

=
|1 + tz|
|1 + tz|

=
|v|
|v|

= 1.

So, A(z + t)/(1 + tz) + B is invertible for all z ∈ S1 and t < 1 and hence so is
H(z, t).

For z = 1, we have that f(1) = A + B is invertible. The function det(A + tB)
is continuous, so there is a neighborhood V of 1 such that det(A + tB) 6= 0 for
all t ∈ V . Thus, taking t0 ∈ V , we have that f(z) = Az + B is homotopic to
(A + t0B)z + (t0A + B). But now, we can divide by A + t0B, so the clutching
functions (A+ t0B)z+ (t0A+B) and Id z+ (t0A+B)(A+ t0B)−1 give isomorphic
bundles.

In the end, we have proved that f(z) = Az + B is homotopic to Id z + B′ for
some matrix B′. The result now follows from Lemma 7.2.6. �
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7.2.9. The next step is to consider polynomial clutching functions of the form
f(z) = Anz

n + · · ·+A1z +A0. This case will be treated in the exercises. The idea
is to show that if Ef denotes the vector bundle associated to the clutching function
f , then τm⊕Ef ∼= ELn(f) for some m ≥ 0, where Ln(f) is a linear clutching function

obtained from f . Then, in K0(S2), we will have that [Ef ] = [ELn(f)]− [τm].

7.2.10. Next we consider Laurent polynomial clutching functions of the form
f(z) =

∑
|i|≤nAiz

i.

Lemma 7.2.11. Every vector bundle over S2 with Laurent polynomial clutching
function is equivalent in K0(S2) to a linear combination of τ1 and H.

Proof. If f(z) is a Laurent polynomial clutching function, then f(z) = z−mg(z) for
some m ≥ 0 and a polynomial clutching function g(z). Then [Ef ] = [Eg ⊗H−m].

By 7.2.9, [Eg] = [ELn(g)] − [τk]. To take care of the term H−m we can use the

relation (H − 1)2 = 0. An easy induction argument shows that Hn = nH − (n− 1)
for every n ∈ Z. �

7.2.12. The last step is to consider arbitrary clutching functions. For this we are
going to need the following result from analysis that we state without proof.

Theorem 7.2.13. Let f : S1 → C be a continuous functions. Then for every ε > 0
there is a Laurent polynomial g such that |f(z)− g(z)| < ε for all z ∈ S1. �

Proposition 7.2.14. Let f : S1 → GLn(C) be a clutching function. Then there is
a Laurent polynomial clutching function g : S1 → GLn(C) such that f ' g and the
homotopy is through clutching functions.

Proof. Consider the set of all functions S1 → Mn(C), where Mn(C) denotes the
n × n matrices with coefficients in C. This is a vector space over C and we can
define a norm

|f | = sup
z∈S1, |v|=1

|f(z)(v)|.

Using this norm we can put a topology on the set of all functions from S1 to Mn(C)
and we claim that in this topology the clutching functions from an open subset.

First note that if f is a clutching function with matrix components fij and ε > 0,
then we have by Theorem 7.2.13 that there are Laurent polynomials gij such that
|fij(z)− gij(z)| < ε. Then we can check that

|f − g| = sup
z∈S1, |v|=1

|(f(z)− g(z))(v)|

= sup
z∈S1, |v|=1

∣∣∣( n∑
j=1

(f1j(z)− g1j(z)vj , . . . ,
n∑
j=1

(fnj(z)− gnj(z)vj
∣∣∣ < ε

√
n.

So let f be a clutching function. We know that f(z)(v) 6= 0 for every z ∈ S1

and |v| = 1. Therefore, there is an ε > 0 such that |f(z)(v)| > ε for all z ∈ S1

and |v| = 1. Consider now the ball B(f, ε/2) of center f and radius ε/2 and let
g ∈ B(f, ε/2). So |f(z)(v) − g(z)(v)| < ε/2. But this implies that |g(z)(v)| > ε/2
for all z ∈ S1 and |v| = 1. This means that g is a clutching function and thus the
set of clutching functions is open.

Now, let f be a clutching function and let ε > 0 such that B(f, ε) is contained
in the clutching functions (we can choose such an ε because the set is open). By
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Theorem 7.2.13, for each fij there is a Laurent polynomial gij such that

|fij(z)− gij(z)| < ε/
√
n.

Then |f − g| < ε
√
n/
√
n = ε. So g is a clutching function and the map

H(z, t) = tf(z) + (1− t)g(z)

is a homotopy via clutching functions from g to f (because B(f, ε) is convex). �

7.2.15. So far, we have seen that any vector bundle in K0(S2) is equivalent to a
linear combination of τ1 and H, and hence it is in the image of µ.

Proof of Theorem 7.1.6. The morphism µ in surjective by Proposition 7.2.14 and
Lemma 7.2.11. To prove that µ is injective we build a map

ν : K0(S2) −→ Z[H]/(H − 1)2

such that µ ◦ ν = id. The map ν is constructed as follows: start with a vector
bundle on K0(S2), take its clutching function, find a homotopic Laurent polynomial
clutching function and reduce to a linear one. Thus the initial bundle is equivalent
in K0(S2) to one of the form [nH]+[mτ1] for some n,m ∈ Z. So we set ν([H]) = H
and ν([τ1]) = 1. Thus map clearly satisfies that µ ◦ ν = id.

But to finish the proof we should check that ν is well-defined. In other words, we
have to see that if we have two equivalent vector bundles on K0(S2) and we do the
previous ‘linearization’ procedure to reduce the corresponding clutching functions to
linear ones, we get the same thing (somehow we need to check that it is independent
of all choices). For instance, we will need to prove that homotopies between Laurent
polynomial clutching functions can be replaced by homotopies that are a Laurent
polynomial at each t ∈ [0, 1]. We leave all the details as an exercise. �

7.3. Some consequences of Bott periodicity

Corollary 7.3.1. K̃0(S2) ∼= Z generated by (H − 1).

Proof. We have a split short exact sequence (see 5.1.2)

0 −→ K̃0(S2) −→ K0(S2) −→ K0(∗) = Z −→ 0.

By Theorem 7.1.6, the term in the middle is Z[H]/(H − 1)2 and the third map

sends aH + b to a + b. So K̃0(S2), which is the kernel, is isomorphic to Z and
generated by (H − 1). �

Theorem 7.3.2 (Bott periodicity —standard form). For every X in Top∗, the
external product with (H − 1) induces an isomorphism

K̃0(X)
∼=−→ K̃0(Σ2X) = K̃−2(X).

Proof. Recall from 6.2.2 that we have a commutative diagram

K0(X)⊗K0(S2) ∼= K̃0(X)⊗ K̃0(S2)⊕ K̃0(X)⊕ K̃0(S2)⊕ Z

����

K0(X × S2) ∼= K̃0(X ∧ S2)⊕ K̃0(X)⊕ K̃0(S2)⊕ Z,

Now, Theorem 7.1.5 states that the left map is an isomorphism, so the map in the

middle is also an isomorphism. But, K̃0(S2) ∼= Z by Corollary 7.3.1. �
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Remark 7.3.3. As usual, we have an unreduced version of the previous statement
by using X+ for X ∈ Top. This give an isomorphism K0(X) ∼= K−2(X) for every
X in Top.

Corollary 7.3.4. K̃0(S2n) ∼= Z generated by (H − 1)n and K̃0(S2n+1) = 0.

Proof. It follows from Bott periodicity and the previous computations and is left
as an exercise. �

7.3.5. We finish with the list of all K-groups of the spheres (the computations are
left as an exercise). By Bott periodicity it is enough to describe K0 and K−1. So,
for every n ≥ 0 we have

K̃0(S2n) ∼= Z, K̃−1(S2n) = 0,

K̃0(S2n+1) = 0, K̃−1(S2n+1) ∼= Z.

K0(S2n) ∼= Z⊕ Z, K−1(S2n) = 0,
K0(S2n+1) ∼= Z, K−1(S2n+1) ∼= Z.
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