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1 Applications of the classification theorem —
continued

Let us see how the classification theorem can further be used.

Example 1. The bundle 7, : E,(k*) — G,(k*) admits an inner product,
induced from an inner product on k*. Since every rank-n vector bundle is
obtained as a pullback along 7,, we deduce that any vector bundle admits an
inner product — that obtained by pulling back the one on -,. This is a shortened
proof to what you already showed in the exercise.

Example 2. Let us compute the Picard group of real projective spaces. By
the classification theorem we have

VBung (RP") = [RP",G1(R%)] = [RP",RP*].

You have shown in the exercise that Vi(R*) — G1(R*) is a fiber bundle
with fiber GL; (R). By a theorem you proved in Algebraic topology I, any fiber
bundle is a Serre fibration, so that we have a fibration sequence

GL1(R) — Vi(R%) — G1(R™). (1)

You have seen in the exercise class that the spaces V,,(k*) are contractible and it
is easy to see that GL; (R) ~ Z/2. Thus, the long exact sequence for the fibration
sequence |1 implies that G1(R*) = RP* is a K(Z/2,1). Now, an application of
Brown’s representability theorem (which you proved in Algebraic Topology I)
implies that [RP™", RP*] = [RP",K(Z/2,1)] = H'(RP™;Z/2) - i.e. the first
cohomology group of RP™ with coefficients in Z/2. Using cellular cohomology
(this is an elementary way of calculation, given in any first course in cohomology)
we deduce that Pic(RP") = VBung (RP") = HY(RP™ Z/2) = Z/2. In fact, it
follows from what you showed in the exercise that group structure is given by
the tensor product. Thus, there is a line bundle ¢ on CP™ (corresponding to
1€ Z) such that ( ® ... ® { (n-times) correspond to n € Z — this is the canonical
line bundle introduced in Lecture 1!

Observe 1.1. Let B be a paracompact space. Then any n-dimensional bundle
can be embedded in a trivial infinite bundle.



Proof. Write

E —— f*(E, (k™)) N En(k*)k—s G, (k™) x k=

\l f |

B G (k™).

We saw last time that f is a linear injection on fibers and to the composite
E — G, (k™) x k* has the same property. O

Corollary 1.2. If B is compact Hausdorff, any n-dimensional vector bundle
can be embedded in a trivial (finite dimensional) bundle.

Proof. For d>n,

Gn(k) c Gk c...c | Gu(k?) = G (k™).

d>n

Since B is compact, the classifying map B — G,(k™) factors as B z,
Gn(k?) - G, (k™) and by the pasting lemma for pullbacks we get that
[ E, (k™) 2 f*E,(k?%). We thus get

B2 o (Ba(k?)) L By (k) G (i) x K

SN,k

B——— G, (k%).

i.e. an embedding of E in a trivial bundle.

2 K-theory

Corollary is going to be crucial for us. We thus assume throughout that
all our spaces are compact Hausdorff. This includes for example all finite CW-
complexes.

Let B be a connected space. Denote by VBuny (B) the set of isomorphism
classes of n-dimensional vector bundles over B. Set VBuny (B) = @,,50 VBuny (B)
where by convention VBunﬂ(B ) = %. The direct sum of vector bundles induces
an abelian monoid structure on VBun;,(B). We can further extend this by set-
ting, for a non-connected space B[], B, (a disjoint union of path components),
VBun(B) =[], VBun*(B,) with the ordinary abelian monoid structure.



2.1 Group completion

We would like to turn the abelian monoid VBuny(B) (or VBun(B)) into an
abelian group so that we could apply group theoretic methods in calculations.
Of course, we need some canonical way to do so, and we can obtain such by
requiring a universal property. The following is a purely algebraic method.

Definition 2.1. Let A be an abelian monoid. A group completion of A is an
abelian group K(A) together with a map of (abelian) monoids a = ay : A —
K(A) such that for any abelian group A’ and any map of abelian monoids
p: A — A’ there exists a unique map of abelian groups p : K(A) — A’
rendering the following diagram commutative:

A—% K(A) (2)

I
|3p
P
\Y

A/
Remark 2.2. Clearly, if K(A) exists, it is unique up to a unique isomorphism.

Let us construct K (A) for an arbitrary (A, ®). Let F(A) be the free abelian
group generated by the underlying set of A and let E(A) € F(A) be the sub-
group generated by elements of the form a +a’ —a ® a’ where + = +p(4). The
quotient K(A) := F(A)/E(A) is clearly an abelian group which together with
the obvious map «: A — K (A) satisfy the universal property of

Alternatively we can define K(A) as follows. Let A : A — A x A be
the diagonal. The quotient K(A) = A x A/A(A) inherits an abelian monoid
structure which has inverses since [a,a] = 0. We think of an element [a,b] of
K(A) as a formal difference a — b where [a,b] = [a/,b'] if a® b =a’ ®b. We set
as:A— K(A) by a~ [a,0]. Since K(A) is functorial in A, we get for any
map of abelian monoids p: A — B, a commutative square

A4>K(A)
P //
l v K(p)

s
4 ag

If B is in fact an abelian group, ap is an isomorphism so that rho := ag o K(p)
satisfy the universal property.

Exercise 2.3.

e Let AbGp and AbMon be the categories of abelian groups and abelian monoids
respectively. Show that there is an adjunction

K :AbMon _ T~ AbGp:U

where U is the forgetful functor.



e Show that if A was a (commutative) semi-ring (i.e. admits a commutative
‘multiplication’ operation ® which distributes over @) then K(A) is in fact
a commutative ring.

Recall that our assumption throughout was that our base space B is con-
nected.

Definition 2.4. The K-groups of a connected space B are defined to be
K(B)=KU(B) := K(VBung(B), )

and
KO(B) = K(VBung(B)).

where the monoid structure is taken to be direct sum of vector bundles and the
ring structure is induced from tensor product of bundles.
If B =11, B a disjoint union of path components, we set

K(B) = K(VBun(B))
and similarly for KO(B).

From now on, we will focus on K(B) but almost everything works equally
well for KO(B).

Let CH be the category of compact Hausdorff spaces. The assignment B
K (B) defines a functor K : CH°® — AbGp by setting for a map B’ — B,
K(f):=f*: K(B) — K(B’). The pasting lemma for pullbacks verifies (f o
f/)* — f/* Of*.
Observe 2.5. Using our second construction of K, an element of K(B) can
be described as a formal difference [E] - [F] of isomorphism classes of vector
bundles. The expression is sometimes called a virtual vector bundle.

Let 7,, denote the trivial bundle of rank n.

Observe 2.6. If F is a vector bundle over B, there is n € N and an embedding
E — 7, (i.e. a map of vector bundles which is linear injection on each fiber).
Then we can take the orthogonal complement E+ of E with respect to 7,,. This
is done just as the other operations on vector bundles we talked about before —
fiberwise. Strictly speaking, (—)* is not a functor on finite dimensional vector
spaces but rather a (topological) functor on finite dimensional vector spaces,
embedded in some ambient vector space. The induced functor on (suitable)
vector bundles is constructed in the same way as before.
It follows that for any E there is an n € N such that £ & E* = 7,,.

Suppose [E] - [F] e K(B) and let G be a vector bundle such that F & G is
trivial. Then

[E]-[F]=[E]+[G]-([G]-[F]) = [E®G] - [7a].

Thus every element in K (B) is of the form [H] - [7,]. Suppose [E] = [F] in
K(B). Then ([E],[F]) = ([G],[G]) for some G so that E® G = F & G. Let
G’ be such that G G' 2 7,,. Then E® 1, =2 F & 1,,. We would like to view all
trivial as one (trivial) element. We thus make the following



Definition 2.7. Two vector bundles E and F over B are said to be stably
equivalent if there are m,n € N such that E & 7, 2 F & 7p,.

We denote by ~g the equivalence relation of stably equivalent vector bundles
and let SVBuny; (B) := VBun;,(B)/ ~s.

Suppose now B is pointed, namely equipped with a map * — B. We obtain
an augmentation map e¢: K(B) — K(*) 2 Z.

Definition 2.8. The reduced K-theory of a pointed space (B, *) is defined
to be K(B) =ker (e: K(B) — K(*)).

The map € : K(B) — Z is given by [E] — dim E. Tt follows that K (B)
consists of elements of the form [E] - [F] with dim E = dim F..

Observe 2.9. The map B —> * gives a natural splitting K (B) =z K(B) & Z.

The following proposition shows that the algebraic description of Defini-
tion [2.8] is equivalent to the geometric description of Definition [2.7]

Proposition 2.10. Let (B, *) be a pointed (compact) space. Then SVBun™(B)
is an abelian group, and there is an isomorphism SVBun*(B) = K(B).

Proof. Clearly, SVBun”(B) is an abelian monoid under direct sum and has
inverses since the isomorphism E @ E* = 7,, implies [E]™! = [E*].

The natural surjection VBun*(B) — SVBun”(B) is a map into an abelian
group and the universal property of K implies the existence of the dashed arrow
P, which must also be a surjection:

VBun*(B) —= K(B) K(B)
I ;- -
\ V e -
SVBun*(B)/ ~s

Here, the map K(B) — K(B) is given by [E] ~ [E] - [7aim £] (recall that
elements in K (B) are of the form [E] - [F] with dimg = dimp).

Since p(7,) = 0, we get a factorization of p through the map f: K(B) —
SVBun*(B) given by [E]-[F] ~ [E]s-[F]s. The map f is surjective since p is.
To prove injectivity of f, we construct a left inverse. The map VBun*(B) —
K(B) — K(B) given by [E] = [E] - [7,] respects ~5 and hence induces a
map j : SVBun*(B) — K(B). If [E] - [F] € K(B) then j(f([E]-[F]) =
[E] =[] - ([F] = [m]) since dimp = dimp. We see that jf =id so that f is
injective and hence an isomorphism.

O

3 K-theory as a generalized cohomology theory

If B = B'IIB"” € CH (note that it must be a finite disjoint union because of
compactness), we have VBun #(B) = VBun #(B’) @ VBun*(B’). Since @ is the



coproduct in both AbMon and AbGp and K is a left adjoint, K(B) = K(B') ®
K(B"). Let (-)* be the left adjoint to the forgetful functor CH, — CH from
pointed compact Hausdorff spaces (and pointed maps) to compact Hausdorff
spaces. It is given by B* := BI[{*}. We then have K(B*) = ker(¢ : K(B) ®
K(*) — K(*)) = K(B). For an inclusion i : B — B in CH we make a

Definition 3.1. The relative K-groups of a pair B’ ¢ B € CH are K(B, B") :=
K (B/B') where the base-point is taken to be B’/B’.

We have K(B,2) = K(B*) = K(B) so that our new definition specializes
to the old one in the degenerate case. Our aim now is to establish an exact
sequence of the form

K(B,B') — K(B) — K(B')

for any pair B’ ¢ B € CH. In order to do this, we need to be able to construct
vector bundles on B/B’ from vector bundles on B which are trivial on B’.

3.1 Construction of bundles over quotients

We assume that B’ € B € CH is a pair and denote by ¢ : B — B/B’ the quotient
map. Suppose p : E — B is a vector bundle which is trivial over B’. Let
a: E|p =5 B'xV be a trivialization and let 7 : B’ xV —> V be the projection.
Define an equivalence relation on E|p: by setting e e’ iff m(a(e)) = m(a(e’)) and
extend this relation by identity to E. Let F/a:= E/ be the quotient space and
set p: Efa — B/B’ by p([e]) = q(p(e)). Note that p is well-defined since if
e+e' ee onlyif p(e),p(e') € B'. In fact, e ¢’ only if they are in a different fiber
which means that we collapsed all the fibers parametrized by B’ into a single
fiber. Thus, p: E/ae — B/B’ has a fiber isomorphic to V over every point. We
would like to show that p: E/a — B/B’ is in fact a fiber bundle. For that will
will need a lemma which you are requested to prove in the exercise.

Lemma 3.2. If E — B is trivial over a closed subspace B' € B then there
exists an open neighbourhood B' c U € B over which E is still trivial.

Take such an open B’ ¢ U and a trivialization (¢1,92) : Elu = UxV.
Then this induces a trivialization ¢ : (E/a)|y = (E|v)/a — (U/B') x V given
by ¢([e]) = (gp1(e), p2(e)). This is a local trivialization of E/« around B’/B’ €
B/B’. Around b € B - B’ we have an open neighbourhood U ¢ B - B’ so that
we can use the same local trivializations of E — B (restricted to U) to get
a trivialization of Efa — B/B’. We deduce that E/a — B/B’ is a vector
bundle.
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