Cellularization of structures in triangulated categories

Javier J. Gutiérrez Centre de Recerca Matemàtica

CSASC 2010

Prague, Czech Republic, January 22-26, 2010

Javier J. Gutiérrez (CRM)

Cellularization in triangulated categories

▲ 同 ▶ ▲ 三 ▶

• Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces.

- Given *A* and *X* two pointed topological spaces, *Cell_AX* contains the information on *X* that can be built up from *A*.
- *X* is called *A*-*cellular* if *Cell_AX* ~ *X* and it is the smallest class that contains *A* and it is closed under weak equivalences and homotopy colimits.
- $f: X \longrightarrow Y$ is an A-cellular equivalence if

$$f_* \colon map_*(A, X) \longrightarrow map_*(A, Y)$$

is a weak equivalence.

- Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces.
- Given *A* and *X* two pointed topological spaces, *Cell_AX* contains the information on *X* that can be built up from *A*.
- *X* is called *A*-cellular if Cell_AX ~ X and it is the smallest class that contains *A* and it is closed under weak equivalences and homotopy colimits.
- $f: X \longrightarrow Y$ is an *A-cellular equivalence* if

$$f_*: map_*(A, X) \longrightarrow map_*(A, Y)$$

is a weak equivalence.

- Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces.
- Given *A* and *X* two pointed topological spaces, *Cell_AX* contains the information on *X* that can be built up from *A*.
- X is called A-cellular if Cell_AX ~ X and it is the smallest class that contains A and it is closed under weak equivalences and homotopy colimits.
- $f: X \longrightarrow Y$ is an A-cellular equivalence if

$$f_* \colon map_*(A, X) \longrightarrow map_*(A, Y)$$

is a weak equivalence.

A I > A I > A

- Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces.
- Given *A* and *X* two pointed topological spaces, *Cell_AX* contains the information on *X* that can be built up from *A*.
- X is called A-cellular if Cell_AX ~ X and it is the smallest class that contains A and it is closed under weak equivalences and homotopy colimits.
- $f: X \longrightarrow Y$ is an A-cellular equivalence if

$$f_*: map_*(A, X) \longrightarrow map_*(A, Y)$$

is a weak equivalence.

• Examples: *n*-connective covers, universal covers.

• Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann .

Objectives

- Describe the formal properties of cellularization functors in triangulated categories.
- Study the algebraic structures preserved by these functors.

< 同 ト < 三 ト < 三 ト

- Examples: *n*-connective covers, universal covers.
- Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann .

Objectives

- Describe the formal properties of cellularization functors in triangulated categories.
- Study the algebraic structures preserved by these functors.

< ロ > < 同 > < 回 > < 回 >

- Examples: *n*-connective covers, universal covers.
- Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann .

Objectives

• Describe the formal properties of cellularization functors in triangulated categories.

• Study the algebraic structures preserved by these functors.

< □ > < □ > < □ > < □ > < □ >

- Examples: *n*-connective covers, universal covers.
- Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann .

Objectives

- Describe the formal properties of cellularization functors in triangulated categories.
- Study the algebraic structures preserved by these functors.

Let $(\mathfrak{T},\Sigma,[-,-])$ be a triangulated category with arbitrary coproducts and a set of generators.

Definition

Let A be any object of T.

 i) A map f: X → Y in T is an A-cellular equivalence if the induced map

$$[\Sigma^k A, X] \stackrel{g_*}{\longrightarrow} [\Sigma^k A, Y]$$

is an isomorphism of abelian groups for all $k \ge 0$.

ii) An object Z of T is A-cellular if the induced map

$$[\Sigma^k Z, X] \stackrel{f_*}{\longrightarrow} [\Sigma^k Z, Y]$$

is an isomorphism for every A-cellular equivalence $f: X \longrightarrow Y$ and for all $k \ge 0$.

Let $(\mathfrak{T},\Sigma,[-,-])$ be a triangulated category with arbitrary coproducts and a set of generators.

Definition

Let A be any object of \mathcal{T} .

 i) A map f: X → Y in T is an A-cellular equivalence if the induced map

$$[\Sigma^k A, X] \stackrel{g_*}{\longrightarrow} [\Sigma^k A, Y]$$

is an isomorphism of abelian groups for all $k \ge 0$.

ii) An object Z of T is A-cellular if the induced map

$$[\Sigma^k Z, X] \stackrel{f_*}{\longrightarrow} [\Sigma^k Z, Y]$$

is an isomorphism for every A-cellular equivalence $f: X \longrightarrow Y$ and for all $k \ge 0$.

Definition

Let A be any object of \mathcal{T} .

- i) An object X is *A*-null if $[\Sigma^k A, X] = 0$ for every $k \ge 0$.
- ii) A map $g: X \longrightarrow Y$ is an *A-null equivalence* if the induced map

$$[\Sigma^k Y, Z] \cong [\Sigma^k X, Z]$$

is an isomorphism of abelian groups for $k \ge 0$.

• An *A-cellularization functor* is a colocalization functor (*Cell_A*, *c*) such that for every object *X* of \mathcal{T} , the map $c_X : Cell_A X \longrightarrow X$ is an *A*-cellular equivalence and $Cell_A X$ is *A*-cellular.

• An *A*-nullification functor is a localization functor (P_A , I) such that for every object X of \mathcal{T} , the map $I_X : X \longrightarrow P_A X$ is an *A*-null equivalence and $P_A X$ is *A*-null.

Definition

Let A be any object of \mathcal{T} .

- i) An object X is *A*-null if $[\Sigma^k A, X] = 0$ for every $k \ge 0$.
- ii) A map $g: X \longrightarrow Y$ is an *A-null equivalence* if the induced map

$$[\Sigma^k Y, Z] \cong [\Sigma^k X, Z]$$

is an isomorphism of abelian groups for $k \ge 0$.

- An *A-cellularization functor* is a colocalization functor (*Cell_A*, *c*) such that for every object *X* of \mathcal{T} , the map $c_X : Cell_A X \longrightarrow X$ is an *A*-cellular equivalence and *Cell_AX* is *A*-cellular.
- An *A*-nullification functor is a localization functor (P_A , I) such that for every object X of \mathcal{T} , the map $I_X : X \longrightarrow P_A X$ is an *A*-null equivalence and $P_A X$ is *A*-null.

• We say that P_A or $Cell_A$ are *exact* if they are triangulated functors.

Existence

- Assume that there is a stable model category \mathcal{M} such that $\mathcal{T} = Ho(\mathcal{M})$. Cellularization and nullfication functors always exist if \mathcal{M} is a proper combinatorial model category.
- Examples to keep in mind: Spectra, $\mathcal{D}(R)$, *E*-local spectra, $\mathcal{D}(shv/X)$,...

• Image: A image:

• We say that P_A or $Cell_A$ are *exact* if they are triangulated functors.

Existence

- Assume that there is a stable model category M such that \$\mathcal{T}\$ = Ho(\$\mathcal{M}\$)\$. Cellularization and nullfication functors always exist if \$\mathcal{M}\$ is a proper combinatorial model category.
- Examples to keep in mind: Spectra, $\mathcal{D}(R)$, *E*-local spectra, $\mathcal{D}(shv/X)$,...

< ロ > < 同 > < 回 > < 回 >

• We say that P_A or $Cell_A$ are *exact* if they are triangulated functors.

Existence

- Assume that there is a stable model category M such that \$\mathcal{T}\$ = Ho(\$\mathcal{M}\$)\$. Cellularization and nullfication functors always exist if \$\mathcal{M}\$ is a proper combinatorial model category.
- Examples to keep in mind: Spectra, $\mathcal{D}(R)$, *E*-local spectra, $\mathcal{D}(shv/X)$,...

• P • • P • • P •

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathfrak{T}

- i) If Y and Z are A-null then X is A-null.
- ii) If X and Z are A-null then Y is A-null.
- iii) If X and Y are A-cellular then Z is A-cellular.
- iv) If X and Z are A-cellular then Y is *not* A-cellular in general.
- v) The class of *A*-null objects and the class of *A*-cellular equivalences are closed under desuspensions.
- vi) The class of *A*-cellular objects and the class of *A*-null equivalences are closed under suspensions.
- vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathfrak{T}

- i) If Y and Z are A-null then X is A-null.
- ii) If X and Z are A-null then Y is A-null.
- iii) If X and Y are A-cellular then Z is A-cellular.
- iv) If X and Z are A-cellular then Y is *not* A-cellular in general.
- v) The class of *A*-null objects and the class of *A*-cellular equivalences are closed under desuspensions.
- vi) The class of *A*-cellular objects and the class of *A*-null equivalences are closed under suspensions.
- vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathfrak{T}

- i) If Y and Z are A-null then X is A-null.
- ii) If X and Z are A-null then Y is A-null.
- iii) If X and Y are A-cellular then Z is A-cellular.
- iv) If X and Z are A-cellular then Y is *not* A-cellular in general.
- v) The class of *A*-null objects and the class of *A*-cellular equivalences are closed under desuspensions.
- vi) The class of *A*-cellular objects and the class of *A*-null equivalences are closed under suspensions.
- vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathfrak{T}

- i) If Y and Z are A-null then X is A-null.
- ii) If X and Z are A-null then Y is A-null.
- iii) If X and Y are A-cellular then Z is A-cellular.
- iv) If X and Z are A-cellular then Y is *not* A-cellular in general.
- v) The class of *A*-null objects and the class of *A*-cellular equivalences are closed under desuspensions.
- vi) The class of *A*-cellular objects and the class of *A*-null equivalences are closed under suspensions.
- vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathfrak{T}

- i) If Y and Z are A-null then X is A-null.
- ii) If X and Z are A-null then Y is A-null.
- iii) If X and Y are A-cellular then Z is A-cellular.
- iv) If X and Z are A-cellular then Y is *not* A-cellular in general.
- v) The class of *A*-null objects and the class of *A*-cellular equivalences are closed under desuspensions.
- vi) The class of *A*-cellular objects and the class of *A*-null equivalences are closed under suspensions.
- vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathfrak{T}

- i) If Y and Z are A-null then X is A-null.
- ii) If X and Z are A-null then Y is A-null.
- iii) If X and Y are A-cellular then Z is A-cellular.
- iv) If X and Z are A-cellular then Y is *not* A-cellular in general.
- v) The class of *A*-null objects and the class of *A*-cellular equivalences are closed under desuspensions.
- vi) The class of *A*-cellular objects and the class of *A*-null equivalences are closed under suspensions.
- vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathfrak{T}

- i) If Y and Z are A-null then X is A-null.
- ii) If X and Z are A-null then Y is A-null.
- iii) If X and Y are A-cellular then Z is A-cellular.
- iv) If X and Z are A-cellular then Y is *not* A-cellular in general.
- v) The class of *A*-null objects and the class of *A*-cellular equivalences are closed under desuspensions.
- vi) The class of *A*-cellular objects and the class of *A*-null equivalences are closed under suspensions.
- vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

There are natural maps

$$Cell_A X \longrightarrow X \longrightarrow P_A X.$$

This is *not* an exact triangle in general.

Theorem

Let A and X be two objects of T.

- i) There is an exact triangle Cell_AX → X → P_AX if and only if the morphism of abelian groups [Σ⁻¹A, Cell_AX] → [Σ⁻¹A, X] is injective (e.g. if [Σ⁻¹A, Cell_AX] = 0).
- ii) There is an exact triangle $Cell_A X \longrightarrow X \longrightarrow P_{\Sigma A} X$ if and only if $[A, X] \longrightarrow [A, P_{\Sigma A} X]$ is the zero map (e.g. if [A, X] = 0).
- iii) If $Cell_A$ or P_A are exact, then $Cell_A X \longrightarrow X \longrightarrow P_A X$ is an exact triangle.

There are natural maps

$$Cell_A X \longrightarrow X \longrightarrow P_A X.$$

This is *not* an exact triangle in general.

Theorem

Let A and X be two objects of T.

- i) There is an exact triangle Cell_AX → X → P_AX if and only if the morphism of abelian groups [Σ⁻¹A, Cell_AX] → [Σ⁻¹A, X] is injective (e.g. if [Σ⁻¹A, Cell_AX] = 0).
- ii) There is an exact triangle $Cell_A X \longrightarrow X \longrightarrow P_{\Sigma A} X$ if and only if $[A, X] \longrightarrow [A, P_{\Sigma A} X]$ is the zero map (e.g. if [A, X] = 0).
- iii) If Cell_A or P_A are exact, then Cell_AX \longrightarrow X \longrightarrow P_AX is an exact triangle.

< 口 > < 白 > < 白 > < 三 > < 三 >

There are natural maps

$$Cell_A X \longrightarrow X \longrightarrow P_A X.$$

This is *not* an exact triangle in general.

Theorem

Let A and X be two objects of T.

- i) There is an exact triangle Cell_AX → X → P_AX if and only if the morphism of abelian groups [Σ⁻¹A, Cell_AX] → [Σ⁻¹A, X] is injective (e.g. if [Σ⁻¹A, Cell_AX] = 0).
- ii) There is an exact triangle $Cell_A X \longrightarrow X \longrightarrow P_{\Sigma A} X$ if and only if $[A, X] \longrightarrow [A, P_{\Sigma A} X]$ is the zero map (e.g. if [A, X] = 0).
- iii) If Cell_A or P_A are exact, then Cell_AX \longrightarrow X \longrightarrow P_AX is an exact triangle.

< 口 > < 白 > < 白 > < 三 > < 三 >

There are natural maps

$$Cell_A X \longrightarrow X \longrightarrow P_A X.$$

This is *not* an exact triangle in general.

Theorem

Let A and X be two objects of T.

- i) There is an exact triangle Cell_AX → X → P_AX if and only if the morphism of abelian groups [Σ⁻¹A, Cell_AX] → [Σ⁻¹A, X] is injective (e.g. if [Σ⁻¹A, Cell_AX] = 0).
- ii) There is an exact triangle $Cell_A X \longrightarrow X \longrightarrow P_{\Sigma A} X$ if and only if $[A, X] \longrightarrow [A, P_{\Sigma A} X]$ is the zero map (e.g. if [A, X] = 0).
- iii) If $Cell_A$ or P_A are exact, then $Cell_A X \longrightarrow X \longrightarrow P_A X$ is an exact triangle.

Example

Not every nullification and cellularization functor fiting into an exact triangle are exact.

If $\ensuremath{\mathbb{T}}$ is the stable homotopy category of spectra and S is the sphere spectrum, then we have an exact triangle

 $Cell_S X \longrightarrow X \longrightarrow P_S X$

for every X, but neither $Cell_S$ nor P_S are exact.

< ロ > < 同 > < 回 > < 回 >

Example

Not every nullification and cellularization functor fiting into an exact triangle are exact.

If $\ensuremath{\mathbb{T}}$ is the stable homotopy category of spectra and S is the sphere spectrum, then we have an exact triangle

$$Cell_S X \longrightarrow X \longrightarrow P_S X$$

for every X, but neither $Cell_S$ nor P_S are exact.

< 🗇 🕨 < 🖃 🕨

Let $F_A X$ be the fiber of the map $X \longrightarrow P_A X$

$$F_A X \longrightarrow X \longrightarrow P_A X$$

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover

- F_A is quasiexact
- F_A-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in T.

Let $F_A X$ be the fiber of the map $X \longrightarrow P_A X$

$$F_A X \longrightarrow X \longrightarrow P_A X$$

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover

- F_A is quasiexact
- F_A-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in T.

Let $F_A X$ be the fiber of the map $X \longrightarrow P_A X$

$$F_A X \longrightarrow X \longrightarrow P_A X$$

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover

- F_A is quasiexact
- F_A-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in T.

Let $F_A X$ be the fiber of the map $X \longrightarrow P_A X$

$$F_A X \longrightarrow X \longrightarrow P_A X$$

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover

- F_A is quasiexact
- *F_A*-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in T.

t-structures

Definition

A *t-structure* on \mathcal{T} is a pair of full subcategories $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ such that, denoting $\mathcal{T}^{\leq n} = \Sigma^{-n} \mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq n} = \Sigma^{-n} \mathcal{T}^{\geq 0}$, the following hold:

i) For every object X of $\mathcal{T}^{\leq 0}$ and every object Y of $\mathcal{T}^{\geq 1}$, [X, Y] = 0.

$$\text{ii)} \ \mathfrak{T}^{\leq 0} \subset \mathfrak{T}^{\leq 1} \text{ and } \mathfrak{T}^{\geq 1} \subset \mathfrak{T}^{\geq 0}.$$

iii) For every object X of T, there is an exact triangle

$$U \longrightarrow X \longrightarrow V$$
,

where *U* is an object of $\mathcal{T}^{\leq 0}$ and *V* is an object of $\mathcal{T}^{\geq 1}$.

The *core* of the *t*-structure is the full subcategory $T^{\leq 0} \cap T^{\geq 0}$. The core is always an abelian subcategory of T.

< ロ > < 同 > < 回 > < 回 >

t-structures

Definition

A *t-structure* on \mathcal{T} is a pair of full subcategories $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ such that, denoting $\mathcal{T}^{\leq n} = \Sigma^{-n} \mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq n} = \Sigma^{-n} \mathcal{T}^{\geq 0}$, the following hold:

i) For every object X of $\mathcal{T}^{\leq 0}$ and every object Y of $\mathcal{T}^{\geq 1}$, [X, Y] = 0.

ii)
$$\mathfrak{T}^{\leq 0} \subset \mathfrak{T}^{\leq 1}$$
 and $\mathfrak{T}^{\geq 1} \subset \mathfrak{T}^{\geq 0}$.

iii) For every object X of T, there is an exact triangle

$$U \longrightarrow X \longrightarrow V,$$

where *U* is an object of $\mathcal{T}^{\leq 0}$ and *V* is an object of $\mathcal{T}^{\geq 1}$.

The *core* of the *t*-structure is the full subcategory $\mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$. The core is always an abelian subcategory of \mathcal{T} .

< ロ > < 同 > < 回 > < 回 >

t-structures

Theorem

For any object A in \mathcal{T} the full subcategory of Σ A-null objects and the full subcategory of F_A -colocal objects define a t-structure on \mathcal{T} .

• If $Cell_A$ and P_A fit into an exact triangle, then the *t*-structure is given by the *A*-cellular objects and the ΣA -null objects

• If $Cell_A$ and P_A are exact, then the associated *t*-structure is trivial.

< 同 ト < 三 ト < 三 ト

Theorem

For any object A in T the full subcategory of Σ A-null objects and the full subcategory of F_A -colocal objects define a t-structure on T.

 If *Cell_A* and *P_A* fit into an exact triangle, then the *t*-structure is given by the *A*-cellular objects and the Σ*A*-null objects

• If $Cell_A$ and P_A are exact, then the associated *t*-structure is trivial.

Theorem

For any object A in T the full subcategory of Σ A-null objects and the full subcategory of F_A -colocal objects define a t-structure on T.

• If $Cell_A$ and P_A fit into an exact triangle, then the *t*-structure is given by the *A*-cellular objects and the ΣA -null objects

• If $Cell_A$ and P_A are exact, then the associated *t*-structure is trivial.

Example

Let \mathcal{T} be a monogenic stable homotopy category with unit S, such that $[\Sigma^k S, S] = 0$ for every k < 0. Let R denote the ring [S, S]. Then the functors $Cell_{\Sigma^k S}$ and $P_{\Sigma^k S}$ are the *k*-th connective cover functor and the *k*-th Postnikov section functor respectively:

$$[\Sigma^{n}S, Cell_{\Sigma^{k}S}X] = \begin{cases} 0 & \text{if } n < k \\ [\Sigma^{n}S, X] & \text{if } n \ge k \end{cases}$$
$$[\Sigma^{n}S, P_{\Sigma^{k}S}X] = \begin{cases} 0 & \text{if } n \ge k \\ [\Sigma^{n}S, X] & \text{if } n < k \end{cases}$$

We have an exact triangle

$$Cell_{\Sigma^kS}X \longrightarrow X \longrightarrow P_{\Sigma^kS}X.$$

Example

Let \mathfrak{T} be a monogenic stable homotopy category with unit S, such that $[\Sigma^k S, S] = 0$ for every k < 0. Let R denote the ring [S, S]. Then the functors $Cell_{\Sigma^k S}$ and $P_{\Sigma^k S}$ are the k-th connective cover functor and the k-th Postnikov section functor respectively:

$$[\Sigma^{n}S, Cell_{\Sigma^{k}S}X] = \begin{cases} 0 & \text{if } n < k \\ [\Sigma^{n}S, X] & \text{if } n \ge k \end{cases}$$
$$[\Sigma^{n}S, P_{\Sigma^{k}S}X] = \begin{cases} 0 & \text{if } n \ge k \\ [\Sigma^{n}S, X] & \text{if } n < k \end{cases}$$

We have an exact triangle

$$Cell_{\Sigma^kS}X \longrightarrow X \longrightarrow P_{\Sigma^kS}X.$$

Example

Let \mathfrak{T} be a monogenic stable homotopy category with unit S, such that $[\Sigma^k S, S] = 0$ for every k < 0. Let R denote the ring [S, S]. Then the functors $Cell_{\Sigma^k S}$ and $P_{\Sigma^k S}$ are the k-th connective cover functor and the k-th Postnikov section functor respectively:

$$[\Sigma^{n}S, Cell_{\Sigma^{k}S}X] = \begin{cases} 0 & \text{if } n < k \\ [\Sigma^{n}S, X] & \text{if } n \ge k \end{cases}$$
$$[\Sigma^{n}S, P_{\Sigma^{k}S}X] = \begin{cases} 0 & \text{if } n \ge k \\ [\Sigma^{n}S, X] & \text{if } n < k \end{cases}$$

We have an exact triangle

$$Cell_{\Sigma^kS}X \longrightarrow X \longrightarrow P_{\Sigma^kS}X.$$

< □ > < 同 > < 三 > < 三 >

Example

The core of the associated *t*-structure is the full subcategory of \mathcal{T} with objects *X* such that such that $[\Sigma^n S, X] = 0$ if $n \neq k$ and it is equivalent to the category of *R*-modules. The objects in the core are called *Eilenberg-Mac Lane objects*.

Note that $Cell_{\Sigma^k S}$ is not an exact functor. For example, if $[\Sigma^{k-1}S, X] \neq 0$, then $Cell_{\Sigma^k S} \Sigma X \neq \Sigma Cell_{\Sigma^k S} X$.

< 同 ト < 三 ト < 三 ト

Example

The core of the associated *t*-structure is the full subcategory of \mathcal{T} with objects *X* such that such that $[\Sigma^n S, X] = 0$ if $n \neq k$ and it is equivalent to the category of *R*-modules. The objects in the core are called *Eilenberg-Mac Lane objects*.

Note that $Cell_{\Sigma^k S}$ is not an exact functor. For example, if $[\Sigma^{k-1}S, X] \neq 0$, then $Cell_{\Sigma^k S}\Sigma X \neq \Sigma Cell_{\Sigma^k S}X$.

Let \mathcal{T} be a monoidal triangulated category with tensor product \otimes , unit *S* and internal hom F(-, -), such that

- T is monogenic.
- \mathfrak{T} is connective, i.e., $[\Sigma^k S, S] = 0$ for k < 0.

An object X is called *connective* if $Cell_S X \simeq X$ and if X is connective, then

 $[X, Cell_S F(Y, Z)] \cong [X, F(Y, Z)] \cong [X \otimes Y, Z].$

A ring R in T is a monoid object and an R-module in T is a monoid over the monoid R.

Let \mathcal{T} be a monoidal triangulated category with tensor product \otimes , unit *S* and internal hom F(-, -), such that

- T is monogenic.
- T is connective, i.e., $[\Sigma^k S, S] = 0$ for k < 0.

An object X is called *connective* if $Cell_S X \simeq X$ and if X is connective, then

$$[X, Cell_{\mathcal{S}}F(Y, Z)] \cong [X, F(Y, Z)] \cong [X \otimes Y, Z].$$

A ring R in T is a monoid object and an R-module in T is a monoid over the monoid R.

Let \mathcal{T} be a monoidal triangulated category with tensor product \otimes , unit *S* and internal hom F(-, -), such that

- T is monogenic.
- T is connective, i.e., $[\Sigma^k S, S] = 0$ for k < 0.

An object X is called *connective* if $Cell_S X \simeq X$ and if X is connective, then

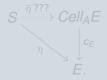
$$[X, Cell_{\mathcal{S}}F(Y, Z)] \cong [X, F(Y, Z)] \cong [X \otimes Y, Z].$$

A ring R in T is a monoid object and an R-module in T is a monoid over the monoid R.

Theorem

If *E* is a connective ring object and *M* is an *E*-module, then for any object *A*, the object Cell_AM has an *E*-module structure such that the cellularization map Cell_AM \longrightarrow M is a map of *E*-modules. If Cell_A is exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring, then $Cell_A R$ will not be a ring in general, even if $Cell_A$ is exact!



< 同 ト < 三 ト < 三 ト

Theorem

If *E* is a connective ring object and *M* is an *E*-module, then for any object *A*, the object Cell_AM has an *E*-module structure such that the cellularization map Cell_AM \longrightarrow M is a map of *E*-modules. If Cell_A is exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring, then $Cell_A R$ will not be a ring in general, *even if Cell_A* is exact!

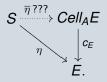


< 同 > < 三 > < 三 >

Theorem

If *E* is a connective ring object and *M* is an *E*-module, then for any object *A*, the object Cell_AM has an *E*-module structure such that the cellularization map Cell_AM \longrightarrow M is a map of *E*-modules. If Cell_A is exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring, then $Cell_A R$ will not be a ring in general, *even if Cell_A* is exact!



- 4 回 ト - 4 回 ト

Let C be the cofiber of $Cell_A E \longrightarrow E$

 $Cell_A E \longrightarrow E \longrightarrow C$

Theorem

Let E be a ring object. Assume that either one of the following holds:

- i) Cell_A commutes with suspension, the morphism π₁(E) → π₁(C) is surjective and the morphism π₀(C) → π₋₁(Cell_AE) is in jective or
- ii) Cell_AE is connective, Cell_A is of the form F_B for some B, the morphism $\pi_1(E) \rightarrow \pi_1(P_B E)$ is surjective and $\pi_0(P_B E) = 0$.

Then $Cell_AE$ has a unique ring structure such that the cellularization map is a map of rings.

< □ > < 同 > < 回 > < 回 > < 回 >

Let C be the cofiber of $Cell_A E \longrightarrow E$

$$Cell_A E \longrightarrow E \longrightarrow C$$

Theorem

Let E be a ring object. Assume that either one of the following holds:

- i) Cell_A commutes with suspension, the morphism π₁(E) → π₁(C) is surjective and the morphism π₀(C) → π₋₁(Cell_AE) is in jective or
- ii) Cell_AE is connective, Cell_A is of the form F_B for some B, the morphism $\pi_1(E) \rightarrow \pi_1(P_B E)$ is surjective and $\pi_0(P_B E) = 0$.

Then $Cell_AE$ has a unique ring structure such that the cellularization map is a map of rings.

Let C be the cofiber of $Cell_A E \longrightarrow E$

$$Cell_A E \longrightarrow E \longrightarrow C$$

Theorem

Let E be a ring object. Assume that either one of the following holds:

- i) Cell_A commutes with suspension, the morphism π₁(E) → π₁(C) is surjective and the morphism π₀(C) → π₋₁(Cell_AE) is in jective or
- ii) Cell_AE is connective, Cell_A is of the form F_B for some B, the morphism $\pi_1(E) \twoheadrightarrow \pi_1(P_B E)$ is surjective and $\pi_0(P_B E) = 0$.

Then $Cell_AE$ has a unique ring structure such that the cellularization map is a map of rings.

Let C be the cofiber of $Cell_A E \longrightarrow E$

$$Cell_A E \longrightarrow E \longrightarrow C$$

Theorem

Let E be a ring object. Assume that either one of the following holds:

- i) Cell_A commutes with suspension, the morphism π₁(E) → π₁(C) is surjective and the morphism π₀(C) → π₋₁(Cell_AE) is in jective or
- ii) Cell_AE is connective, Cell_A is of the form F_B for some B, the morphism $\pi_1(E) \twoheadrightarrow \pi_1(P_B E)$ is surjective and $\pi_0(P_B E) = 0$.

Then $Cell_AE$ has a unique ring structure such that the cellularization map is a map of rings.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ =

Example

Let A = S, then $Cell_A E$ is the connective cover of E. There is an exact triangle

 $Cell_S E \longrightarrow E \longrightarrow P_S E$

where P_S is the Postnikov section functor, i.e., it kills all the homotopy groups in dimensions bigger or equal to zero. So $\pi_1 P_S E = \pi_0 P_S E = 0$ and by part ii) of the previous theorem we have that if *E* is a ring object, then so is its connective cover *Cell_SE*.

< □ > < 同 > < 回 > < 回 > < 回 >

How to compute $Cell_A \Sigma^k HG$ for any abelian group G.

Theorem

Let G be any abelian group, $\mathsf{n}\in\mathbb{Z}$ and A be any object in ${\mathbb T}.$ Then

 $Cell_A\Sigma^nHG\simeq\Sigma^{n-1}HB\vee\Sigma^nHC$

for some abelian groups B and C. Moreover

- i) $Hom(B,B) \oplus Ext(B,C) \cong Ext(B,G)$.
- ii) $Hom(C, C) \cong Hom(C, G)$.
- iii) $Hom(B, C) \cong Hom(B, G)$.

If *G* is divisible, then $Cell_A \Sigma^n HG$ is either zero or $\Sigma^n HC$ for some abelian group *C*.

< □ > < 同 > < 回 > < 回 > < 回 >

How to compute $Cell_A \Sigma^k HG$ for any abelian group *G*.

Theorem

Let G be any abelian group, $n \in \mathbb{Z}$ and A be any object in \mathfrak{T} . Then

 $Cell_A \Sigma^n HG \simeq \Sigma^{n-1} HB \vee \Sigma^n HC$

for some abelian groups B and C. Moreover

i) $Hom(B,B) \oplus Ext(B,C) \cong Ext(B,G)$.

ii) $Hom(C, C) \cong Hom(C, G)$

iii) $Hom(B, C) \cong Hom(B, G)$.

If *G* is divisible, then $Cell_A \Sigma^n HG$ is either zero or $\Sigma^n HC$ for some abelian group *C*.

How to compute $Cell_A \Sigma^k HG$ for any abelian group *G*.

Theorem

Let G be any abelian group, $n \in \mathbb{Z}$ and A be any object in \mathfrak{T} . Then

 $Cell_A \Sigma^n HG \simeq \Sigma^{n-1} HB \vee \Sigma^n HC$

for some abelian groups B and C. Moreover

- i) $Hom(B,B) \oplus Ext(B,C) \cong Ext(B,G)$.
- ii) $Hom(C, C) \cong Hom(C, G)$.
- iii) $Hom(B, C) \cong Hom(B, G)$.

If *G* is divisible, then $Cell_A \Sigma^n HG$ is either zero or $\Sigma^n HC$ for some abelian group *C*.

< □ > < 同 > < 回 > < 回 > < 回 >

How to compute $Cell_A \Sigma^k HG$ for any abelian group *G*.

Theorem

Let G be any abelian group, $n \in \mathbb{Z}$ and A be any object in \mathfrak{T} . Then

 $Cell_A \Sigma^n HG \simeq \Sigma^{n-1} HB \vee \Sigma^n HC$

for some abelian groups B and C. Moreover

- i) $Hom(B, B) \oplus Ext(B, C) \cong Ext(B, G)$.
- ii) $Hom(C, C) \cong Hom(C, G)$.
- iii) $Hom(B, C) \cong Hom(B, G)$.

If *G* is divisible, then $Cell_A \Sigma^n HG$ is either zero or $\Sigma^n HC$ for some abelian group *C*.

< □ > < 同 > < 回 > < 回 > < 回 >

Example

For every object A in \mathcal{T} and any interger m, we have that

 $Cell_A \Sigma^m H \mathbb{Z}/p^n \simeq \Sigma^m H \mathbb{Z}/p^j$,

where $1 \le j \le n$.

If $A = \Sigma^m H \mathbb{Z} / p^k$, then

 $\mathcal{C}ell_A \Sigma^m H \mathbb{Z}/p^n \simeq \left\{ egin{array}{c} \Sigma^m H \mathbb{Z}/p^k ext{ if } n \geq k \ \Sigma^m H \mathbb{Z}/p^n ext{ if } n < k. \end{array}
ight.$

This shows that $Cell_{H\mathbb{Z}/p}$ is not quasiexact, since $H\mathbb{Z}/p$ is A-cellular but $H\mathbb{Z}/p^2$ is not.

Javier J. Gutiérrez (CRM)

Example

For every object A in \mathcal{T} and any interger m, we have that

 $Cell_A \Sigma^m H \mathbb{Z}/p^n \simeq \Sigma^m H \mathbb{Z}/p^j$,

where $1 \le j \le n$.

If $A = \Sigma^m H \mathbb{Z} / p^k$, then

$$Cell_{A}\Sigma^{m}H\mathbb{Z}/p^{n} \simeq \begin{cases} \Sigma^{m}H\mathbb{Z}/p^{k} \text{ if } n \geq k\\ \Sigma^{m}H\mathbb{Z}/p^{n} \text{ if } n < k. \end{cases}$$

This shows that $Cell_{H\mathbb{Z}/p}$ is not quasiexact, since $H\mathbb{Z}/p$ is A-cellular but $H\mathbb{Z}/p^2$ is not.

Javier J. Gutiérrez (CRM)

Example

For every object A in \mathcal{T} and any interger m, we have that

 $Cell_A \Sigma^m H \mathbb{Z}/p^n \simeq \Sigma^m H \mathbb{Z}/p^j$,

where $1 \le j \le n$.

If $A = \Sigma^m H \mathbb{Z} / p^k$, then

$$Cell_{A}\Sigma^{m}H\mathbb{Z}/p^{n} \simeq \begin{cases} \Sigma^{m}H\mathbb{Z}/p^{k} \text{ if } n \geq k\\ \Sigma^{m}H\mathbb{Z}/p^{n} \text{ if } n < k. \end{cases}$$

This shows that $Cell_{H\mathbb{Z}/p}$ is not quasiexact, since $H\mathbb{Z}/p$ is A-cellular but $H\mathbb{Z}/p^2$ is not.

Let \mathcal{T} be the homotopy category of spectra. Let *E* be any spectrum and let L_E be homological localization with respect to *E*. Bousfield proved that there is another spectrum *A*, such that $L_E X \simeq P_A X$ for every *X*. Since L_E commutes with suspension there is an exact triangle

 $Cell_A X \longrightarrow X \longrightarrow P_A X,$

where Cell_A is the *E*-acyclization functor (in Bousfield languaje).

Example

The cellularization $Cell_A H\mathbb{Z}$ is either zero or one of the following three possibilities

$$H\mathbb{Z}, \qquad \Sigma^{-1}H(\oplus_{\rho\in P}\mathbb{Z}/p^{\infty}), \qquad \Sigma^{-1}H((\prod_{\rho\in P}\widehat{\mathbb{Z}}_{\rho})/\mathbb{Z}).$$

This shows that *Cell_A* does not preserve rings in general.

Let \mathcal{T} be the homotopy category of spectra. Let *E* be any spectrum and let L_E be homological localization with respect to *E*. Bousfield proved that there is another spectrum *A*, such that $L_E X \simeq P_A X$ for every *X*. Since L_E commutes with suspension there is an exact triangle

 $Cell_A X \longrightarrow X \longrightarrow P_A X,$

where Cell_A is the *E*-acyclization functor (in Bousfield languaje).

Example

The cellularization $Cell_A H\mathbb{Z}$ is either zero or one of the following three possibilities

$$H\mathbb{Z}, \qquad \Sigma^{-1}H(\oplus_{\rho\in P}\mathbb{Z}/p^{\infty}), \qquad \Sigma^{-1}H((\prod_{\rho\in P}\widehat{\mathbb{Z}}_{\rho})/\mathbb{Z}).$$

This shows that *Cell_A* does not preserve rings in general.

Let \mathcal{T} be the homotopy category of spectra. Let *E* be any spectrum and let L_E be homological localization with respect to *E*. Bousfield proved that there is another spectrum *A*, such that $L_E X \simeq P_A X$ for every *X*. Since L_E commutes with suspension there is an exact triangle

 $Cell_A X \longrightarrow X \longrightarrow P_A X,$

where Cell_A is the *E*-acyclization functor (in Bousfield languaje).

Example

The cellularization $Cell_A H\mathbb{Z}$ is either zero or one of the following three possibilities

$$H\mathbb{Z}, \qquad \Sigma^{-1}H(\oplus_{\pmb{\rho}\in P}\mathbb{Z}/\pmb{\rho}^\infty), \qquad \Sigma^{-1}H((\prod_{\pmb{n}\in P}\widehat{\mathbb{Z}}_{\pmb{\rho}})/\mathbb{Z}).$$

This shows that $Cell_A$ does not preserve rings in general.