Transfer of algebras along derived Quillen adjunctions

Javier J. Gutiérrez Universitat de Barcelona

Higher Homotopy in London

London, January 3-4, 2011

- 2 Transfer of algebra structures
- 3 Localization and colocalization of algebras

Application to motivic stable homotopy

- $\bullet \ \mbox{Let} \ {\cal V}$ be a closed symmetric monoidal category.
- $Coll_C(\mathcal{V})$ the category of *C*-coloured collections in \mathcal{V} .
- $Oper_{C}(\mathcal{V})$ the category of *C*-coloured operads in \mathcal{V} .
- Let ${\mathcal M}$ a monoidal ${\mathcal V}\text{-category},$ i.e., closed symmetric monoidal and equipped with a monoidal left adjoint

 $\mathcal{V}\longrightarrow \mathcal{M}$

 ${\mathfrak M}$ is enriched, tensored and cotensored over ${\mathcal V}$ in a compatible way.

- $\bullet~$ Let $\mathcal V$ be a closed symmetric monoidal category.
- $Coll_{C}(\mathcal{V})$ the category of *C*-coloured collections in \mathcal{V} .
- $Oper_{C}(\mathcal{V})$ the category of *C*-coloured operads in \mathcal{V} .
- Let ${\mathcal M}$ a monoidal ${\mathcal V}\text{-category},$ i.e., closed symmetric monoidal and equipped with a monoidal left adjoint

 $\mathcal{V}\longrightarrow\mathcal{M}$

 ${\mathfrak M}$ is enriched, tensored and cotensored over ${\mathcal V}$ in a compatible way.

- $\bullet \ Let \ \mathcal{V} \ be a \ closed \ symmetric \ monoidal \ category.$
- $Coll_{C}(\mathcal{V})$ the category of *C*-coloured collections in \mathcal{V} .
- $Oper_{C}(\mathcal{V})$ the category of *C*-coloured operads in \mathcal{V} .
- Let ${\mathcal M}$ a monoidal ${\mathcal V}\text{-category},$ i.e., closed symmetric monoidal and equipped with a monoidal left adjoint

 $\mathcal{V}\longrightarrow\mathcal{M}$

 ${\mathcal M}$ is enriched, tensored and cotensored over ${\mathcal V}$ in a compatible way.

- $\bullet \ Let \ \mathcal{V} \ be a \ closed \ symmetric \ monoidal \ category.$
- $Coll_C(\mathcal{V})$ the category of *C*-coloured collections in \mathcal{V} .
- $Oper_{C}(\mathcal{V})$ the category of *C*-coloured operads in \mathcal{V} .
- Let ${\mathcal M}$ a monoidal ${\mathcal V}\text{-category, i.e., closed symmetric monoidal and equipped with a monoidal left adjoint$

$$\mathcal{V} \longrightarrow \mathcal{M}$$

 ${\mathfrak M}$ is enriched, tensored and cotensored over ${\mathcal V}$ in a compatible way.

- $\bullet \ Let \ \mathcal{V} \ be a \ closed \ symmetric \ monoidal \ category.$
- $Coll_C(\mathcal{V})$ the category of *C*-coloured collections in \mathcal{V} .
- $Oper_{C}(\mathcal{V})$ the category of *C*-coloured operads in \mathcal{V} .
- Let ${\mathcal M}$ a monoidal ${\mathcal V}\text{-category, i.e., closed symmetric monoidal and equipped with a monoidal left adjoint$

$$\mathcal{V} \longrightarrow \mathcal{M}$$

 ${\mathfrak M}$ is enriched, tensored and cotensored over ${\mathcal V}$ in a compatible way.

Coloured operads in
$$\mathcal{V}$$

Algebras in $\mathcal{M}^{\mathcal{C}} = \prod_{c \in \mathcal{C}} \mathcal{M}$

Let $\ensuremath{\mathcal{V}}$ be a cofibrantly generated monoidal model category. There is a free-forgetful adjunction

$$F: Coll_C(\mathcal{V}) \rightleftharpoons Oper_C(\mathcal{V}): U.$$

Transfer principle

If \mathcal{V} has a cofibrant unit, a symmetric monoidal fibrant replacement functor and an interval with a coassociative and cocommutative multiplication, then the model structure on $Coll_{\mathcal{C}}(\mathcal{V})$ can be transferred to a model structure on $Oper_{\mathcal{C}}(\mathcal{V})$ along the free-forgetful adjunction.

In general, the transfer principle does not provide a full model structure but a **semi model structure** on $Oper_{C}(\mathcal{V})$.

Let $\ensuremath{\mathcal{V}}$ be a cofibrantly generated monoidal model category. There is a free-forgetful adjunction

$$F: Coll_C(\mathcal{V}) \rightleftharpoons Oper_C(\mathcal{V}): U.$$

Transfer principle

If \mathcal{V} has a cofibrant unit, a symmetric monoidal fibrant replacement functor and an interval with a coassociative and cocommutative multiplication, then the model structure on $Coll_{\mathcal{C}}(\mathcal{V})$ can be transferred to a model structure on $Oper_{\mathcal{C}}(\mathcal{V})$ along the free-forgetful adjunction.

In general, the transfer principle does not provide a full model structure but a **semi model structure** on $Oper_{C}(\mathcal{V})$.

Let $\ensuremath{\mathcal{V}}$ be a cofibrantly generated monoidal model category. There is a free-forgetful adjunction

$$F: Coll_C(\mathcal{V}) \rightleftharpoons Oper_C(\mathcal{V}): U.$$

Transfer principle

If \mathcal{V} has a cofibrant unit, a symmetric monoidal fibrant replacement functor and an interval with a coassociative and cocommutative multiplication, then the model structure on $Coll_C(\mathcal{V})$ can be transferred to a model structure on $Oper_C(\mathcal{V})$ along the free-forgetful adjunction.

In general, the transfer principle does not provide a full model structure but a *semi model structure* on $Oper_{C}(\mathcal{V})$.

In a semi model structure on $\ensuremath{\mathcal{V}}$ one replaces the lifting and factorization axiom by the following:

- The class of fibrations has the right lifting property with respect to the class of trivial cofibrations with cofibrant domain. Similarly for the class of trivial fibrations.
- There exist functorial factorizations of any morphism with cofibrant domain into a cofibration followed by a trivial fibration and also into a trivial cofibration followed by a fibration.

One also assumes that:

- The initial object is cofibrant.
- The classes of fibrations and trivial fibrations are closed under pullbacks and (possibly transfinite) composites.

In a semi model structure on $\ensuremath{\mathcal{V}}$ one replaces the lifting and factorization axiom by the following:

- The class of fibrations has the right lifting property with respect to the class of trivial cofibrations with cofibrant domain. Similarly for the class of trivial fibrations.
- There exist functorial factorizations of any morphism with cofibrant domain into a cofibration followed by a trivial fibration and also into a trivial cofibration followed by a fibration.

One also assumes that:

- The initial object is cofibrant.
- The classes of fibrations and trivial fibrations are closed under pullbacks and (possibly transfinite) composites.

Theorem

For any cofibrantly generated monoidal model category \mathcal{V} the category $\mathcal{O}per_{\mathcal{C}}(\mathcal{V})$ has a transferred semi model structure.

Examples

- Simplicial sets.
- Topological spaces.
- Chain complexes.
- Symmetric spectra.
- Motivic symmetric spectra.

Theorem

For any cofibrantly generated monoidal model category \mathcal{V} the category $\mathcal{O}per_{\mathcal{C}}(\mathcal{V})$ has a transferred semi model structure.

Examples

. . .

- Simplicial sets.
- Topological spaces.
- Chain complexes.
- Symmetric spectra.
- Motivic symmetric spectra.

Key Lemma

- If the natural map End_P(Y) → Hom_P(X, Y) is a trivial fibration of collections, then any P-algebra structure on X extends to a homotopy unique P-algebra structure on Y such that f is a map of P-algebras.
- If the natural map End_𝔅(𝔅) → Hom_𝔅(𝔅, 𝔅) is a trivial fibration of collections, then any 𝔅-algebra structure on 𝔅 lifts to a homotopy unique 𝔅-algebra structure on 𝔅 such that 𝑘 is a map of 𝔅-algebras.
- $Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{Y})(c_1, \ldots, c_n; c) = Hom(X(c_1) \otimes \cdots \otimes X(c_n), Y(c))$ if $\mathbb{P}(c_1, \ldots, c_n; c) \neq 0$ and zero otherwise.
- $End_{\mathbb{P}}(\mathbf{X}) = Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{X}).$

Key Lemma

- If the natural map End_P(Y) → Hom_P(X, Y) is a trivial fibration of collections, then any P-algebra structure on X extends to a homotopy unique P-algebra structure on Y such that f is a map of P-algebras.
- If the natural map End_𝔅(𝔅) → Hom_𝔅(𝔅, 𝔅) is a trivial fibration of collections, then any 𝔅-algebra structure on 𝔅 lifts to a homotopy unique 𝔅-algebra structure on 𝔅 such that 𝑘 is a map of 𝔅-algebras.
- $Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{Y})(c_1, \ldots, c_n; c) = Hom(X(c_1) \otimes \cdots \otimes X(c_n), Y(c))$ if $\mathbb{P}(c_1, \ldots, c_n; c) \neq 0$ and zero otherwise.
- $End_{\mathbb{P}}(\mathbf{X}) = Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{X}).$

Key Lemma

- If the natural map End_P(Y) → Hom_P(X, Y) is a trivial fibration of collections, then any P-algebra structure on X extends to a homotopy unique P-algebra structure on Y such that f is a map of P-algebras.
- If the natural map End_P(X) → Hom_P(X, Y) is a trivial fibration of collections, then any P-algebra structure on Y lifts to a homotopy unique P-algebra structure on X such that f is a map of P-algebras.
- $Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{Y})(c_1, \ldots, c_n; c) = Hom(X(c_1) \otimes \cdots \otimes X(c_n), Y(c))$ if $\mathbb{P}(c_1, \ldots, c_n; c) \neq 0$ and zero otherwise.
- $End_{\mathbb{P}}(\mathbf{X}) = Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{X}).$

Key Lemma

- If the natural map End_P(Y) → Hom_P(X, Y) is a trivial fibration of collections, then any P-algebra structure on X extends to a homotopy unique P-algebra structure on Y such that f is a map of P-algebras.
- If the natural map End_P(X) → Hom_P(X, Y) is a trivial fibration of collections, then any P-algebra structure on Y lifts to a homotopy unique P-algebra structure on X such that f is a map of P-algebras.
- $Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{Y})(c_1, \ldots, c_n; c) = Hom(X(c_1) \otimes \cdots \otimes X(c_n), Y(c))$ if $\mathbb{P}(c_1, \ldots, c_n; c) \neq 0$ and zero otherwise.
- $End_{\mathbb{P}}(\mathbf{X}) = Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{X}).$

Key Lemma

- If the natural map End_P(Y) → Hom_P(X, Y) is a trivial fibration of collections, then any P-algebra structure on X extends to a homotopy unique P-algebra structure on Y such that f is a map of P-algebras.
- If the natural map End_𝒫(X) → Hom_𝒫(X, Y) is a trivial fibration of collections, then any 𝒫-algebra structure on Y lifts to a homotopy unique 𝒫-algebra structure on X such that f is a map of 𝒫-algebras.
- $Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{Y})(c_1, \ldots, c_n; c) = Hom(X(c_1) \otimes \cdots \otimes X(c_n), Y(c))$ if $\mathbb{P}(c_1, \ldots, c_n; c) \neq 0$ and zero otherwise.
- $End_{\mathbb{P}}(\mathbf{X}) = Hom_{\mathbb{P}}(\mathbf{X}, \mathbf{X}).$

We denote by *R* a fibrant replacement functor and by *Q* a cofibrant replacement functor in \mathcal{M} .

Proposition

Let \mathfrak{P} be a cofibrant operad in \mathfrak{V} and \mathbf{X} a \mathfrak{P} -algebra such that X(c) is cofibrant in \mathfrak{M} for every $c \in C$. Then **RX** admits a \mathfrak{P} -algebra structure such that $\mathbf{X} \to \mathbf{RX}$ is a map of \mathfrak{P} -algebras

Proposition

Let \mathcal{P} be a cofibrant operad in \mathcal{V} and **X** a \mathcal{P} -algebra. If the induced map

$Hom(I, QX(c)) \longrightarrow Hom(I, X(c))$

is a trivial fibration for every $c \in C$ such that $\mathcal{P}(; c) \neq 0$, then QX admits admits a \mathcal{P} -algebra structure such that $QX \rightarrow X$ is a map of \mathcal{P} -algebras

We denote by R a fibrant replacement functor and by Q a cofibrant replacement functor in \mathcal{M} .

Proposition

Let \mathfrak{P} be a cofibrant operad in \mathfrak{V} and \mathbf{X} a \mathfrak{P} -algebra such that X(c) is cofibrant in \mathfrak{M} for every $c \in C$. Then $R\mathbf{X}$ admits a \mathfrak{P} -algebra structure such that $\mathbf{X} \to R\mathbf{X}$ is a map of \mathfrak{P} -algebras

Proposition

Let \mathcal{P} be a cofibrant operad in \mathcal{V} and **X** a \mathcal{P} -algebra. If the induced map

 $Hom(I, QX(c)) \longrightarrow Hom(I, X(c))$

is a trivial fibration for every $c \in C$ such that $\mathfrak{P}(; c) \neq 0$, then $Q\mathbf{X}$ admits admits a \mathfrak{P} -algebra structure such that $Q\mathbf{X} \to \mathbf{X}$ is a map of \mathfrak{P} -algebras

We denote by R a fibrant replacement functor and by Q a cofibrant replacement functor in \mathcal{M} .

Proposition

Let \mathfrak{P} be a cofibrant operad in \mathfrak{V} and \mathbf{X} a \mathfrak{P} -algebra such that X(c) is cofibrant in \mathfrak{M} for every $c \in C$. Then $R\mathbf{X}$ admits a \mathfrak{P} -algebra structure such that $\mathbf{X} \to R\mathbf{X}$ is a map of \mathfrak{P} -algebras

Proposition

Let ${\mathfrak P}$ be a cofibrant operad in ${\mathfrak V}$ and ${\boldsymbol X}$ a ${\mathfrak P}\text{-algebra}.$ If the induced map

$$Hom(I, QX(c)) \longrightarrow Hom(I, X(c))$$

is a trivial fibration for every $c \in C$ such that $\mathfrak{P}(; c) \neq 0$, then QX admits admits a \mathfrak{P} -algebra structure such that $QX \to X$ is a map of \mathfrak{P} -algebras

Theorem

Let \mathcal{M} and \mathcal{N} be monoidal \mathcal{V} -model categories and $F : \mathcal{M} \rightleftharpoons \mathcal{N} : U$ a monoidal Quillen \mathcal{V} -adjunction. Let \mathcal{P} be a cofibrant operad in \mathcal{V} . Let

 $\mathbb{L}F\colon Ho(\mathfrak{M}^{C}) \rightleftharpoons Ho(\mathfrak{N}^{C})\colon \mathbb{R}U$

denote the derived adjunction. If **X** is a \mathcal{P} -algebra in \mathcal{M} such that X(c) is cofibrant for every $c \in C$, then $\mathbb{R}U\mathbb{L}F\mathbf{X}$ admits a homotopy unique \mathcal{P} -algebra structure such that the unit of the derived adjunction

 $X \longrightarrow \mathbb{R}U\mathbb{L}FX$

Theorem

Let \mathcal{M} and \mathcal{N} be monoidal \mathcal{V} -model categories and $F : \mathcal{M} \rightleftharpoons \mathcal{N} : U$ a monoidal Quillen \mathcal{V} -adjunction. Let \mathcal{P} be a cofibrant operad in \mathcal{V} . Let

 $\mathbb{L}F \colon Ho(\mathbb{M}^{C}) \rightleftharpoons Ho(\mathbb{N}^{C}) \colon \mathbb{R}U$

denote the derived adjunction. If X is a P-algebra in M such that X(c) is cofibrant for every $c \in C$, then $\mathbb{R}U\mathbb{L}FX$ admits a homotopy unique P-algebra structure such that the unit of the derived adjunction

 $X \longrightarrow \mathbb{R}U\mathbb{L}FX$

Theorem

Let \mathcal{M} and \mathcal{N} be monoidal \mathcal{V} -model categories and $F : \mathcal{M} \rightleftharpoons \mathcal{N} : U$ a monoidal Quillen \mathcal{V} -adjunction. Let \mathcal{P} be a cofibrant operad in \mathcal{V} . Let

 $\mathbb{L}F \colon Ho(\mathbb{M}^{C}) \rightleftharpoons Ho(\mathbb{N}^{C}) \colon \mathbb{R}U$

denote the derived adjunction. If **X** is a \mathcal{P} -algebra in \mathcal{M} such that X(c) is cofibrant for every $c \in C$, then $\mathbb{R}U\mathbb{L}F\mathbf{X}$ admits a homotopy unique \mathcal{P} -algebra structure such that the unit of the derived adjunction

 $X \longrightarrow \mathbb{R}U\mathbb{L}FX$

Theorem

Let \mathcal{M} and \mathcal{N} be monoidal \mathcal{V} -model categories and $F : \mathcal{M} \rightleftharpoons \mathcal{N} : U$ a monoidal Quillen \mathcal{V} -adjunction. Let \mathcal{P} be a cofibrant operad in \mathcal{V} . Let

 $\mathbb{L}F \colon Ho(\mathbb{M}^{C}) \rightleftharpoons Ho(\mathbb{N}^{C}) \colon \mathbb{R}U$

denote the derived adjunction. If **X** is a \mathcal{P} -algebra in \mathcal{M} such that X(c) is cofibrant for every $c \in C$, then $\mathbb{R}U\mathbb{L}F\mathbf{X}$ admits a homotopy unique \mathcal{P} -algebra structure such that the unit of the derived adjunction

$$\mathbf{X} \longrightarrow \mathbb{R}U\mathbb{L}F\mathbf{X}$$

Theorem

Let \mathfrak{M} and \mathfrak{N} be monoidal \mathfrak{V} -model categories and $F : \mathfrak{M} \rightleftharpoons \mathfrak{N} : U$ a monoidal Quillen \mathfrak{V} -adjunction. Let \mathfrak{P} be a cofibrant operad in \mathfrak{V} . If \mathfrak{X} is a \mathfrak{P} -algebra in \mathfrak{N} such that X(c) is fibrant for every $c \in C$ and, for every $c \in C$ such that $\mathfrak{P}(; c) \neq 0$, the induced map

 $Hom(I, Q(UX(c))) \longrightarrow Hom(I, UX(c))$

is a trivial fibration in \mathcal{V} , then $\mathbb{L}F\mathbb{R}UX$ admits a homotopy unique \mathcal{P} -algebra structure such that the counit of the derived adjunction

 $\mathbb{L}F\mathbb{R}UX\longrightarrow X$

Theorem

Let \mathfrak{M} and \mathfrak{N} be monoidal \mathfrak{V} -model categories and $F : \mathfrak{M} \rightleftharpoons \mathfrak{N} : U$ a monoidal Quillen \mathfrak{V} -adjunction. Let \mathfrak{P} be a cofibrant operad in \mathfrak{V} .If \mathbf{X} is a \mathfrak{P} -algebra in \mathfrak{N} such that X(c) is fibrant for every $c \in C$ and, for every $c \in C$ such that $\mathfrak{P}(; c) \neq 0$, the induced map

$\textit{Hom}(I, \textit{Q}(\textit{UX}(\textit{c}))) \longrightarrow \textit{Hom}(I, \textit{UX}(\textit{c}))$

is a trivial fibration in \mathcal{V} , then $\mathbb{L}F\mathbb{R}UX$ admits a homotopy unique \mathcal{P} -algebra structure such that the counit of the derived adjunction

 $\mathbb{L}F\mathbb{R}UX\longrightarrow X$

Theorem

Let \mathfrak{M} and \mathfrak{N} be monoidal \mathfrak{V} -model categories and $F : \mathfrak{M} \rightleftharpoons \mathfrak{N} : U$ a monoidal Quillen \mathfrak{V} -adjunction. Let \mathfrak{P} be a cofibrant operad in \mathfrak{V} .If \mathbf{X} is a \mathfrak{P} -algebra in \mathfrak{N} such that X(c) is fibrant for every $c \in C$ and, for every $c \in C$ such that $\mathfrak{P}(; c) \neq 0$, the induced map

 $Hom(I, Q(UX(c))) \longrightarrow Hom(I, UX(c))$

is a trivial fibration in \mathcal{V} , then $\mathbb{L}F\mathbb{R}UX$ admits a homotopy unique \mathcal{P} -algebra structure such that the counit of the derived adjunction

 $\mathbb{L}F\mathbb{R}U\mathbf{X}\longrightarrow\mathbf{X}$

Proof.

If **X** is a \mathcal{P} -algebra, so is U**X** since U is a (lax) monoidal functor, and the counit of the adjunction

$FU\mathbf{X} \longrightarrow \mathbf{X}$

is a map of *P*-algebras.By a previous Proposition the cofibrant replacement

 $i_{U\mathbf{X}} \colon Q(U\mathbf{X}) \longrightarrow U\mathbf{X}$

has a homotopy unique \mathcal{P} -algebra structure such that i_{UX} is a map of \mathcal{P} -algebras. The functor F sends \mathcal{P} -algebras to \mathcal{P} -algebras and maps of \mathcal{P} -algebras to maps of \mathcal{P} -algebras, hence we have that

 $\mathbb{L}F\mathbb{R}U\mathbf{X} = \mathbb{L}F(U\mathbf{X}) = FQ(U\mathbf{X}) \longrightarrow FU\mathbf{X}$

is a map of \mathcal{P} -algebras (the first equality holds since **X** was fibrant).

Proof.

If **X** is a \mathcal{P} -algebra, so is U**X** since U is a (lax) monoidal functor, and the counit of the adjunction

 $\textit{FUX} \longrightarrow \textbf{X}$

is a map of $\ensuremath{\mathcal{P}}\xspace$ -algebras.By a previous Proposition the cofibrant replacement

 $i_{U\mathbf{X}} \colon Q(U\mathbf{X}) \longrightarrow U\mathbf{X}$

has a homotopy unique \mathcal{P} -algebra structure such that i_{UX} is a map of \mathcal{P} -algebras. The functor F sends \mathcal{P} -algebras to \mathcal{P} -algebras and maps of \mathcal{P} -algebras to maps of \mathcal{P} -algebras, hence we have that

 $\mathbb{L}F\mathbb{R}U\mathbf{X} = \mathbb{L}F(U\mathbf{X}) = FQ(U\mathbf{X}) \longrightarrow FU\mathbf{X}$

is a map of \mathcal{P} -algebras (the first equality holds since **X** was fibrant).

Proof.

If **X** is a \mathcal{P} -algebra, so is U**X** since U is a (lax) monoidal functor, and the counit of the adjunction

 $\textit{FUX} \longrightarrow \textbf{X}$

is a map of $\ensuremath{\mathcal{P}}\xspace$ -algebras.By a previous Proposition the cofibrant replacement

 $i_{U\mathbf{X}} \colon Q(U\mathbf{X}) \longrightarrow U\mathbf{X}$

has a homotopy unique \mathcal{P} -algebra structure such that $i_{U\mathbf{X}}$ is a map of \mathcal{P} -algebras. The functor F sends \mathcal{P} -algebras to \mathcal{P} -algebras and maps of \mathcal{P} -algebras to maps of \mathcal{P} -algebras, hence we have that

$$\mathbb{L}F\mathbb{R}U\mathbf{X} = \mathbb{L}F(U\mathbf{X}) = FQ(U\mathbf{X}) \longrightarrow FU\mathbf{X}$$

is a map of P-algebras (the first equality holds since **X** was fibrant).

Let \mathcal{M} be a monoidal \mathcal{V} -model category. Let \mathcal{L} be a set of objects of \mathcal{M} and \mathcal{K} a set of morphisms of \mathcal{M} .

We denote by $\mathfrak{M}_{\mathcal{L}}$ the enriched localized model structure and by $\mathfrak{M}^{\mathfrak{K}}$ the enriched colocalized model structure.

Local and colocal objects and morphisms are defined using an enriched homotopy function complex, e.g., Hom(Q(-), R(-)).

Fibrant replacement in $\mathcal{M}_{\mathcal{L}}$ models the \mathcal{L} -localization functor in \mathcal{M} . Cofibrant replacement in $\mathcal{M}^{\mathcal{K}}$ models the \mathcal{K} -colocalization functor in \mathcal{M} .

The identity functors

 $\mathit{Id} \colon \mathfrak{M} \leftrightarrows \mathfrak{M}_{\mathcal{L}} \colon \mathit{Id} \qquad \quad \mathit{Id} \colon \mathfrak{M}^{\mathcal{K}} \leftrightarrows \mathfrak{M} \colon \mathit{Id}$

Let \mathcal{M} be a monoidal \mathcal{V} -model category. Let \mathcal{L} be a set of objects of \mathcal{M} and \mathcal{K} a set of morphisms of \mathcal{M} . We denote by $\mathcal{M}_{\mathcal{L}}$ the **enriched localized model structure** and by $\mathcal{M}^{\mathcal{K}}$ the **enriched colocalized model structure**.

Local and colocal objects and morphisms are defined using an enriched homotopy function complex, e.g., Hom(Q(-), R(-)).

Fibrant replacement in $\mathfrak{M}_{\mathcal{L}}$ models the \mathcal{L} -localization functor in \mathfrak{M} . Cofibrant replacement in $\mathfrak{M}^{\mathfrak{K}}$ models the \mathfrak{K} -colocalization functor in \mathfrak{M} .

The identity functors

 $\mathit{Id}\colon \mathfrak{M}\leftrightarrows\mathfrak{M}_{\mathcal{L}}\colon \mathit{Id} \qquad \quad \mathit{Id}\colon\mathfrak{M}^{\mathfrak{K}}\leftrightarrows\mathfrak{M}\colon \mathit{Id}$

Let $\mathcal M$ be a monoidal $\mathcal V\text{-model}$ category. Let $\mathcal L$ be a set of objects of $\mathcal M$ and $\mathcal K$ a set of morphisms of $\mathcal M.$

We denote by $\mathcal{M}_{\mathcal{L}}$ the enriched localized model structure and by $\mathcal{M}^{\mathcal{K}}$ the enriched colocalized model structure.

Local and colocal objects and morphisms are defined using an enriched homotopy function complex, e.g., Hom(Q(-), R(-)).

Fibrant replacement in $\mathcal{M}_{\mathcal{L}}$ models the \mathcal{L} -localization functor in \mathcal{M} . Cofibrant replacement in $\mathcal{M}^{\mathcal{K}}$ models the \mathcal{K} -colocalization functor in \mathcal{M} .

The identity functors

 $\mathit{Id}\colon \mathcal{M}\leftrightarrows \mathcal{M}_{\mathcal{L}}: \mathit{Id} \qquad \mathit{Id}\colon \mathcal{M}^{\mathcal{K}}\leftrightarrows \mathcal{M}\colon \mathit{Ia}$

Let \mathcal{M} be a monoidal \mathcal{V} -model category. Let \mathcal{L} be a set of objects of \mathcal{M} and \mathcal{K} a set of morphisms of \mathcal{M} .

We denote by $\mathcal{M}_{\mathcal{L}}$ the enriched localized model structure and by $\mathcal{M}^{\mathcal{K}}$ the enriched colocalized model structure.

Local and colocal objects and morphisms are defined using an enriched homotopy function complex, e.g., Hom(Q(-), R(-)).

 $\label{eq:constraint} \begin{array}{l} \mbox{Fibrant replacement in $\mathcal{M}_{\mathcal{L}}$ models the \mathcal{L}-localization functor in \mathcal{M}.} \\ \mbox{Cofibrant replacement in $\mathcal{M}^{\mathcal{K}}$ models the \mathcal{K}-colocalization functor in \mathcal{M}.} \end{array}$

The identity functors

 $\mathit{Id}: \mathcal{M} \leftrightarrows \mathcal{M}_{\mathcal{L}}: \mathit{Id} \qquad \qquad \mathit{Id}: \mathcal{M}^{\mathcal{K}} \leftrightarrows \mathcal{M}: \mathit{Id}$

Enriched localizations and colocalizations

Let \mathcal{M} be a monoidal \mathcal{V} -model category. Let \mathcal{L} be a set of objects of \mathcal{M} and \mathcal{K} a set of morphisms of \mathcal{M} .

We denote by $\mathcal{M}_{\mathcal{L}}$ the enriched localized model structure and by $\mathcal{M}^{\mathcal{K}}$ the enriched colocalized model structure.

Local and colocal objects and morphisms are defined using an enriched homotopy function complex, e.g., Hom(Q(-), R(-)).

 $\label{eq:constraint} \begin{array}{l} \mbox{Fibrant replacement in $\mathcal{M}_{\mathcal{L}}$ models the \mathcal{L}-localization functor in \mathcal{M}.} \\ \mbox{Cofibrant replacement in $\mathcal{M}^{\mathcal{K}}$ models the \mathcal{K}-colocalization functor in \mathcal{M}.} \end{array}$

The identity functors

$$\textit{Id}: \mathcal{M} \leftrightarrows \mathcal{M}_{\mathcal{L}}: \textit{Id} \qquad \textit{Id}: \mathcal{M}^{\mathcal{K}} \leftrightarrows \mathcal{M}: \textit{Id}$$

are Quillen adjunctions

Ideals and coideals

Let \mathcal{P} be a *C*-coloured operad. A subset $J \subseteq C$ is called an **ideal** relative to \mathcal{P} if $\mathcal{P}(c_1, \ldots, c_n; c) = 0$ whenever $n \ge 1$, $c \in J$, and $c_i \notin J$ for some $i \in \{1, \ldots, n\}$. A subset $I \subseteq C$ is a **coideal relative to** \mathcal{P} if $I = C \setminus J$ for some ideal *J*.

Example

The operad for modules over monoids *Mod* has as set of colours $C = \{r, m\}$. The only nonzero terms are Mod(r, ..., r; r) and Mod(r, ..., m, ..., r; m). In this case, $J = \emptyset$, C, $\{r\}$ are ideals, and $I = \emptyset$, C, $\{m\}$ are coideals.

Let *F* be an endofunctor on \mathcal{M} and $J \subseteq C$. The **extension of** *F* over \mathcal{M}^{C} **away from** *J* is the endofunctor on \mathcal{M}^{C} defined as

$$F\mathbf{X} = (F_c X(c))_{c \in C},$$

where $F_c = Id$ if $c \in J$ and $F_c = F$ if $c \notin J$.

Ideals and coideals

Let \mathcal{P} be a *C*-coloured operad. A subset $J \subseteq C$ is called an **ideal relative to** \mathcal{P} if $\mathcal{P}(c_1, \ldots, c_n; c) = 0$ whenever $n \ge 1$, $c \in J$, and $c_i \notin J$ for some $i \in \{1, \ldots, n\}$. A subset $I \subseteq C$ is a **coideal relative to** \mathcal{P} if $I = C \setminus J$ for some ideal *J*.

Example

The operad for modules over monoids *Mod* has as set of colours $C = \{r, m\}$. The only nonzero terms are Mod(r, ..., r; r) and Mod(r, ..., m, ..., r; m). In this case, $J = \emptyset$, C, $\{r\}$ are ideals, and $I = \emptyset$, C, $\{m\}$ are coideals.

Let *F* be an endofunctor on \mathcal{M} and $J \subseteq C$. The extension of *F* over \mathcal{M}^C away from *J* is the endofunctor on \mathcal{M}^C defined as

 $F\mathbf{X} = (F_c X(c))_{c \in C},$

where $F_c = Id$ if $c \in J$ and $F_c = F$ if $c \notin J$.

Ideals and coideals

Let \mathcal{P} be a *C*-coloured operad. A subset $J \subseteq C$ is called an **ideal relative to** \mathcal{P} if $\mathcal{P}(c_1, \ldots, c_n; c) = 0$ whenever $n \ge 1$, $c \in J$, and $c_i \notin J$ for some $i \in \{1, \ldots, n\}$. A subset $I \subseteq C$ is a **coideal relative to** \mathcal{P} if $I = C \setminus J$ for some ideal *J*.

Example

The operad for modules over monoids *Mod* has as set of colours $C = \{r, m\}$. The only nonzero terms are Mod(r, ..., r; r) and Mod(r, ..., m, ..., r; m). In this case, $J = \emptyset$, C, $\{r\}$ are ideals, and $I = \emptyset$, C, $\{m\}$ are coideals.

Let *F* be an endofunctor on \mathcal{M} and $J \subseteq C$. The extension of *F* over \mathcal{M}^{C} away from *J* is the endofunctor on \mathcal{M}^{C} defined as

$$F\mathbf{X} = (F_c X(c))_{c \in C},$$

where $F_c = Id$ if $c \in J$ and $F_c = F$ if $c \notin J$.

Localization of \mathcal{P} -algebras

Theorem

Let \mathfrak{P} be a cofibrant *C*-coloured operad in \mathcal{V} and consider the extension of a localization functor (L, η) over $\mathfrak{M}^{\mathcal{C}}$ away from an ideal $J \subseteq \mathcal{C}$.

If **X** is a \mathfrak{P} -algebra in \mathfrak{M} such that X(c) is cofibrant for every $c \in C$ and the morphism

 $(\eta_{\mathbf{X}})_{c_1} \otimes \cdots \otimes (\eta_{\mathbf{X}})_{c_n} \colon X(c_1) \otimes \cdots \otimes X(c_n) \longrightarrow L_{c_1}X(c_1) \otimes \cdots \otimes L_{c_n}X(c_n)$

is an \mathcal{L} -local equivalence for every $n \ge 0$ whenever $\mathcal{P}(c_1, \ldots, c_n; c)$ is nonzero, then LX admits a homotopy unique \mathcal{P} -algebra structure such that η_X is a map of \mathcal{P} -algebras.

Localization of \mathcal{P} -algebras

Theorem

Let \mathfrak{P} be a cofibrant *C*-coloured operad in \mathcal{V} and consider the extension of a localization functor (L, η) over $\mathfrak{M}^{\mathcal{C}}$ away from an ideal $J \subseteq \mathcal{C}$.

If **X** is a \mathfrak{P} -algebra in \mathfrak{M} such that X(c) is cofibrant for every $c \in C$ and the morphism

$$(\eta_{\mathbf{X}})_{c_1} \otimes \cdots \otimes (\eta_{\mathbf{X}})_{c_n} \colon X(c_1) \otimes \cdots \otimes X(c_n) \longrightarrow L_{c_1}X(c_1) \otimes \cdots \otimes L_{c_n}X(c_n)$$

is an \mathcal{L} -local equivalence for every $n \ge 0$ whenever $\mathfrak{P}(c_1, \ldots, c_n; c)$ is nonzero, then LX admits a homotopy unique \mathfrak{P} -algebra structure such that η_X is a map of \mathfrak{P} -algebras.

Localization of \mathcal{P} -algebras

Theorem

Let \mathfrak{P} be a cofibrant *C*-coloured operad in \mathcal{V} and consider the extension of a localization functor (L, η) over \mathfrak{M}^{C} away from an ideal $J \subseteq C$.

If **X** is a \mathfrak{P} -algebra in \mathfrak{M} such that X(c) is cofibrant for every $c \in C$ and the morphism

$$(\eta_{\mathbf{X}})_{c_1} \otimes \cdots \otimes (\eta_{\mathbf{X}})_{c_n} \colon X(c_1) \otimes \cdots \otimes X(c_n) \longrightarrow L_{c_1}X(c_1) \otimes \cdots \otimes L_{c_n}X(c_n)$$

is an \mathcal{L} -local equivalence for every $n \ge 0$ whenever $\mathcal{P}(c_1, \ldots, c_n; c)$ is nonzero, then LX admits a homotopy unique \mathcal{P} -algebra structure such that η_X is a map of \mathcal{P} -algebras.

Theorem

Let \mathcal{P} be a cofibrant *C*-coloured operad in \mathcal{V} and consider the extension of a colocalization functor (K, ε) over \mathcal{M}^{C} away from a coideal $C \setminus J$.

If **X** is a \mathfrak{P} -algebra in \mathfrak{M} such that X(c) is fibrant for every $c \in C$, the unit I is \mathfrak{K} -colocal if $\mathfrak{P}(\ , c) \neq 0$ for some $c \in C$, and for every $n \geq 1$

 $K_{c_1}X(c_1)\otimes\cdots\otimes K_{c_n}X(c_n)$

are \mathcal{K} -colocal whenever $\mathcal{P}(c_1, \ldots, c_n; c)$ is nonempty and $c \notin C \setminus J$, then KX admits a homotopy unique \mathcal{P} -algebra structure such that ε_X is a map of \mathcal{P} -algebras.

Theorem

Let \mathfrak{P} be a cofibrant *C*-coloured operad in \mathcal{V} and consider the extension of a colocalization functor (K, ε) over \mathfrak{M}^{C} away from a coideal $C \setminus J$.

If **X** is a \mathcal{P} -algebra in \mathcal{M} such that X(c) is fibrant for every $c \in C$, the unit I is \mathcal{K} -colocal if $\mathcal{P}(\ , c) \neq 0$ for some $c \in C$, and for every $n \geq 1$

$$K_{c_1}X(c_1)\otimes\cdots\otimes K_{c_n}X(c_n)$$

are \mathcal{K} -colocal whenever $\mathcal{P}(c_1, \ldots, c_n; c)$ is nonempty and $c \notin C \setminus J$, then KX admits a homotopy unique \mathcal{P} -algebra structure such that ε_X is a map of \mathcal{P} -algebras.

Theorem

Let \mathfrak{P} be a cofibrant *C*-coloured operad in \mathcal{V} and consider the extension of a colocalization functor (K, ε) over $\mathfrak{M}^{\mathcal{C}}$ away from a coideal $\mathcal{C} \setminus J$.

If **X** is a \mathcal{P} -algebra in \mathcal{M} such that X(c) is fibrant for every $c \in C$, the unit I is \mathcal{K} -colocal if $\mathcal{P}(\ , c) \neq 0$ for some $c \in C$, and for every $n \geq 1$

$$K_{c_1}X(c_1)\otimes\cdots\otimes K_{c_n}X(c_n)$$

are \mathcal{K} -colocal whenever $\mathcal{P}(c_1, \ldots, c_n; c)$ is nonempty and $c \notin C \setminus J$, then $K\mathbf{X}$ admits a homotopy unique \mathcal{P} -algebra structure such that $\varepsilon_{\mathbf{X}}$ is a map of \mathcal{P} -algebras.

Theorem

Let \mathfrak{P} be a cofibrant *C*-coloured operad in \mathcal{V} and consider the extension of a colocalization functor (K, ε) over \mathfrak{M}^{C} away from a coideal $C \setminus J$.

If **X** is a \mathcal{P} -algebra in \mathcal{M} such that X(c) is fibrant for every $c \in C$, the unit I is \mathcal{K} -colocal if $\mathcal{P}(\ , c) \neq 0$ for some $c \in C$, and for every $n \geq 1$

$$K_{c_1}X(c_1)\otimes\cdots\otimes K_{c_n}X(c_n)$$

are \mathcal{K} -colocal whenever $\mathcal{P}(c_1, \ldots, c_n; c)$ is nonempty and $c \notin C \setminus J$, then $K\mathbf{X}$ admits a homotopy unique \mathcal{P} -algebra structure such that $\varepsilon_{\mathbf{X}}$ is a map of \mathcal{P} -algebras.

(joint work with M. Spitzweck, O. Röndigs and P. A. Østvær)

Let S be a base scheme and \mathcal{M} the category $Spt_T^{\Sigma}(S)$ of **motivic symmetric spectra** with the stable model structure. This is a combinatorial simplicial symmetric monoidal proper model category.

The functor c_q is the cofibrant replacement functor of the colocalized model structure of $Spt_{T}^{\Sigma}(S)$ with respect to

 $\mathfrak{K}(q) = \{\Sigma^{0,q}\Sigma^{\infty}_+ X[n] \mid X \in Sm/S \text{ and } n, q \in \mathbb{Z}\}.$

The functor I_q is the fibrant replacement functor of the localized model structure of $Spt_{T}^{\Sigma}(S)$ with respect to

$$\mathcal{L}(q) = \{ \mathbf{0} \rightarrow \Sigma^{\mathbf{0},q} K \mid K \in \mathcal{K}(\mathbf{0}) \}.$$

(joint work with M. Spitzweck, O. Röndigs and P. A. Østvær)

Let *S* be a base scheme and \mathcal{M} the category $Spt_T^{\Sigma}(S)$ of **motivic symmetric spectra** with the stable model structure. This is a combinatorial simplicial symmetric monoidal proper model category.

The functor c_q is the cofibrant replacement functor of the colocalized model structure of $Spt_{\tau}^{\Sigma}(S)$ with respect to

 $\mathfrak{K}(q) = \{\Sigma^{0,q}\Sigma^{\infty}_+ X[n] \mid X \in Sm/S \text{ and } n, q \in \mathbb{Z}\}.$

The functor I_q is the fibrant replacement functor of the localized model structure of $Spt_{T}^{\Sigma}(S)$ with respect to

$$\mathcal{L}(q) = \{\mathbf{0} \rightarrow \Sigma^{\mathbf{0},q} K \mid K \in \mathfrak{K}(\mathbf{0})\}.$$

(joint work with M. Spitzweck, O. Röndigs and P. A. Østvær)

Let *S* be a base scheme and \mathcal{M} the category $Spt_T^{\Sigma}(S)$ of **motivic symmetric spectra** with the stable model structure. This is a combinatorial simplicial symmetric monoidal proper model category.

The functor c_q is the cofibrant replacement functor of the colocalized model structure of $Spt_{T}^{\Sigma}(S)$ with respect to

$$\mathfrak{K}(q) = \{\Sigma^{0,q}\Sigma^{\infty}_{+}X[n] \mid X \in Sm/S \text{ and } n, q \in \mathbb{Z}\}.$$

The functor I_q is the fibrant replacement functor of the localized model structure of $Spt_T^{\Sigma}(S)$ with respect to

$$\mathcal{L}(q) = \{ \mathbf{0} \rightarrow \Sigma^{\mathbf{0},q} K \mid K \in \mathcal{K}(\mathbf{0}) \}.$$

(joint work with M. Spitzweck, O. Röndigs and P. A. Østvær)

Let *S* be a base scheme and \mathcal{M} the category $Spt_T^{\Sigma}(S)$ of **motivic symmetric spectra** with the stable model structure. This is a combinatorial simplicial symmetric monoidal proper model category.

The functor c_q is the cofibrant replacement functor of the colocalized model structure of $Spt_{T}^{\Sigma}(S)$ with respect to

$$\mathfrak{K}(q) = \{\Sigma^{0,q}\Sigma^{\infty}_+ X[n] \mid X \in Sm/S \text{ and } n, q \in \mathbb{Z}\}.$$

The functor l_q is the fibrant replacement functor of the localized model structure of $Spt_{T}^{\Sigma}(S)$ with respect to

$$\mathcal{L}(q) = \{0 \rightarrow \Sigma^{0,q} K \mid K \in \mathcal{K}(0)\}.$$

The *q*-th slice functor s_q is obtained by first colocalizing with respect to $\mathcal{K}(q)$ and second localizing with respect to $\mathcal{L}(q+1)$.

Theorem

- If E is a motivic E_∞-ring spectrum, then c₀E and s₀E are motivic E_∞-ring spectra.
- If M is a module over a motivic E_∞-ring spectrum E, its (q − 1)-connective cover c_qM is an c₀E-module and the slice s_qM is an s₀E-module.

Examples

The *q*-th slice functor s_q is obtained by first colocalizing with respect to $\mathcal{K}(q)$ and second localizing with respect to $\mathcal{L}(q+1)$.

Theorem

 If E is a motivic E_∞-ring spectrum, then c₀E and s₀E are motivic E_∞-ring spectra.

 If M is a module over a motivic E_∞-ring spectrum E, its (q − 1)-connective cover c_qM is an c₀E-module and the slice s_qM is an s₀E-module.

Examples

The *q*-th slice functor s_q is obtained by first colocalizing with respect to $\mathcal{K}(q)$ and second localizing with respect to $\mathcal{L}(q+1)$.

Theorem

- If E is a motivic E_∞-ring spectrum, then c₀E and s₀E are motivic E_∞-ring spectra.
- If M is a module over a motivic E_∞-ring spectrum E, its (q − 1)-connective cover c_qM is an c₀E-module and the slice s_qM is an s₀E-module.

Examples

The *q*-th slice functor s_q is obtained by first colocalizing with respect to $\mathcal{K}(q)$ and second localizing with respect to $\mathcal{L}(q+1)$.

Theorem

- If E is a motivic E_∞-ring spectrum, then c₀E and s₀E are motivic E_∞-ring spectra.
- If M is a module over a motivic E_∞-ring spectrum E, its (q − 1)-connective cover c_qM is an c₀E-module and the slice s_qM is an s₀E-module.

Examples