Topological K-theory, Lecture 2

Matan Prasma

March 2, 2015

Abstract

Again, we assume throughout that our base space B is connected.

1 Direct sums

Recall from last time:
Given vector bundles $p_{1}: E_{1} \longrightarrow B$ and $p_{2}: E_{2} \longrightarrow B$, their direct sum is $E_{1} \oplus E_{2}:=E_{1} \times_{B} E_{2}$ together with the projection map $p: E_{1} \oplus E_{2} \longrightarrow B$. Note that $p^{-1}(b)=p_{1}^{-1}(b) \oplus p_{2}^{-1}(b)$.

Proposition 1.1. The projection $E_{1} \oplus E_{2} \longrightarrow B$ is a vector bundle.
Example 1. The canonical line bundle on $\mathbf{R} P^{n}, E \longrightarrow \mathbf{R} P^{n}$ has an orthogonal complement given by $E^{\perp}=\left\{(\ell, v) \in \mathbf{R} P^{n} \times \mathbf{R}^{n+1} \mid v \perp \ell\right\}$. The map $E^{\perp} \longrightarrow \mathbf{R} P^{n}$, $(\ell, v) \mapsto \ell$ is an n-dimensional vector bundle, whose fiber over ℓ is ℓ^{\perp}.
Observe 1.2. We have an isomorphism of vector bundles $E \oplus E^{\perp} \xrightarrow{\cong} \mathbf{R} P^{n} \times \mathbf{R}^{n+1}$ given by $(\ell, v, w) \mapsto(\ell, v+w)$. When $n=1, E \longrightarrow \mathbf{R} P^{1}=S^{1}$ is the Mobius line bundle which we have shown to be non-trivial. Since in this case $E \cong E^{\perp}$, we see that the (direct) sum of two non-trivial bundles may be trivial. We will explore this algebraic structure more thoroughly later in the course.

2 Operations on vector bundles

Let Vect ${ }_{k}$ be the category of finite dimensional vector spaces over $\mathbf{k}(=\mathbf{R}, \mathbf{C})$. This category is enriched over topological spaces in that for every $V, W \in \operatorname{Vect}_{\mathfrak{k}}$, the set of linear maps $\operatorname{Hom}(V, W)$ admits a topology for which the composition rule is continuous.

Definition 2.1. An endofunctor $T:$ Vect $_{\mathfrak{k}} \longrightarrow$ Vect $_{\mathfrak{k}}$ is called topological if for every $V, W \in \operatorname{Vect}_{\mathrm{k}}$, the map $T: \operatorname{Hom}(V, W) \longrightarrow \operatorname{Hom}(T V, T W)$ is continuous.

Our goal is now to show that such a topological functor T induces an endofunctor of vector bundles, obtained by applying T "fiberwise".

If $p: E \longrightarrow B$ is a vector bundle, we define the set $T E$ to be the union $\bigcup_{b \in B} T\left(E_{b}\right)$ and if $\varphi: E \longrightarrow F$ is a map of vector bundles we define the function
$T(\varphi): T E \longrightarrow T F$ by the maps $T\left(\varphi_{b}\right): T\left(E_{b}\right) \longrightarrow T\left(F_{b}\right)$. We want to define a topology on $T E$ such that $T \varphi$ will be continuous.

If $E=B \times V, T E=B \times T V$ already admits a topology. If, furthermore, $F=B \times W$ and $\varphi: E \longrightarrow F$ a map of vector bundles, then as we saw last time, φ corresponds to a map $\Phi: B \longrightarrow \operatorname{Hom}(V, W)$ and we obtain a map $T \Phi: B \longrightarrow \operatorname{Hom}(T V, T W)$ which then corresponds back to $T \varphi: T E \longrightarrow T F$. Thus, $T(\varphi)$ is continuous because $T \Phi$ is so. Note that, if φ is an isomorphism, then so is $T \varphi$ since in that case $T\left(\varphi_{b}\right)$ is an isomorphism for each $b \in B$.

Suppose E is trivial but has no preferred product structure. Choose an isomorphism $\alpha: E \longrightarrow B \times V$ and topologize $T E$ by requiring $T(\alpha): T E \longrightarrow$ $B \times T V$ to be a homeomorphism (there is only one possible topology for $T E$ that make it so). If $\beta: E \longrightarrow B \times V$ is any other isomorphism, then for $\varphi=\beta \alpha^{-1}$ we see that $T(\alpha)$ and $T(\beta)$ induce the same topology on E since $T(\beta)=T(\varphi) T(\alpha)$ is a homeomorphism as a composition of such. We thus see that the topology on $T E$ does not depend on the choice of α.

Furthermore, it is clear that if $\varphi: E \longrightarrow F$ is a map of trivial bundles, then $T(\varphi)$ is a map of vector bundles, and that if $B \subseteq B,\left.T(E)\right|_{B^{\prime}} \cong T\left(\left.E\right|_{B^{\prime}}\right)$ $\left[\left.T(E)\right|_{B^{\prime}} \cong B^{\prime} \times T V\right]$.

Suppose $p: E \longrightarrow B$ is arbitrary. Then if $U \subseteq B$ is such that $\left.E\right|_{U}$ is trivial, we topologize $T\left(\left.E\right|_{U}\right)$ as above. We then topologize $T E$ by declaring a set $V \subseteq T(E)$ to be open iff $V \cap T\left(\left.E\right|_{U}\right)$ is open for every U for which $\left.E\right|_{U}$ is trivial over. As we saw last time, continuity is a local property so that for a map of arbitrary vector bundles $\varphi: E \longrightarrow F, T \varphi: T E \longrightarrow T F$ is continuous. If $B^{\prime} \subset B$ then again $\left.T\left(\left.E\right|_{B^{\prime}}\right) \cong T(E)\right|_{B^{\prime}}$ so that the two possible topologies agree.

Let us give few examples of the operations on vector bundles we have constructed:
i $E \otimes F$.
ii $\operatorname{Hom}(E, F)$.
iii E^{*} - the dual bundle.
The identities these operations satisfy in vector spaces continue to hold for vector bundles. For example, we have an isomorphism $E \otimes\left(F^{\prime} \oplus F^{\prime \prime}\right) \cong(E \otimes$ $\left.F^{\prime}\right) \oplus\left(E \otimes F^{\prime \prime}\right)$.

3 Transition functions

It is common to view a vector bundle is family of vector spaces, one for every point in the base, which are glued together. We now make this precise.

Definition 3.1. Let $p: E \longrightarrow B$ be a k-vector bundle with trivializations

that restrict to vector space isomorphisms $\left.\varphi_{\alpha}\right|_{E_{b}}: E_{b} \xrightarrow{\cong}\{b\} \times V$. The transition functions are defined to be the maps

$$
g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \longrightarrow \mathrm{GL}(V):=\operatorname{Iso}(V)
$$

given by $g_{\beta \alpha}(b)=\left.\varphi_{\beta}\right|_{E_{b}}\left(\left.\varphi_{\alpha}\right|_{E_{b}}\right)^{-1}$. Note that $\operatorname{Iso}(V)$ is a topological space since V is a topological vector space.

Observe 3.2. The transition functions of a vector bundle satisfy the cocycle condition: On triple intersections $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}, g_{\gamma \beta} g_{\beta \alpha}=g_{\gamma \alpha}$. This can be seen by the following diagram

$$
V \xrightarrow{\varphi^{-1}} E_{b} \xrightarrow{\varphi_{\beta}} V \xrightarrow{\varphi_{\beta}^{-1}} E_{b} \xrightarrow{\varphi_{\gamma}} V
$$

The previous observation admits a converse in the form of
Proposition 3.3. Let $\left\{U_{\alpha}\right\}$ be an open cover of B and suppose we are given maps

$$
g_{\beta \alpha}: U_{\alpha} \cap U_{\beta} \longrightarrow \mathrm{GL}(V):=\operatorname{Iso}(V)
$$

satisfying the cocycle condition. Then there is a vector bundle $p: E \longrightarrow B$ with fiber V whose transition functions are $g_{\beta \alpha}$.

Proof. Define $E:=\bigsqcup_{\alpha} U_{\alpha} \times V / \simeq$ where for every $b \in U_{\alpha} \cap U_{\beta}$, $(b, v)(b, w)$ iff $w=g_{\beta \alpha}(b)(v)$. The cocycle condition implies that $g_{\alpha \beta}=g_{\beta \alpha}^{-1}$. Thus, if (b, v) is equivalent to $(b, w), v=g_{\alpha \beta}(b)(w)$ so that is symmetric. Transitivity follows in a similar way and thus is an equivalence relation. Define $p: E \longrightarrow B$ by $p[b, v]=b$. Then the $\operatorname{map} U_{\alpha} \times V \longrightarrow \amalg_{\alpha} U_{\alpha} \times V \longrightarrow E$ admits a factorization

in which the left map is a homeomorphism. We see that $p: E \longrightarrow B$ is a vector bundle with transition functions $g_{\beta \alpha}$.

4 Paracompact spaces

Our goal for the remains of this talk and the next one is to establish a classification of vector bundles. We will need to make a mild assumption on the base space B and we review it now. The proofs of the following point-set topology assertions will be omitted. They can be found in Hatcher's book "vector bundles and K-theory" .

Definition 4.1. A Hausdorff space X is paracompact if every open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ admits a partition of unity with respect to it (or: subordinated to it), i.e., there are maps $\left\{h_{\alpha}: X \longrightarrow[0,1]\right\}_{\alpha \in I}$ satisfying:
i For every $x \in X, h_{\alpha}(x)=0$ for almost all α.
ii For every $x \in X, \Sigma_{\alpha} h_{\alpha}(x)=1$.
iii For every $\alpha, \overline{h_{\alpha}^{-1}(0,1] \subseteq U_{\alpha}}$.

Example 2.

i Every compact Hausdorff space.
ii Every CW-complex.
iii Every metric space.
Definition 4.2. An open cover $\left\{U_{\alpha}\right\}$ of X is locally finite if for every $x \in X$ there is an open neighbourhood V_{x} such that $V_{x} \cap U_{\alpha}=\varnothing$ for almost all α.

There is another equivalent efinition of paracompact spaces as follows
Theorem 4.3. A space X is paracompact iff it is Hausdorff and every open cover has a locally finite open refinement.

Finally, we need a technical
Lemma 4.4. Let X be a paracompact space. If $\left\{U_{\alpha}\right\}$ is an open cover, there is a countable open cover $\left\{V_{\beta}\right\}$ such that each V_{β} is a disjoint union of opens, each contained in some U_{α}.

5 Classification of vector bundles

Recall that we have defined (in the exercise) the Grassmanian $G_{n}=G_{n}\left(\mathbf{k}^{\infty}\right)$ to be the space of all n-dimensional subvector spaces of \mathbf{k}^{∞}. We also defined $E_{n}=E_{n}\left(\mathbf{k}^{\infty}\right)=\left\{(V, v) \in G_{n} \times \mathbf{k}^{\infty} \mid v \in V\right\}$ and showed that the projection map $\gamma_{n}: G_{n} \longrightarrow E_{n}$ given by $(V, v) \mapsto V$ defines an n-dimensional vector bundle.

The following proposition asserts that every n-dimensional vector bundle can be obtained as a pullback along γ_{n}.

Proposition 5.1. Let $p: E \longrightarrow B$ be a rank n vector bundle over \mathbf{k} with B paracompact. Then there exists a map $f: B \longrightarrow G_{n}\left(\mathbf{k}^{\infty}\right)$ and an isomorphism of vector bundles over $B, E \cong f^{*} E_{n}$.
Proof. We can assume that $p: E \longrightarrow B$ has trivializations $\varphi_{\alpha}: p^{-1}\left(U_{\alpha}\right) \xrightarrow{\cong}$ $U_{\alpha} \times V$ with $\left\{U_{\alpha}\right\}_{\alpha \in I}$ locally finite and countable. Let $\left\{h_{\alpha}: X \longrightarrow[0,1]\right\}$ be a partition of unity wrt $\left\{U_{\alpha}\right\}$ and define $g_{\alpha}: E \longrightarrow V$ by $\left.g_{\alpha}\right|_{p^{-1}\left(U_{\alpha}\right)}=\left(h_{\alpha} p\right) \cdot\left(\pi_{2} \varphi_{\alpha}\right)$ (where $\pi_{2}: U_{\alpha} \times V \longrightarrow V$ is the projection map) and $g_{\alpha}=0$ else. Note that g_{α} is continuous since $\overline{h_{\alpha}^{-1}(0,1] \subseteq U_{\alpha}}$. Choose an isomorphism $\Sigma_{\alpha} V \cong \mathbf{k}^{\infty}(I$ is countable) and define $g=\Sigma_{\alpha} g_{\alpha}: E \longrightarrow \Sigma_{\alpha} V \cong \mathbf{k}^{\infty}$. Then g is well-defined since $\left\{U_{\alpha}\right\}$ is locally finite. We now claim that g maps each E_{b} isomorphically onto V. This is so since if $h_{\alpha}(b) \neq 0$ then for any $e \in E_{b}, g(e)=\Sigma_{\alpha} g_{\alpha}(e)=\left(\Sigma_{\alpha} h_{\alpha}(b)\right)$. $\left(\pi_{2} \varphi_{\alpha}(e)\right)=\pi_{2}\left(\varphi_{\alpha}(e)\right) \in V$. Define $f: B \longrightarrow G_{n}\left(\mathbf{k}^{\infty}\right)$ via $f(b)=g\left(E_{b}\right)$.

We consider the pullback

Then $f^{*} E_{n}\left(\mathbf{k}^{\infty}\right)$ consists of triples (b, V, v) such that g maps E_{b} isomorphically onto $V \subseteq \mathbf{k}^{\infty}$. Thus, the map $E \longrightarrow f^{*}\left(E_{n}\left(\mathbf{k}^{\infty}\right)\right)$ given by the isomorphism $g: E_{b} \xrightarrow{\cong} V$ on every fiber E_{b} is an isomorphism of vector bundles.

