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Again, we assume throughout that our base space B is connected.

1 Direct sums

Recall from last time:
Given vector bundles p1 ∶ E1 Ð→ B and p2 ∶ E2 Ð→ B, their direct sum is

E1 ⊕E2 ∶= E1 ×B E2 together with the projection map p ∶ E1 ⊕E2 Ð→ B. Note
that p−1(b) = p−11 (b)⊕ p−12 (b).

Proposition 1.1. The projection E1 ⊕E2 Ð→ B is a vector bundle.

Example 1. The canonical line bundle on RPn, E Ð→RPn has an orthogonal
complement given by E⊥ = {(`, v) ∈ RPn ×Rn+1∣v ⊥ `}. The map E⊥ Ð→RPn,
(`, v)↦ ` is an n-dimensional vector bundle, whose fiber over ` is `⊥.

Observe 1.2. We have an isomorphism of vector bundles E⊕E⊥ ≅Ð→RPn×Rn+1

given by (`, v,w) ↦ (`, v +w). When n = 1, E Ð→RP 1 = S1 is the Mobius line
bundle which we have shown to be non-trivial. Since in this case E ≅ E⊥, we see
that the (direct) sum of two non-trivial bundles may be trivial. We will explore
this algebraic structure more thoroughly later in the course.

2 Operations on vector bundles

Let Vectk be the category of finite dimensional vector spaces over k (= R,C).
This category is enriched over topological spaces in that for every V,W ∈ Vectk,
the set of linear maps Hom(V,W ) admits a topology for which the composition
rule is continuous.

Definition 2.1. An endofunctor T ∶ Vectk Ð→ Vectk is called topological if for
every V,W ∈ Vectk, the map T ∶ Hom(V,W )Ð→ Hom(TV,TW ) is continuous.

Our goal is now to show that such a topological functor T induces an endo-
functor of vector bundles, obtained by applying T “fiberwise”.

If p ∶ E Ð→ B is a vector bundle, we define the set TE to be the union

⋃b∈B T (Eb) and if ϕ ∶ E Ð→ F is a map of vector bundles we define the function
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T (ϕ) ∶ TE Ð→ TF by the maps T (ϕb) ∶ T (Eb) Ð→ T (Fb). We want to define a
topology on TE such that Tϕ will be continuous.

If E = B × V , TE = B × TV already admits a topology. If, furthermore,
F = B ×W and ϕ ∶ E Ð→ F a map of vector bundles, then as we saw last
time, ϕ corresponds to a map Φ ∶ B Ð→ Hom(V,W ) and we obtain a map
TΦ ∶ B Ð→ Hom(TV,TW ) which then corresponds back to Tϕ ∶ TE Ð→ TF .
Thus, T (ϕ) is continuous because TΦ is so. Note that, if ϕ is an isomorphism,
then so is Tϕ since in that case T (ϕb) is an isomorphism for each b ∈ B.

Suppose E is trivial but has no preferred product structure. Choose an
isomorphism α ∶ E Ð→ B × V and topologize TE by requiring T (α) ∶ TE Ð→
B×TV to be a homeomorphism (there is only one possible topology for TE that
make it so). If β ∶ E Ð→ B × V is any other isomorphism, then for ϕ = βα−1 we
see that T (α) and T (β) induce the same topology on E since T (β) = T (ϕ)T (α)
is a homeomorphism as a composition of such. We thus see that the topology
on TE does not depend on the choice of α.

Furthermore, it is clear that if ϕ ∶ E Ð→ F is a map of trivial bundles,
then T (ϕ) is a map of vector bundles, and that if B ⊆ B, T (E)∣B′ ≅ T (E∣B′)
[T (E)∣B′ ≅ B′ × TV ].

Suppose p ∶ E Ð→ B is arbitrary. Then if U ⊆ B is such that E∣U is trivial,
we topologize T (E∣U) as above. We then topologize TE by declaring a set
V ⊆ T (E) to be open iff V ∩T (E∣U) is open for every U for which E∣U is trivial
over. As we saw last time, continuity is a local property so that for a map of
arbitrary vector bundles ϕ ∶ E Ð→ F , Tϕ ∶ TE Ð→ TF is continuous. If B′ ⊂ B
then again T (E∣B′) ≅ T (E)∣B′ so that the two possible topologies agree.

Let us give few examples of the operations on vector bundles we have con-
structed:

i E ⊗ F .

ii Hom(E,F ).

iii E∗ – the dual bundle.

The identities these operations satisfy in vector spaces continue to hold for
vector bundles. For example, we have an isomorphism E ⊗ (F ′ ⊕ F ′′) ≅ (E ⊗
F ′)⊕ (E ⊗ F ′′).

3 Transition functions

It is common to view a vector bundle is family of vector spaces, one for every
point in the base, which are glued together. We now make this precise.

Definition 3.1. Let p ∶ E Ð→ B be a k-vector bundle with trivializations

E∣Uα

!!CC
CC

CC
CC

ϕα // Uα × V

{{xx
xx

xx
xx

x

B
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that restrict to vector space isomorphisms ϕα∣Eb ∶ Eb
≅Ð→ {b} × V . The transi-

tion functions are defined to be the maps

gβα ∶ Uα ∩Uβ Ð→ GL(V ) ∶= Iso(V )

given by gβα(b) = ϕβ ∣Eb (ϕα∣Eb)
−1

. Note that Iso(V ) is a topological space since
V is a topological vector space.

Observe 3.2. The transition functions of a vector bundle satisfy the cocycle
condition: On triple intersections Uα ∩ Uβ ∩ Uγ , gγβgβα = gγα. This can be
seen by the following diagram

V
ϕ−1Ð→ Eb

ϕβÐ→ V
ϕ−1βÐ→ Eb

ϕγÐ→ V

The previous observation admits a converse in the form of

Proposition 3.3. Let {Uα} be an open cover of B and suppose we are given
maps

gβα ∶ Uα ∩Uβ Ð→ GL(V ) ∶= Iso(V )
satisfying the cocycle condition. Then there is a vector bundle p ∶ E Ð→ B with
fiber V whose transition functions are gβα.

Proof. Define E ∶= ∐αUα × V / ≃ where for every b ∈ Uα ∩ Uβ , (b, v) (b,w) iff
w = gβα(b)(v). The cocycle condition implies that gαβ = g−1βα. Thus, if (b, v) is
equivalent to (b,w), v = gαβ(b)(w) so that is symmetric. Transitivity follows
in a similar way and thus is an equivalence relation. Define p ∶ E Ð→ B by
p[b, v] = b. Then the map Uα × V Ð→∐αUα × V Ð→ E admits a factorization

Uα × V

$$IIIIIIIII
// E

}}{{
{{

{{
{{

E∣Uα

in which the left map is a homeomorphism. We see that p ∶ E Ð→ B is a vector
bundle with transition functions gβα.

4 Paracompact spaces

Our goal for the remains of this talk and the next one is to establish a classifi-
cation of vector bundles. We will need to make a mild assumption on the base
space B and we review it now. The proofs of the following point-set topology
assertions will be omitted. They can be found in Hatcher’s book “vector bundles
and K-theory”.

Definition 4.1. A Hausdorff space X is paracompact if every open cover
{Uα}α∈I admits a partition of unity with respect to it (or: subordinated to
it), i.e., there are maps {hα ∶X Ð→ [0,1]}α∈I satisfying:
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i For every x ∈X, hα(x) = 0 for almost all α.

ii For every x ∈X, Σαhα(x) = 1.

iii For every α, h−1α (0,1] ⊆ Uα.

Example 2.

i Every compact Hausdorff space.

ii Every CW-complex.

iii Every metric space.

Definition 4.2. An open cover {Uα} of X is locally finite if for every x ∈ X
there is an open neighbourhood Vx such that Vx ∩Uα = ∅ for almost all α.

There is another equivalent efinition of paracompact spaces as follows

Theorem 4.3. A space X is paracompact iff it is Hausdorff and every open
cover has a locally finite open refinement.

Finally, we need a technical

Lemma 4.4. Let X be a paracompact space. If {Uα} is an open cover, there
is a countable open cover {Vβ} such that each Vβ is a disjoint union of opens,
each contained in some Uα.

5 Classification of vector bundles

Recall that we have defined (in the exercise) the Grassmanian Gn = Gn(k∞)
to be the space of all n-dimensional subvector spaces of k∞. We also defined
En = En(k∞) = {(V, v) ∈ Gn × k∞∣v ∈ V } and showed that the projection map
γn ∶ Gn Ð→ En given by (V, v)↦ V defines an n-dimensional vector bundle.

The following proposition asserts that every n-dimensional vector bundle
can be obtained as a pullback along γn.

Proposition 5.1. Let p ∶ E Ð→ B be a rank n vector bundle over k with B
paracompact. Then there exists a map f ∶ B Ð→ Gn(k∞) and an isomorphism
of vector bundles over B, E ≅ f∗En.

Proof. We can assume that p ∶ E Ð→ B has trivializations ϕα ∶ p−1(Uα)
≅Ð→

Uα × V with {Uα}α∈I locally finite and countable. Let {hα ∶ X Ð→ [0,1]} be a
partition of unity wrt {Uα} and define gα ∶ E Ð→ V by gα∣p−1(Uα) = (hαp)⋅(π2ϕα)
(where π2 ∶ Uα × V Ð→ V is the projection map) and gα = 0 else. Note that

gα is continuous since h−1α (0,1] ⊆ Uα. Choose an isomorphism ΣαV ≅ k∞ (I is
countable) and define g = Σαgα ∶ E Ð→ ΣαV ≅ k∞. Then g is well-defined since
{Uα} is locally finite. We now claim that g maps each Eb isomorphically onto
V . This is so since if hα(b) ≠ 0 then for any e ∈ Eb, g(e) = Σαgα(e) = (Σαhα(b)) ⋅
(π2ϕα(e)) = π2(ϕα(e)) ∈ V . Define f ∶ B Ð→ Gn(k∞) via f(b) = g(Eb).
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We consider the pullback

f∗(En(k∞)) //

��

En(k∞)

��
B // Gn(k∞).

Then f∗En(k∞) consists of triples (b, V, v) such that g maps Eb isomorphically
onto V ⊆ k∞. Thus, the map E Ð→ f∗(En(k∞)) given by the isomorphism

g ∶ Eb
≅Ð→ V on every fiber Eb is an isomorphism of vector bundles.
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