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Recall that we assume throughout our base space B is connected.

1 Classification of vector bundles — continued

Last time we showed that any n-dimensional vector bundle p : £ — B is
isomorphic to a vector bundle obtained via pulling back the bundle
Yn : B, — G, as depicted below

B2 [ (Ba(k®)) L B, (k®)k T

S b

B———— Gn (k™).

Furthermore, in such a setting, one can see that the map Ffbo is a linear injection
on each fiber.
The following Theorem will be a key in the second part of the classification:

Theorem 1.1. Let B be paracompact and let p: E — B x I be a vector bundle.
Then E|X><{O} = E|X><{1}-

We first prove a couple of lemmas

Lemma 1.2. Let B be paracompact. A wvector bundle p : E — B x I whose
restrictions over B x [0,t] and over B x [t,1] are trivial is trivial as well.

Proof. Let hg : Ey := E|B><[0,t]i>Bx[0,t]xV and hy : By := E|gu1) — Bx[t,1]xV
be isomorphisms to trivial bundles. The maps ho, h1 may not agree on E|p, ()
so we cannot yet glue them. Define an isomorphism hg; : B x [£,1] x V —
B x[t,1]xV by duplicating the map hoh!: Bx {t} xV — Bx {t} xV on each
slice Bx {s}xV for ¢t <s <1 and set hq := horhi. Then hq is an isomorphism of

bundles and agrees with hg on E|Bx{t}. we can now glue together hg and h; to
get the desired. O

Lemma 1.3. For every vector bundle p: E — B x I there is an open cover
{Us}a such that each restriction E|y_ <1 —> Uy x I is trivial.



Proof. For each b € B, take open neighbourhoods U, with 0 =tg <t; <...<tp =1
such that El|y, (s, ,+.] — Up x [ti—1,t:] is trivial. This is possible because for
each (b,t) we can find an open neighbourhood of the form Uy x J; (where J; is
an open interval) over which F is trivial; if we then fix b then the collection {J;}
covers I and we can take a finite subcover Jy, ..., Jy41 and choose t; € J; N Ji,1;
this way E remains trivial over Up x [t;-1,t;]. Now, by Lemma E is trivial
over Up x I. O

Proof of Theorem[1.1l By Lemma take an open cover {U, }, of B such that
E|y,«1 is trivial. Assume first that B is compact. Then we can take a cover of
the form {U;},. Take a partition of unity {h; : B — I}, subordinated to
{U;}. Fori>0,set g;=hy+...+h; (g0=0, g, =1), let B; =Gr(g;) € Bx1I be
the graph of g; and let p; : E; — B; be the restriction of F to B;. The map
B; — B;_1 given by (b,g;(b)) ~ (b,gi;-1(b)) is a homeomorphism, and since
E|y,«1 is trivial, the dotted isomorphism in the diagram below exists:

EBm(UixI) """"" T >

Biflﬂ(UiXI)

Biﬂ(UiXI) = Bi_lﬂ(UiXI)

(specifically: a restriction of a trivial bundle is trivial, and trivial bundles over
homeomorphic bases are isomorphic.) Since outside U;, h; = 0, E
E

fi + El, = E|p, ,. The composition f = f; o...o f, is then an isomorphism
from E|Bn = E|B><{1} to E|B0 = E|B><{0}-

Assume now B is paracompact. Take a countable cover {V;}; such that each
V; is a disjoint union of opens, each contained in some U,. This means that F is
trivial over each V; x I. Let {h; : B —> I} be a partition of unity subordinated
to {V;}; and set as before g; := hy + ... + h; and p; : E; — B; := Gr(g;) the
restriction. As before, we obtain isomorphisms f; : E; =, FE;.1. The infinite
composition f = fyfo... is well-defined since for every point, almost all f;’s are
the identity. As before, f is an isomorphism from E|g.1} to E|pxqo}- O

BlﬁUlL =
B;_1nU¢, We obtain an isomorphism of vector bundles (over different bases)

In other words, Theorem [I.1] tells us that homotopic maps induce isomorphic
pullback bundles. Let VBuny (B) be the set of isomorphism classes of rank n
k-vector bundles over B.

Corollary 1.4. A homotopy equivalence of paracompact spaces f : A — B
induces a bijection f* : VBung(B) — VBuny(A). In particular, any vector
bundle over a contractible paracompact space is trivial.

Proof. If g is a homotopy inverse of f, then f*g* =id* =id and g* f* =id" =
id. U



We are ready to state and prove the classification theorem.

Theorem 1.5. Let B be paracompact. Then pullback along v, : E,(k*) —
G (k) induces a bijection

[B,Gn(k™)] — VBuny(B) (1)
(]~ "B

Proof. The map is well-defined since two homotopic maps give two isomorphic
pullback vector bundles. Proposition 5.1 of Lecture 2 gives surjectivity of [1| so
we are left with injectivity.

Assume we have two maps fo, f1 : B — G, (k*) which induce isomorphic
bundles upon pullback. It would be convenient to assume we are given a vector
bundle p : E — B and a couple of isomorphisms of bundles ig : =, foEn

and i1 : = fi B, so that we have the following commutative diagram

p
B fo

Gn (k™)

in which the maps fo and f; are obtained as pullbacks of fy and f; respectively.
Define gg := 7 foip and gy := 7 f1i;. Then gg,g1 : E — k™ are linear injec-
tions on each fiber and satisfy fo(b) = go(Ep) and f1(b) = g1(Ep). It will thus
be enough to find a homotopy {g;} from gy to g1 in which all maps g; are linear
injections on each fiber since we could then define f;(b) = g¢:(Ep) € G (k™) to
obtain a homotopy from fy to fi.
Composing go with the maps L; : k* — k* given by

(7}1,’[}27 ) — (1 - t)(’l}hvg, ) + t(v1,0,02,07 )

gives a homotopy from gy to a map g through maps which are linear injections
on each fiber. The image of gg lies in the subspace of k* consisting of vectors
with non-zero components only in the odd coordinates. Similarly, we can replace
g1 by a map g7 : F — k* whose image lies in the subspace of k* consisting
of vectors with non-zero components only in the even coordinates.Clearly, it is
enough to construct a homotopy {g;} from gg to g1 through maps which are
linear injections on each fiber. But this is easy now: we set g; := (1 —¢)go + tg1
and finish the argument.

O



Theorem [I.5] justifies the following terminology.

Definition 1.6. The bundle v, : E,(k*) — G, (k™) is called the universal
rank-n vector bundle.

2 Applications of the classification theorem

Let us see how the classification theorem can be used.

Example 1. The bundle v, : E,(k*) — G, (k*) admits an inner product,
induced from an inner product on k*. Since every rank-n vector bundle is
obtained as a pullback along ~,,, we deduce that any vector bundle admits an
inner product — that obtained by pulling back the one on ,. This is a shortened
proof to what you already showed in the exercise.

Example 2. Let us compute the Picard group of complex projective spaces.
By the classification theorem we have

VBunk(CP") = [CP",G,(C*®)] = [CP™,CP™].

You have shown in the exercise that V3(C®) — G1(C>) is a fiber bundle
with fiber GL;(C). By a theorem you proved in Algebraic topology I, any fiber
bundle is a Serre fibration, so that we have a fibration sequence

GL1(C) — V1 (C™) — G1(C™). (3)

You have seen in the exercise class that the spaces V,,(k*) are contractible and
it is easy to see that GL1(C) ~ S* (this is so since GL; (C) = C~{0}). Thus, the
long exact sequence for the fibration sequence implies that G1(C*°) = CP* is
a K(Z,2). Now, an application of Brown’s representability theorem (which you
proved in Algebraic Topology I) implies that [CP",CP*] = [CP",K(Z,2)] =
H?(CP™;,Z) —i.e. the second cohomology group of CP". Using cellular coho-
mology (this is an elementary way of calculation, given in any first course in
cohomology) we deduce from the cell structure of CP™ (one cell in each even
dimension and no others) that Pic(CP™) = VBung(CP™) ¥ H*(CP";Z) = Z.
In fact, it follows from what you showed in the exercise that group structure
is given by the tensor product. Thus, there is a line bundle ¢ on CP™ (corre-
sponding to 1 € Z) such that ( ® ... ®  (n-times) correspond to n € Z — this is
the canonical line bundle introduced in Lecture 1!
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