
LECTURE 8: THE COMPLEX K-THEORY SPECTRUM

In this lecture we will show how to define the spectrum associated to the coho-

mology theory given by K̃∗. This allows to formulate yet another version of Bott
periodicity. In the second part we will discuss the Hopf invariant one problem.

8.1. Reduced cohomology theories and spectra

8.1.1. Let h̃∗ be a reduced cohomology theory (see 6.1.2 for a precise definition).
We will restrict to cohomology theories defined on pointed CW-complexes and we
will also assume that they are additive, that is, they satisfy the wedge axiom:

h̃n(∨i∈IXi)
∼=−→ Πi∈I h̃

n(Xi).

8.1.2. For every n ∈ Z the functor h̃n satisfies the conditions of the Brown repre-
sentability theorem (we need to be a bit careful here because Brown representabil-
ity applies to functors from pointed connected CW-complexes, so we have to re-
strict to those spaces). So there is a (unique up to homotopy) pointed connected
CW-complex Ln and a natural equivalence

h̃n(X)
∼=−→ [X,Ln]∗

for each pointed connected CW-complex X (recall that [−,−]∗ denotes pointed
homotopy classes of maps).

8.1.3. Let En = ΩLn+1 ,where Ω denotes the loop space functor, right adjoint to
the suspension functor Σ. For any X the suspension ΣX is connected, so

h̃n+1(ΣX) ∼= [ΣX,Ln+1]∗.

Since h̃∗ is a reduced cohomology theory h̃n+1(ΣX) ∼= h̃n(X), so

h̃n(X) ∼= h̃n+1(Σ) ∼= [ΣX,Ln+1]∗ ∼= [X,ΩLn+1] = [X,En]∗,

where the third isomorphism is given by the adjunction between Σ and Ω. Thus,

we can associate to h̃∗ the family of pointed CW-complexes {En}n∈Z which satisfies
that

[X,En]∗ ∼= h̃n(X) ∼= h̃n+1(ΣX) ∼= [ΣX,En+1]∗ ∼= [X,ΩEn+1]∗

for all pointed CW-complexes X. This implies that there is a homotopy equivalence

En
'−→ ΩEn+1.

Definition 8.1.4. An Ω-spectrum is a sequence of pointed CW-complexes {En}n∈Z
together with homotopy equivalences εn : En → ΩEn+1 for every n ∈ Z.

So we have proved the following

Theorem 8.1.5. Every additive reduced cohomology theory h̃∗ on pointed CW-com-

plexes determines an Ω-spectrum {En}n∈Z such that h̃n(X) = [X,En]∗ for ev-
ery n ∈ Z. �
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8.1.6. The converse is also true. Let {En}n∈Z be an Ω-spectrum and define

Ẽn(X) = [X,En]∗.

Then Ẽ∗ is a reduced cohomology theory. The homotopy invariance is easy to check
and the suspension isomorphism is given by

Ẽn+1(Σ) = [ΣX,En+1]∗ ∼= [X,ΩEn+1]∗
(εn)−1

∗−→ [X,En]∗ = Ẽn(X).

This also implies that Ẽn(−) takes values in abelian groups, since

Ẽn(X) ∼= Ẽn+2(Σ2X) = [Σ2X,En+2]∗

and [Σ2(−),−] is always an abelian group. To prove exactness, consider a pair

(X,A) and the sequence A
i→ X

j→ X ∪ CA. This gives an exact sequence

[X ∪ CA,Z]∗
j∗−→ [X,Z]∗

i∗−→ [A,Z]∗

for every Z. Taking Z = En gives the required exact sequence

Ẽn(X ∪ CA)
j∗−→ Ẽn(X)

i∗−→ Ẽn(A).

Note that Ẽ∗ is also additive since

Ẽn(∨i∈IXi) = [∨i∈IXi, En]∗ ∼= Πi∈I [Xi, En]∗ = Πi∈IẼ
n(X).

Theorem 8.1.7. If {En}n∈Z is an Ω-spectrum, then the functors Ẽn defined as

Ẽn(X) = [X,En]∗ for every n ∈ Z form an additive reduced cohomology theory on
pointed CW-complexes. �

8.1.8. Let G be an abelian group and let K(G,n) be the associated Eilenberg–
Mac Lane space. This space is characterized (up to homotopy) by the property
that πkK(G,n) ∼= G if k = n and zero if k 6= n. There is a homotopy equivalence

K(G,n)
'−→ ΩK(G,n+ 1).

So the spaces K(G,n) define an Ω-spectrum HG called the Eilenberg–Mac Lane
spectrum associated to G. It is defined as (HG)n = K(G,n) For n ≥ 0 and zero
for n < 0. The cohomology theory that it describes

H̃G
n
(X) = [X,K(G,n)]∗ ∼= H̃n(X;G)

for n ≥ 0, corresponds to singular cohomology with coefficients in G.

8.2. The spectrum KU

8.2.1. Recall from the first lectures that the Grassmannian Gk(Cn) consists of all
k-dimensional linear subspaces of Cn. The canonical inclusion Cn → Cn+1 that
sends (v1, . . . , vn) to (v1, . . . , vn, 0) induces maps

in : Gk(Cn) −→ Gk(Cn+1).

We define BUk = colimn{Gk(Cn), in} as the colimit of the previous sequence. (Note
that in the first lectures we were using the notation Gk(C∞) for BUk.)

8.2.2. Recall also that we proved the existence of a ‘universal’ vector bundle
Ek(C∞) over BUk and that every vector bundle is a pullback of this one:

Theorem 8.2.3. Let X ∈ Top. There is a natural bijection [X,BUk] ∼= VectkC(X)
that sends f to the pullback f∗(Ek(Cn)). �
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If we apply the previous theorem with k+1 and X = BUk, we obtain a bijection
[BUk, BUk+1] ∼= Vectk+1

C (BUk). So taking on the right-hand side the vector bundle
Ek(C∞)⊕ τ1 over BUk gives a map

ik : BUk −→ BUk+1

such that i∗k(Ek+1(C∞) ∼= Ek(C∞) ⊕ τ1. We define BU = colimk{BUk, ik} as the
colimit of the sequence given by the maps ik.

8.2.4. Let us see now how BU is related to K0 and K̃0. Let d : VectC(X)→ [X,N]
be the function that assigns to a vector bundle p : E → X the function dE : X → N
defined as dE(x) = dim p−1(x).

The set [X,N] has an abelian monoid structure (defined using the one on N) such
that d is a map of abelian monoids. Consider the natural inclusion [X,N]→ [X,Z]
(which is in fact the group completion or Grothendieck construction of [X,N]). By
the universal property of the group completion there is a map d : K0(X)→ [X,Z]
and a commutative square

VectC(X)
d //

��

[X,N]

��

K0(X)
d // [X,Z].

We will denote K̂(X) = ker d.

Proposition 8.2.5. There is a split short exact sequence

0 −→ K̂(X) −→ K0(X) −→ [X,Z] −→ 0.

In particular K0(X) ∼= K̂(X)⊕ [X,Z].

Proof. To prove the result it is enough to find a section to the map on the right. Let
f : X → N. Since X is compact f(X) is compact in N and hence finite. So suppose
that f(X) = {n1, . . . , nr}. Then X = X1

∐
· · ·

∐
Xr, where each Xi = f−1(ni).

We define a bundle over X by taking trivial bundles τni
at each Xi. This defines a

map ϕ : [X,N]→ VectC(X) that satisfies d ◦ φ = id
Now, using the universal property of the group completion there exists a map

ϕ : [X,Z]→ K0(X) that satisfies d◦ϕ = id. The map ϕ is the required section. �

Corollary 8.2.6. If X ∈ Top∗ is connected, then K̂(X) ∼= K̃0(X).

Proof. Consider the following commutative diagram of split short exact sequences

0 // K̂(X) //

��

K0(X)
d // [X,Z]

i∗

��

// 0

0 // K̃0(X) // K0(X) // [∗,Z] // 0

where i : ∗ → X is the inclusion of the basepoint. If X is connected, then i∗ is an

isomorphism and hence K̂(X) ∼= K̃0(X). �

8.2.7. Consider the sets VectkC(X) and define for every k ≥ 0 a function

tk : VectkC(X) −→ Vectk+1
C (X)
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sending [E] to [E ⊕ τ1]. Define Vects(X) = colimk{VectkC(X), tk} as the colimit of
the sequence given by the maps tk.

Proposition 8.2.8. For every X in Top we have that Vects(X) ∼= K̂(X).

Proof. For each k ≥ 0 define a map ϕk : VectkC(X) → K̂(X) as ϕk([E]) = [E] −
[τk] ∈ K̂(X). Then ϕk+1tk([E]) = ϕk([E]) for every k, so by the universal property

of the colimit, there is a map ϕ : Vects(X)→ K̂(X) and a commutative triangle

VectkC(X) //

ϕk

��

Vects(X)

ϕ
xx

K̂(X)

Now using the fact that for every bundle E we can find another bundle E′ such
that E ⊕ E′ ∼= τn for some n, one checks that ϕ is injective and surjective. �

Proposition 8.2.9. For every X in Top there is an isomorphism K̂(X) ∼= [X,BU ].

Proof. By Theorem 8.2.3, we know that VectkC(X) ∼= [X,BUk]. The previously

defined maps tk : VectkC(X)→ Vectk+1
C (X) and ik : BUk → BUk+1 are compatible

with this isomorphism. So we have an isomorphism after taking colimits

colimk VectkC(X) ∼= colimk[X,BUk]

The left-hand side is Vects(X), which by Proposition 8.2.8 is isomorphic to K̂(X).
Using the fact that X is compact and that the maps ik are embeddings (see exercise
sheet 8) the right-hand side is isomorphic to [X, colimk BUk] = [X,BU ]. �

Corollary 8.2.10. If X ∈ Top, then K0(X) ∼= [X,BU × Z]. If X ∈ Top∗ and X

is connected, then K̃0(X) ∼= [X,BU ].

Proof. By Proposition 8.2.5 we have a splitting K0(X) ∼= K̂(X)⊕ [X,Z]. This fact,
together with Proposition 8.2.9 implies that [X,BU × Z]. The second part follows
from Corollary 8.2.6 and Proposition 8.2.9. �

Corollary 8.2.11. Let X ∈ Top∗ such that the inclusion i : ∗ → X is a cofibration

(e.g., if X is a CW-complex). Then K̃0(X) ' [X,BU × Z]∗.

Proof. We need to show that [X,BU × Z]∗ is the kernel of the map

K0(X) ∼= [X,BU × Z]
i∗−→ [∗, BU × Z] ∼= K0(∗)

Let j : [X,BU × Z]∗ → [X,BU × Z] be the natural inclusion. If f ∈ [X,BU × Z]∗,
then i∗j(f) is zero in [∗, BU × Z]. So [X,BU × Z]∗ ⊆ ker i∗.

To prove the converse, let g ∈ [X,BU×Z] and suppose that i∗j(g) is zero. Since
BU is connected, there is a homotopy between the basepoint of BU and g1(x0),
where x0 denotes the basepoint of X. So we can build a homotopy

α : {x0} × I −→ BU × Z
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between (g1(x0), 0) and (∗, 0), where here ∗ is the basepoint of BU . Now consider
the following diagram

X × {0} ∪ {x0} × I
(g,α)

//

��

BU × Z

X × I.
H

66

Since ∗ → X is a cofibration, there is a lifting H, giving a homotopy between g(x) =
H(x, 0) and H(x, 1) which is a pointed map, since H(x0, 1) = α(x0, 1) = (∗, 0). �

8.2.12. The family of spaces E2n = BU × Z and KU2n+1 = ΩBU for n ∈ Z have
the property that

KU2n−1 = ΩBU = Ω(BU × Z) = ΩKU2n.

By the standard form of Bott periodicity (see Theorem 7.3.2) we know that K̃0(X) ∼=
K̃0(Σ2X), hence Corollary 8.2.11 shows that

[X,BU × Z]∗ ∼= K̃0(X) ∼= K̃0(Σ2X) ∼= [X,Ω2(BU × Z]∗ = [X,Ω2BU ]∗

for every pointed (CW-complex) X. So KU2n = BU × Z ' Ω2BU = ΩKU2n+1.

8.2.13. Therefore the sequence {KUn}n∈Z defines an Ω-spectrum called the com-
plex K-theory spectrum, and hence a reduced cohomology theory, by Theorem 8.1.7.

If X is a pointed finite CW-complex, then K̃U
0
(X) ∼= K̃0(X).

8.2.14. The existence of a homotopy equivalence BU × Z ∼= Ω2BU is equivalent
to Bott periodicity. In fact, this equivalence will be proved in the last part of the
course, by using simplicial methods.

Theorem 8.2.15 (Bott periodicity —topological version). There is a homotopy
equivalence BU × Z ' Ω2BU .

8.3. The Hopf invariant one problem

8.3.1. A multiplication for the sphere Sn is a continuous map µ : Sn × Sn → Sn

with a tow-sided unit e ∈ Sn such that µ(x, e) = µ(e, x) = x for all x in Sn. For
the values n = 0, 1, 3 and 7 such a multiplication exists, and it is given by the
multiplication in R, C, H and O, respectively. We would like to know if these are
the only possible cases. Indeed, this is true.

Theorem 8.3.2. Sn admits a multiplication if and only if n = 0, 1, 3 or 7.

We will not prove this theorem, but we will show how it is implied by the exis-
tence of Hopf invariant one maps between certain spheres. This result is important
because of the following

Proposition 8.3.3. If Rn is a division algebra, then Sn−1 admits a multiplication.

Proof. We can assume that the multiplication on Rn has an identity that is a unit
vector (if this is not the case one can always modify the multiplication to obtain
one with this property). The multiplication on Sn−1 is defined by sending (x, y) to
xy divided by its norm. �

Hence, from Theorem 8.3.2, we deduce that Rn is a division algebra if and only
if n = 1, 2, 4 or 8.
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8.3.4. We can use the computations that we have made of the K-groups of the
spheres to show that multiplications do not exist for spheres of even dimension.
We will use that K0(S2n) = Z⊕Z (generated by the trivial bundle and (H − 1)n),
but we will also need the ring structure of K0(S2n), which can be deduced from
the following proposition. Recall that for X ∈ Top∗ we have defined the external

product K̃0(X)⊗ K̃0(X)→ K̃0(X ∧X). We can compose this with a map induced
by the diagonal ∆: X → X ×X to get a product map

K̃0(X)⊗ K̃0(X) −→ K̃0(X ∧X) −→ K̃0(X)

Proposition 8.3.5. Let X ∈ Top∗ and let X = A ∪B, where A and B are closed

contractible subspaces of X. Then the product map K̃0(X) ⊗ K̃0(X) → K̃0(X) is
trivial.

Proof. Since A and B are contractible K̃0(X) ∼= K̃0(X/A) and K̃0(X) ∼= K̃0(X/B)
by Corollary 6.1.6. The external product defines a map

K̃0(X/A)⊗ K̃0(X/B) −→ K̃0(X/A ∧X/B)

and one can check that X/A ∧X/B ∼= X ×X/(A ×X) ∪ (X × B) = W and that
the diagonal induces a map X/A ∪B →W . So, we have a commutative diagram

K̃0(X/A)⊗ K̃0(X/B)

∼=
��

// K̃0(W ) //

��

K̃0(X/A ∪B) = 0

��

K̃0(X)⊗ K̃0(X) // K̃0(X ∧X) // K̃0(X)

where the right up corner is zero (because A ∪ B = X). Since the left map is an
isomorphism the bottom composition (which is the product) is zero. �

Corollary 8.3.6. K0(S2n) ∼= Z[γ]/(γ2).

Proof. Let γ = (H − 1)n. Then γ ∈ K̃0(S2n) and we know, by Proposition 8.3.5,
that γ2 = 0 (by taking A the closed upper hemisphere and B the closed lower
hemisphere of S2n). �

Proposition 8.3.7. The sphere S2n does not admit a multiplication for n ≥ 1.

Proof. Recall that Bott periodicity for reduced K-theory (see Theorem 7.3.2) states
that we have an isomorphism

K̃0(X)⊗ K̃0(S2)
∼=−→ K̃0(X ∧ S2).

We can iterate this isomorphism several times, by replacing X by X ∧ S2, and we
get an isomorphism

K̃0(X)⊗ K̃0(S2n)
∼=−→ K̃0(X ∧ S2n).

for every n ≥ 1, and a corresponding isomorphism for the unreduced case

K0(X)⊗K0(S2n)
∼=−→ K0(X × S2n).

Suppose now that µ : S2n × S2n → S2n is a multiplication. Applying K0 gives a
map

Z[γ]/(γ2) ∼= K0(S2n)
µ∗

−→ K0(S2n×S2n) ∼= K0(S2n)⊗K0(S2n) ∼= Z[α, β]/(α2, β2).
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Since µ has a two-sided unit (given by map e : ∗ → S2n) we have a commutative
diagram

S2n × {∗} 1×e
// S2n × S2n

µ

��

{∗} × S2ne×1
oo

S2n,

which induces a commutative diagram

K0(S2n) K0(S2n × S2n)oo // K0(S2n)

K0(S2n),

µ∗

OO

where the map to the left sends α to γ and β to 0, and the map to the right
sends α to 0 and β to γ. This forces µ∗(γ) to be of the form α + β + tαβ. Hence
0 = µ∗(γ2) = α2 + β2 + t2α2β2 + 2tα2β + 2tαβ2 + 2αβ = 2αβ. But 2αβ cannot be
zero, so µ cannot be a multiplication. �

8.3.8. Things became more involved for spheres of odd dimension. Here is where
the Hopf invariant appears. Suppose that we have a map g : Sn−1 → Sn−1 → Sn−1

for n an even number. We can decompose the sphere S2n−1 as follows

S2n−1 = ∂(D2n) = ∂(Dn ×Dn) = Sn−1 ×Dn ∪Dn × Sn−1,

where Dn denotes the n-dimensional disk in Rn. We can define maps

Sn−1 ×Dn −→ Dn
+ Dn × Sn−1 −→ Dn

−
(x, y) 7−→ |y|g(x, y/|y|) (x, y) 7−→ |x|g(x/|x|, y).

They coincide in the intersection of the domains so the give a map

ĝ : S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1 −→ Dn
+ ∪Dn

− = Sn.

The map ĝ is called the Hopf construction of the map g.

8.3.9. We are interested in odd spheres, so let now g : S2n−1 × S2n−1 → S2n−1,
build the corresponding ĝ : S4n−1 → S2n and take the mapping cone

S4n−1 ĝ−→ S2n −→ C(ĝ)

obtained by taking the cone on S4n−1, which is D4n, and gluing it to S2n via ĝ.

Then, applying K̃0 gives a split short exact sequence

0 −→ K̃0(S4n) −→ K̃0(C(ĝ)) −→ K̃0(S2n) −→ 0

since K̃0 of odd degree spheres is zero. So the group in the middle is Z⊕Z generated

by α and β, where α is the image of the generator of K̃0(S4n) (hence α2 = 0) and

β is some class mapped to the generator of K̃0(S2n) (hence β2 is mapped to 0). By
exactness, β2 is in the image of the second map, so there is an integer H(ĝ) such
that β2 = H(ĝ)α. The integer H(ĝ) is called the Hopf invariant.

One has to be a bit careful here, because we have to check that β is well-defined.
We could have replaced β by β + tα. Then β2 would be β2 + 2tαβ. We claim that

αβ = 0. Indeed, αβ is mapped to 0 in K̃0(S2n), so αβ = kα for some k. But
αβ2 = kαβ = k2α. On the other hand, αβ2 = H(ĝ)α2 = 0 so k2α = 0 and hence
k = 0. So the Hopf invariant is independent of β.
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Note, however, that the Hopf invariant is not independent of the choice of α since
we could choose −α and this would change H(ĝ) by −H(ĝ). So, by convention, we
will always assume that the Hopf invariant is non-negative, and hence independent
of α and β.

Proposition 8.3.10. If g : S2n−1 × S2n−1 → S2n−1 is a multiplication, then
ĝ : S4n−1 → S2n has Hopf invariant one.

Proof. As we have seen, the map ĝ : S4n−1 → S2n is constructed by attaching the
cone on S4n−1 to S2n via ĝ. So we have a map of pairs

(D4n, S4n−1) −→ (C(ĝ), S2n),

that can be seen as a map

Φ: (D2n ×D2n, ∂(D2n ×D2n)) −→ (C(ĝ), S2n).

Recall that ĝ, and therefore also Φ, send S2n−1 ×D2n into D2n
+ and D2n × S2n−1

into D2n
− . Consider the following diagram

K̃0(C(ĝ))⊗ K̃0(C(ĝ)) // K̃0(C(ĝ))

K̃0(C(ĝ)/D2n
+ )⊗ K̃0(C(ĝ)/D2n

− )

Φ∗⊗Φ∗

��

∼=

OO

// K̃0(C(ĝ)/S2n)

OO

Φ∗∼=
��

K̃0( D2n×D2n

S2n−1×D2n )⊗ K̃0( D2n×D2n

D2n×S2n−1 )

∼=
��

// K̃0( D2n×D2n

∂(D2n×D2n) )

K̃0( D2n×∗
S2n−1×∗ )⊗ K̃

0( ∗×D
2n

∗×S2n−1 ),

∼=

44

where the diagonal map is an isomorphism by Bott periodicity. Take now the
composite

K̃0(C(ĝ)/D2n
+ )

Φ∗

−→ K̃0(D2n ×D2n/S2n−1 ×D2n) −→ K̃0(D2n × ∗/S2n−1 × ∗).
Due to how we have defined the map ĝ, the previous composite is induce by the
map of pairs

(D2n × ∗, S2n−1 × ∗) ∼= (D2n
− , S

2n−1) −→ (S2n, D2n
+ ) −→ (C(ĝ), D2n

+ ),

where the last two maps on the right are inclusions. But then β in K̃0(C(ĝ)) maps

to a generator of K̃0(S2n/D2n
+ ) ∼= K̃0(D2n

− , S
2n−1). Similarly, one can show that

β ⊗ β maps to a generator of the bottom left-hand group. Thus, β ⊗ β maps to a
generator of the bottom right-hand group and then the Hopf invariant has to be,
by our convention, equal to 1. �

8.3.11. By Proposition 8.3.10, to prove Theorem 8.3.2 it is enough to show that
there is no map S4n−1 → S2n of Hopf invariant 1 unless n = 1, 2 or 4. This is
a non-trivial statement and uses Adams operations on K-theory and the splitting
principle.
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