Topological K-theory, Lecture 1

Matan Prasma

March 2, 2015

1 Motivation: Hopf invariant one

A division algebra structure on \mathbf{R}^{n} is a (continuous) "multiplication" map $\mu: \mathbf{R}^{n} \times \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}$ which is

- bilinear
- has no zero divisors - for any pair of non-zero vectors $0 \neq v, w \in \mathbf{R}^{n}$, $\mu(v, w) \neq 0$.

Example 1.

- The real numbers \mathbf{R} with ordinary multiplication.
- The plane $\mathbf{R}^{2} \cong \mathbf{C}=\{a+b i \mid a, b \in \mathbf{R}\}$ with multiplication given by multiplication of complex numbers.
- The four dimensional space \mathbf{R}^{4}, presented as the so called "Cayley numbers" (or: Quaternions) $\mathbf{R}^{4} \cong \mathbf{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbf{R}\}$ with multiplication analogous to the one of complex numbers, governed by the relations $i^{2}=j^{2}=k^{2}=-1, \quad i j=k, \quad j i=-k$.
- The eight dimensional space \mathbf{R}^{8} can be given the structure of a division algebra, presented as the so-called Octonions $\mathbf{O}=\{a+b i+c j+d k+e l+$ $f m+g n+h o\}$ with $i^{2}=j^{2}=k^{2}=l^{2}=m^{2}=n^{2}=-1, o^{2}=1, \ldots$
Remark 1.1. Note that we did not require our multiplication $\mathbf{R} \otimes \mathbf{R} \longrightarrow \mathbf{R}$ to be associative. The Quaternions in fact associative division algebra, but the Octonions are not.

Question 1.2. Are there more? in which dimensions can we multiply vectors?.
Theorem 1.3. (Adams, Atiyah) The space \mathbf{R}^{n} admits a structure of a division algebra, iff $n=1,2,4,8$.

Adams' proof was the first one. It consisted of 80 pages, accessible only for a handful of experts. Using topological K-theory, Atiyah gave a very short and elegant proof for Adams theorem. To demonstrate it, he wrote it on a postcard and mailed it to a colleague!

In this course we will study define and study topological K-theory. We will first develop the tools of topological K-theory and once these will be sufficiently developed, we'll see Atiyah's proof, among other interesting applications.

2 Fiber bundles

We restrict our attention to compactly generated topological spaces. The main feature to have in mind is the exponential law: $\operatorname{map}(X, \operatorname{map}(Y, Z)) \cong \operatorname{map}(X \times$ $Y, Z)$.

Let B be a connected space.
Definition 2.1. A map $p: E \longrightarrow B$ is called a fiber bundle with fiber F if

- it is surjective.
- for every $b \in B$, there exists an open neighbourhood U_{b} and an isomorphism of spaces, called a trivialization $\Psi_{U_{b}}: p^{-1}\left(U_{b}\right) \xrightarrow{\cong} U_{b} \times F$, compatible with the map p in that the triangle

Remark 2.2. Thus, for any $b \in B,\left.\Psi\right|_{p^{-1}(b)}: p^{-1}(b) \xrightarrow{\cong}\{b\} \times F$.
Remark 2.3. You saw in the previous course that any fiber bundle is a Serre fibration.

Example 2. 1. The projection map $B \times F \longrightarrow B$. This is called the trivial bundle.
2. Let $S^{1} \subseteq \mathbf{C}$ be the unit circle. The map $p_{n}: S^{1} \longrightarrow S^{1}$ given by $z \mapsto z^{n}$ is a fiber bundle with the fiber over $1 \in S^{1}$ given by the set of n-th roots of unity.
3. The map $\exp : \mathbf{R} \longrightarrow S^{1}$ given by $\exp (t)=e^{2 \pi i t} \in S^{1}$ is a fiber bundle with fiber \mathbf{Z}.
4. Recall that the n-dimensional real projective space is defined by $\mathbf{R} P^{n}=$ $S^{n} /$ where $x-x \in S^{n} \subseteq \mathbf{R}^{n+1}$. Then, the quotient map $S^{n} \longrightarrow \mathbf{R} P^{n}$ is a fiber bundle with fiber $\{1,-1\}$.
5. Let $S^{2 n+1} \subseteq \mathbf{C}^{n+1}$ and let $\mathbf{C} P^{n}=S^{2 n+1} /$ where $x u x$ for any $u \in S^{1}$. Then the quotient map $S^{2 n+1} \longrightarrow \mathbf{C} P^{n}$ is a fiber bundle with fiber S^{1}.
6. Consider the Moebeus band $M=[0,1] \times[0,1] /$ where $(t, 0)(1-t, 1)$ and consider the "center circle" $C=(1 / 2, s) \in M$. The projection map $M \longrightarrow C$ given by $(t, s) \mapsto(1 / 2, s)$ is a fiber bundle with fiber $[0,1]$.

Definition 2.4. Let $p_{1}: E_{1} \longrightarrow B_{1}$ and $p_{2}: E_{2} \longrightarrow B_{2}$ be fiber bundles. A map of fiber bundles is a commutative square

Note: such a map induces, for each $b \in B$, a map between the fibers

$$
\left(E_{1}\right)_{b} \longrightarrow\left(E_{2}\right)_{\varphi(b)}
$$

We have thus defined the category of fiber bundles.
Observe 2.5. A map $p: E \longrightarrow B$ is a covering space iff it's a fiber bundle with discrete fiber.

3 Vector bundles

Let \mathbf{k} be either of the (topological) fields \mathbf{R} or \mathbf{C}. We will restrict attention to finite dim'l vector spaces over \mathbf{k}. Note that such a vector space V is always assumed to be a topological vector space, in the sense that addition of vectors and multiplication by a scalar define continuous maps $V \times V \longrightarrow V$ and $k \times V \longrightarrow$ V.

Definition 3.1. Let V be an n-dim'l vector space over \mathbf{k}, and let B be a connected space. An n-dim'l vector bundle with fiber V is a fiber bundle p : $E \longrightarrow B$ with the structure of a vector space on each fiber $p^{-1}(b)=E_{b}$ such that, for each $b \in B$, the maps $\Psi_{U_{b}}: p^{-1}\left(U_{b}\right) \longrightarrow U_{b} \times V$ restrict to k-linear maps (hence isomorphisms)

$$
\left.\Psi_{U_{b}}\right|_{p^{-1}(b)}: p^{-1}(b) \xrightarrow{\cong}\{b\} \times V
$$

on each fiber.
A map of vector bundles is a map of fiber bundles which is k-linear on each fiber. The category of vector bundles is denoted VB and that of vector bundles over a fixed space B is denoted VB / B.

Remark 3.2. We assume throughout that our base space B is connected. If $B=\coprod_{\alpha} B_{\alpha}$ is a disjoint union of path components, then a vector bundle E over B is by definition a collection of vector bundles E_{α} over each B_{α} and the rank of each E_{α} may be different. We will assume all our base spaces are connected in order to simplify the discussion. All the arguments could be extended to the case of non-connected base in a straightforward way.

Example 3.

Given an n-dim'l k-vector space V, the projection $B \times V \longrightarrow B$ is a vector bundle, called the trivial vector bundle.
The Moebeus line bundle is given as follows. Let $E=[0,1] \times \mathbf{R} /$ where $(0, t)(1,-t)$. Let C be the middle circle $C=\{(s, 0) \in E\}$. Then the projection $E \longrightarrow C,(s, t) \mapsto(s, 0)$ is a vector bundle with fiber \mathbf{R}.
Define the canonical line bundle over the projective space $\mathbf{R} P^{n}$ as follows. The space $\mathbf{R} P^{n}$ may be thought of as the space of lines ℓ through the origin in \mathbf{R}^{n+1}. Let $E=(\ell, v) \mid \ell \in \mathbf{R} P^{n}, v \in \ell$ and define $E \longrightarrow \mathbf{R} P^{n}$ by setting $(\ell, v) \longrightarrow \ell$.

Proposition 3.3. Let

be a map of vector bundles. Then φ is an isomorphism iff $\left.\varphi\right|_{p^{-1}(b)}: p^{-1}(b) \longrightarrow$ $q^{-1}(b)$ is an isomorphism for each $b \in B$.

Proof. Clearly, if φ has a (categorical) inverse φ^{-1}, it restricts to an isomorphism on each fiber. Conversely, suppose $E=B \times V$ and $F=B \times W$ are trivial vector bundles and that $\varphi: E \longrightarrow F$ restricts to an isomorphism on each fiber. By the exponential law for spaces, we have homeomorphism of spaces (with respect to the compact-open topology)

$$
\begin{equation*}
\operatorname{map}_{/ B}(B \times V, B \times W) \cong \operatorname{map}(B \times V, W) \cong \operatorname{map}(B, \operatorname{map}(V, W)) \tag{1}
\end{equation*}
$$

where the left-hand side denotes maps over B. When we restrict attention to vector bundle maps on the left-hand side, we get a homeomorphism

$$
\mathrm{VB} / B(B \times V, B \times W) \cong \operatorname{map}(B, \operatorname{Hom}(V, W))
$$

where $\operatorname{Hom}(V, W)$ is the space of k-linear maps with the obvious topology.
The (vector bundle) map $\varphi: E \longrightarrow F$ thus corresponds to a map $\Phi: B \longrightarrow$ $\operatorname{Hom}(V, W)$ which is in fact a map $\Phi: B \longrightarrow \operatorname{Iso}(V, W)$ by our assumption on φ. If we denote the (continuous) inversion map by $i: \operatorname{Iso}(V, W) \longrightarrow \operatorname{Iso}(W, V)$ then we get the composite $\Psi=i \circ \Phi: B \longrightarrow \operatorname{Iso}(W, V)$ which by 1 (with the roles of V and W interchanged) corresponds to a vector bundle map $\psi: F \longrightarrow E$. The map ψ is clearly an inverse to φ since it is such on each fiber.

Thus, the statement is true locally. If now $\varphi: E \longrightarrow F$ is a map of (arbitrary) vector bundles which is an isomorphism on each fiber, then φ is one-to-one and onto, and we need to show that its set-theoretical inverse φ^{-1} is continuous. But φ^{-1} coincides with ψ on each piece of an open cover and we have shown that ψ is continuous so φ^{-1} must be continuous.

4 Sections

A section of a vector bundle $p: E \longrightarrow B$ is a map $s: B \longrightarrow E$ such that $p s=\operatorname{id}_{B}$. Thus, a section is a continuous correspondence $b \mapsto v_{b}$ of a vector $v_{b} \in \mathcal{E}_{b}$ to each point $b \in B$. For example, we see that every vector bundle has at least one section - the zero section $b \mapsto 0_{E_{b}}$.
Proposition 4.1. An n-dim'l vector bundle is trivial iff it admits n linearly independent sections, i.e. sections $\left\{s_{1}, \ldots, s_{n}\right\}$ s.t. $\left\{s_{1}(b), \ldots, s_{n}(b)\right\}$ are linearly independent for each $b \in B$.

Proof. Clearly, $B \times \mathbf{k}^{n}$ has such sections, and any vector bundle isomorphism takes linearly independent sections to linearly independent sections. Conversely, if s_{1}, \ldots, s_{n} are linearly independent sections of $p: E \longrightarrow B$ then the map

$$
\varphi: B \times k^{n} \longrightarrow E
$$

given by $\varphi\left(b, \lambda_{1}, \ldots, \lambda_{n}\right)=\Sigma \lambda_{i} s_{i}(b)$ is an isomorphism on each fiber and hence an isomorphism of vector bundles.

5 Pullbacks

Let $p: E \longrightarrow B$ be a vector bundle and $B^{\prime} \longrightarrow B$ any map.
Observe 5.1. There is an induced vector bundle structure on the pullback p^{\prime} : $E^{\prime}:=E \times_{B} B^{\prime} \longrightarrow B^{\prime}$.

6 Direct sums

Given vector bundles $p_{1}: E_{1} \longrightarrow B$ and $p_{2}: E_{2} \longrightarrow B$, their direct sum is $E_{1} \oplus E_{2}:=E_{1} \times_{B} E_{2}$ together with the projection map $p: E_{1} \oplus E_{2} \longrightarrow B$. Note that $p^{-1}(b)=p_{1}^{-1}(b) \oplus p_{2}^{-1}(b)$ so that the name is reasonable.
Proposition 6.1. The projection $E_{1} \oplus E_{2} \longrightarrow B$ is a vector bundle.
Proof. Given two vector bundles $p_{1}: E_{1} \longrightarrow B_{1}$ and $p_{2}: E_{2} \longrightarrow B_{2}$ the product $p_{1} \times p_{2}: E_{1} \times E_{2} \longrightarrow B_{1} \times B_{2}$ is a vector bundle, for if $\varphi_{1}: p_{1}^{-1}\left(U_{b_{1}}\right) \xrightarrow{\cong} U_{b_{1}} \times V$ and $\varphi_{2}: p_{2}^{-1}\left(U_{b_{2}}\right) \xrightarrow{\cong} U_{b_{2}} \times W$ are trivializations, then $\varphi_{1} \times \varphi_{2}: p_{1}^{-1}\left(U_{b_{1}}\right) \times$ $p_{2}^{-1}\left(U_{b_{2}}\right) \longrightarrow U_{b_{1}} \times U_{b_{2}} \times V \times W$ is a trivialization for $E_{1} \times E_{2}$.

In our case, $p_{1} \times p_{2}: E_{1} \times E_{2} \longrightarrow B \times B$ is a vector bundle, and its pullback along the diagonal $\delta: B \longrightarrow B \times B$ is precisely $E_{1} \oplus E_{2}$ which is therefore a vector bundle itself.

References

[Ati] M. F. Atiyah K-theory, New York: WA Benjamin (1967).
[Hat] A. Hatcher, Vector bundles and K-theory. Author's website (2009).

