Topological K-theory, Lecture 2

Matan Prasma

March 2, 2015

Again, we assume throughout that our base space B is connected.

1 Direct sums

Recall from last time:

Given vector bundles $p_1 : E_1 \longrightarrow B$ and $p_2 : E_2 \longrightarrow B$, their **direct sum** is $E_1 \oplus E_2 := E_1 \times_B E_2$ together with the projection map $p : E_1 \oplus E_2 \longrightarrow B$. Note that $p^{-1}(b) = p_1^{-1}(b) \oplus p_2^{-1}(b)$.

Proposition 1.1. The projection $E_1 \oplus E_2 \longrightarrow B$ is a vector bundle.

Example 1. The canonical line bundle on $\mathbb{R}P^n$, $E \longrightarrow \mathbb{R}P^n$ has an orthogonal complement given by $E^{\perp} = \{(\ell, v) \in \mathbb{R}P^n \times \mathbb{R}^{n+1} | v \perp \ell\}$. The map $E^{\perp} \longrightarrow \mathbb{R}P^n$, $(\ell, v) \mapsto \ell$ is an *n*-dimensional vector bundle, whose fiber over ℓ is ℓ^{\perp} .

Observe 1.2. We have an isomorphism of vector bundles $E \oplus E^{\perp} \xrightarrow{\cong} \mathbf{R}P^n \times \mathbf{R}^{n+1}$ given by $(\ell, v, w) \mapsto (\ell, v + w)$. When $n = 1, E \longrightarrow \mathbf{R}P^1 = S^1$ is the Mobius line bundle which we have shown to be non-trivial. Since in this case $E \cong E^{\perp}$, we see that the (direct) sum of two non-trivial bundles may be trivial. We will explore this algebraic structure more thoroughly later in the course.

2 Operations on vector bundles

Let $\operatorname{Vect}_{\Bbbk}$ be the category of finite dimensional vector spaces over $\mathbf{k} (= \mathbf{R}, \mathbf{C})$. This category is **enriched** over topological spaces in that for every $V, W \in \operatorname{Vect}_{\Bbbk}$, the set of linear maps $\operatorname{Hom}(V, W)$ admits a topology for which the composition rule is continuous.

Definition 2.1. An endofunctor $T : \operatorname{Vect}_{\Bbbk} \longrightarrow \operatorname{Vect}_{\Bbbk}$ is called **topological** if for every $V, W \in \operatorname{Vect}_{\Bbbk}$, the map $T : \operatorname{Hom}(V, W) \longrightarrow \operatorname{Hom}(TV, TW)$ is continuous.

Our goal is now to show that such a topological functor T induces an endofunctor of vector bundles, obtained by applying T "fiberwise".

If $p: E \longrightarrow B$ is a vector bundle, we define the set TE to be the union $\bigcup_{b \in B} T(E_b)$ and if $\varphi: E \longrightarrow F$ is a map of vector bundles we define the function

 $T(\varphi): TE \longrightarrow TF$ by the maps $T(\varphi_b): T(E_b) \longrightarrow T(F_b)$. We want to define a topology on TE such that $T\varphi$ will be continuous.

If $E = B \times V$, $TE = B \times TV$ already admits a topology. If, furthermore, $F = B \times W$ and $\varphi : E \longrightarrow F$ a map of vector bundles, then as we saw last time, φ corresponds to a map $\Phi : B \longrightarrow \operatorname{Hom}(V,W)$ and we obtain a map $T\Phi : B \longrightarrow \operatorname{Hom}(TV, TW)$ which then corresponds back to $T\varphi : TE \longrightarrow TF$. Thus, $T(\varphi)$ is continuous because $T\Phi$ is so. Note that, if φ is an isomorphism, then so is $T\varphi$ since in that case $T(\varphi_b)$ is an isomorphism for each $b \in B$.

Suppose E is trivial but has no preferred product structure. Choose an isomorphism $\alpha : E \longrightarrow B \times V$ and topologize TE by requiring $T(\alpha) : TE \longrightarrow B \times TV$ to be a homeomorphism (there is only one possible topology for TE that make it so). If $\beta : E \longrightarrow B \times V$ is any other isomorphism, then for $\varphi = \beta \alpha^{-1}$ we see that $T(\alpha)$ and $T(\beta)$ induce the same topology on E since $T(\beta) = T(\varphi)T(\alpha)$ is a homeomorphism as a composition of such. We thus see that the topology on TE does not depend on the choice of α .

Furthermore, it is clear that if $\varphi : E \longrightarrow F$ is a map of trivial bundles, then $T(\varphi)$ is a map of vector bundles, and that if $B \subseteq B$, $T(E)|_{B'} \cong T(E|_{B'})$ $[T(E)|_{B'} \cong B' \times TV].$

Suppose $p: E \longrightarrow B$ is arbitrary. Then if $U \subseteq B$ is such that $E|_U$ is trivial, we topologize $T(E|_U)$ as above. We then topologize TE by declaring a set $V \subseteq T(E)$ to be open iff $V \cap T(E|_U)$ is open for every U for which $E|_U$ is trivial over. As we saw last time, continuity is a local property so that for a map of arbitrary vector bundles $\varphi: E \longrightarrow F$, $T\varphi: TE \longrightarrow TF$ is continuous. If $B' \subset B$ then again $T(E|_{B'}) \cong T(E)|_{B'}$ so that the two possible topologies agree.

Let us give few examples of the operations on vector bundles we have constructed:

- i $E \otimes F$.
- ii $\operatorname{Hom}(E, F)$.
- iii E^* the dual bundle.

The identities these operations satisfy in vector spaces continue to hold for vector bundles. For example, we have an isomorphism $E \otimes (F' \oplus F'') \cong (E \otimes F') \oplus (E \otimes F'')$.

3 Transition functions

It is common to view a vector bundle is family of vector spaces, one for every point in the base, which are glued together. We now make this precise.

Definition 3.1. Let $p: E \longrightarrow B$ be a k-vector bundle with trivializations

that restrict to vector space isomorphisms $\varphi_{\alpha}|_{E_b} : E_b \xrightarrow{\cong} \{b\} \times V$. The **transi**tion functions are defined to be the maps

$$g_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \longrightarrow \operatorname{GL}(V) \coloneqq \operatorname{Iso}(V)$$

given by $g_{\beta\alpha}(b) = \varphi_{\beta}|_{E_b} (\varphi_{\alpha}|_{E_b})^{-1}$. Note that Iso(V) is a topological space since V is a topological vector space.

Observe 3.2. The transition functions of a vector bundle satisfy the **cocycle** condition: On triple intersections $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, $g_{\gamma\beta}g_{\beta\alpha} = g_{\gamma\alpha}$. This can be seen by the following diagram

$$V \xrightarrow{\varphi^{-1}} E_b \xrightarrow{\varphi_\beta} V \xrightarrow{\varphi_\beta^{-1}} E_b \xrightarrow{\varphi_\gamma} V$$

The previous observation admits a converse in the form of

Proposition 3.3. Let $\{U_{\alpha}\}$ be an open cover of B and suppose we are given maps

$$g_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \longrightarrow \operatorname{GL}(V) \coloneqq \operatorname{Iso}(V)$$

satisfying the cocycle condition. Then there is a vector bundle $p: E \longrightarrow B$ with fiber V whose transition functions are $g_{\beta\alpha}$.

Proof. Define $E := \coprod_{\alpha} U_{\alpha} \times V / \simeq$ where for every $b \in U_{\alpha} \cap U_{\beta}$, (b, v) (b, w) iff $w = g_{\beta\alpha}(b)(v)$. The cocycle condition implies that $g_{\alpha\beta} = g_{\beta\alpha}^{-1}$. Thus, if (b, v) is equivalent to (b, w), $v = g_{\alpha\beta}(b)(w)$ so that is symmetric. Transitivity follows in a similar way and thus is an equivalence relation. Define $p : E \longrightarrow B$ by p[b, v] = b. Then the map $U_{\alpha} \times V \longrightarrow \coprod_{\alpha} U_{\alpha} \times V \longrightarrow E$ admits a factorization

in which the left map is a homeomorphism. We see that $p: E \longrightarrow B$ is a vector bundle with transition functions $g_{\beta\alpha}$.

4 Paracompact spaces

Our goal for the remains of this talk and the next one is to establish a classification of vector bundles. We will need to make a mild assumption on the base space B and we review it now. The proofs of the following point-set topology assertions will be omitted. They can be found in Hatcher's book "vector bundles and K-theory".

Definition 4.1. A Hausdorff space X is **paracompact** if every open cover $\{U_{\alpha}\}_{\alpha \in I}$ admits a **partition of unity** with respect to it (or: subordinated to it), i.e., there are maps $\{h_{\alpha} : X \longrightarrow [0,1]\}_{\alpha \in I}$ satisfying:

- i For every $x \in X$, $h_{\alpha}(x) = 0$ for almost all α .
- ii For every $x \in X$, $\Sigma_{\alpha}h_{\alpha}(x) = 1$.
- iii For every α , $\overline{h_{\alpha}^{-1}(0,1]} \subseteq U_{\alpha}$.

Example 2.

- i Every compact Hausdorff space.
- ii Every CW-complex.
- iii Every metric space.

Definition 4.2. An open cover $\{U_{\alpha}\}$ of X is **locally finite** if for every $x \in X$ there is an open neighbourhood V_x such that $V_x \cap U_{\alpha} = \emptyset$ for almost all α .

There is another equivalent efinition of paracompact spaces as follows

Theorem 4.3. A space X is paracompact iff it is Hausdorff and every open cover has a locally finite open refinement.

Finally, we need a technical

Lemma 4.4. Let X be a paracompact space. If $\{U_{\alpha}\}$ is an open cover, there is a **countable** open cover $\{V_{\beta}\}$ such that each V_{β} is a disjoint union of opens, each contained in some U_{α} .

5 Classification of vector bundles

Recall that we have defined (in the exercise) the Grassmanian $G_n = G_n(\mathbf{k}^{\infty})$ to be the space of all *n*-dimensional subvector spaces of \mathbf{k}^{∞} . We also defined $E_n = E_n(\mathbf{k}^{\infty}) = \{(V, v) \in G_n \times \mathbf{k}^{\infty} | v \in V\}$ and showed that the projection map $\gamma_n : G_n \longrightarrow E_n$ given by $(V, v) \mapsto V$ defines an *n*-dimensional vector bundle.

The following proposition asserts that every *n*-dimensional vector bundle can be obtained as a pullback along γ_n .

Proposition 5.1. Let $p: E \longrightarrow B$ be a rank n vector bundle over \mathbf{k} with B paracompact. Then there exists a map $f: B \longrightarrow G_n(\mathbf{k}^\infty)$ and an isomorphism of vector bundles over $B, E \cong f^*E_n$.

Proof. We can assume that $p: E \longrightarrow B$ has trivializations $\varphi_{\alpha} : p^{-1}(U_{\alpha}) \stackrel{\cong}{\longrightarrow} U_{\alpha} \times V$ with $\{U_{\alpha}\}_{\alpha \in I}$ locally finite and countable. Let $\{h_{\alpha} : X \longrightarrow [0,1]\}$ be a partition of unity wrt $\{U_{\alpha}\}$ and define $g_{\alpha} : E \longrightarrow V$ by $g_{\alpha}|_{p^{-1}(U_{\alpha})} = (h_{\alpha}p) \cdot (\pi_{2}\varphi_{\alpha})$ (where $\pi_{2} : U_{\alpha} \times V \longrightarrow V$ is the projection map) and $g_{\alpha} = 0$ else. Note that g_{α} is continuous since $\overline{h_{\alpha}^{-1}(0,1]} \subseteq U_{\alpha}$. Choose an isomorphism $\Sigma_{\alpha}V \cong \mathbf{k}^{\infty}$ (*I* is countable) and define $g = \Sigma_{\alpha}g_{\alpha} : E \longrightarrow \Sigma_{\alpha}V \cong \mathbf{k}^{\infty}$. Then g is well-defined since $\{U_{\alpha}\}$ is locally finite. We now claim that g maps each E_{b} isomorphically onto V. This is so since if $h_{\alpha}(b) \neq 0$ then for any $e \in E_{b}, g(e) = \Sigma_{\alpha}g_{\alpha}(e) = (\Sigma_{\alpha}h_{\alpha}(b)) \cdot (\pi_{2}\varphi_{\alpha}(e)) = \pi_{2}(\varphi_{\alpha}(e)) \in V$. Define $f: B \longrightarrow G_{n}(\mathbf{k}^{\infty})$ via $f(b) = g(E_{b})$.

We consider the pullback

Then $f^*E_n(\mathbf{k}^{\infty})$ consists of triples (b, V, v) such that g maps E_b isomorphically onto $V \subseteq \mathbf{k}^{\infty}$. Thus, the map $E \longrightarrow f^*(E_n(\mathbf{k}^{\infty}))$ given by the isomorphism $g: E_b \xrightarrow{\cong} V$ on every fiber E_b is an isomorphism of vector bundles. \Box