A model structure for operads in symmetric spectra

Javier J. Gutiérrez
Centre de Recerca Matemàtica

SECA V

Pontevedra, September 10-12, 2008

Outline of the talk

(9) Introduction
(2) Coloured operads and their algebras
(3) Main result

Motivation

- Operads in a monoidal model category \mathcal{E} carry a Quillen model structure under some conditions on \mathcal{E} [Berger-Moerdijk, 2007].
- Use the "transfer principle"
- Conditions on \mathcal{E} :
(i) Cofibrant unit.
(ii) Symmetric monoidal fibrant replacement functor.
(iii) Extra conditions (coalgebra interval,...)

Motivation

- Operads in a monoidal model category ε carry a Quillen model structure under some conditions on \mathcal{E} [Berger-Moerdijk, 2007].
- Use the "transfer principle"

$$
F: \operatorname{Coll}(\mathcal{E}) \rightleftarrows \operatorname{Oper}(\mathcal{E}): U
$$

- Conditions on \mathcal{E} :
> (i) Cofilbrant unit.
> (ii) Symmetric monoidal fibrant replacement functor.
> (iii) Extra conditions (coalgebra interval,...)

Motivation

- Operads in a monoidal model category ε carry a Quillen model structure under some conditions on \mathcal{E} [Berger-Moerdijk, 2007].
- Use the "transfer principle"

$$
F: \operatorname{Coll}(\mathcal{E}) \rightleftarrows \operatorname{Oper}(\mathcal{E}): U
$$

- Conditions on ε :
> (i) Cofibrant unit.
> (ii) Symmetric monoidal fibrant replacement functor.
> (iii) Extra conditions (coalgebra interval,...)

Motivation

- Operads in a monoidal model category ε carry a Quillen model structure under some conditions on \mathcal{E} [Berger-Moerdijk, 2007].
- Use the "transfer principle"

$$
F: \operatorname{Coll}(\mathcal{E}) \rightleftarrows \operatorname{Oper}(\mathcal{E}): U
$$

- Conditions on \mathcal{E} :
(i) Cofibrant unit.
(ii) Symmetric monoidal fibrant replacement functor.
(iii) Extra conditions (coalgebra interval,...)

Motivation

- Operads in a monoidal model category ε carry a Quillen model structure under some conditions on \mathcal{E} [Berger-Moerdijk, 2007].
- Use the "transfer principle"

$$
F: \operatorname{Coll}(\mathcal{E}) \rightleftarrows \operatorname{Oper}(\mathcal{E}): U
$$

- Conditions on \mathcal{E} :
(i) Cofibrant unit.
(ii) Symmetric monoidal fibrant replacement functor.
(iii) Extra conditions (coalgebra interval,...)

Motivation

- Operads in a monoidal model category ε carry a Quillen model structure under some conditions on \mathcal{E} [Berger-Moerdijk, 2007].
- Use the "transfer principle"

$$
F: \operatorname{Coll}(\mathcal{E}) \rightleftarrows \operatorname{Oper}(\mathcal{E}): U
$$

- Conditions on \mathcal{E} :
(i) Cofibrant unit.
(ii) Symmetric monoidal fibrant replacement functor.
(iii) Extra conditions (coalgebra interval,...)

Motivation

Examples

- Topological spaces, simplicial sets.
- Chain complexes (reduced operads).
- Orthogonal spectra (reduced operads) [August Kro, 2007].
- Not valid for symmetric spectra (no symmetric monoidal fibrant replacement functor; the unit is not cofibrant in the positive stable model structure).

Motivation

Examples

- Topological spaces, simplicial sets.
- Chain complexes (reduced operads).
- Orthogonal spectra (reduced operads) [August Kro, 2007].
- Not vaild for symmeiric specira (no symmetric monoidail ítorant replacement functor; the unit is not cofibrant in the positive stable model structure).

Motivation

Examples

- Topological spaces, simplicial sets.
- Chain complexes (reduced operads).
- Orthogonal spectra (reduced operads) [August Kro, 2007].
- Not valid for symmetric spectra (no symmetric monoidal fibrant replacement functor; the unit is not cofibrant in the positive stable model structure).

Motivation

Examples

- Topological spaces, simplicial sets.
- Chain complexes (reduced operads).
- Orthogonal spectra (reduced operads) [August Kro, 2007].
- Not valid for symmetric spectra (no symmetric monoidal fibrant replacement functor; the unit is not cofibrant in the positive stable model structure).

Motivation

Examples

- Topological spaces, simplicial sets.
- Chain complexes (reduced operads).
- Orthogonal spectra (reduced operads) [August Kro, 2007].
- Not valid for symmetric spectra (no symmetric monoidal fibrant replacement functor; the unit is not cofibrant in the positive stable model structure).

Problem

Problem:

- Construct a Quillen model structure for C-coloured operads in symmetric spectra with the positive model structure.

Solution:

- For a fixed set of colours C, construct a coloured operads whose algebras are C -coloured operads.
- For any coloured operad P in simplicial sets, the category of P-algebras in symmetric spectra carry a Quillen model structure [Elemendorf-Mandell, 2005].

Problem

Problem:

- Construct a Quillen model structure for C-coloured operads in symmetric spectra with the positive model structure.

Solution:

- For a fixed set of colours C, construct a coloured operads whose algebras are C-coloured operads.
- For any coloured operad P in simplicial sets, the category of P-algebras in symmetric spectra carry a Quillen model structure [Elemendorf-Mandell, 2005].

Problem

Problem:

- Construct a Quillen model structure for C-coloured operads in symmetric spectra with the positive model structure.

Solution:

- For a fixed set of colours C, construct a coloured operads whose algebras are C-coloured operads.
- For any coloured operad P in simplicial sets, the category of P-algebras in symmetric spectra carry a Quillen model structure [Elemendorf-Mandell, 2005].

Coloured operads

- Let \mathcal{E} be a cocomplete closed symmetric monoidal category. Let C be a set, whose elements will be called colours.

for all permutations $\sigma \in \Sigma_{n}$, yielding together a right action.
- A Coloured operad is a C-coloured collection P equipped with unit maps $I \rightarrow P(c ; c)$ and composition product maps
$P\left(c_{1}, \ldots, c_{n} ; c\right) \otimes P\left(a_{1,1}, \ldots, a_{1, k_{1}} ; c_{1}\right) \otimes \cdots \otimes P\left(a_{n, 1}, \ldots, a_{n, k_{n}} ; c_{n}\right)$
$\longrightarrow P\left(a_{1,1}, \ldots, a_{1, k_{1}}, a_{2,1}, \ldots, a_{2, k_{2}}, \ldots, a_{n, 1}, \ldots, a_{n, k_{n}} ; c\right)$
compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

Coloured operads

- Let \mathcal{E} be a cocomplete closed symmetric monoidal category. Let C be a set, whose elements will be called colours. A C-coloured collection is a set P of objects $P\left(c_{1}, \ldots, c_{n} ; c\right)$ in \mathcal{E} for every $n \geq 0$ and each tuple ($c_{1}, \ldots, c_{n} ; c$) of colours, together with maps

$$
\sigma^{*}: P\left(c_{1}, \ldots, c_{n} ; c\right) \longrightarrow P\left(c_{\sigma(1)}, \ldots, c_{\sigma(n)} ; c\right)
$$

for all permutations $\sigma \in \Sigma_{n}$, yielding together a right action.

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

Coloured operads

- Let \mathcal{E} be a cocomplete closed symmetric monoidal category. Let C be a set, whose elements will be called colours. A C-coloured collection is a set P of objects $P\left(c_{1}, \ldots, c_{n} ; c\right)$ in \mathcal{E} for every $n \geq 0$ and each tuple ($c_{1}, \ldots, c_{n} ; c$) of colours, together with maps

$$
\sigma^{*}: P\left(c_{1}, \ldots, c_{n} ; c\right) \longrightarrow P\left(c_{\sigma(1)}, \ldots, c_{\sigma(n)} ; c\right)
$$

for all permutations $\sigma \in \Sigma_{n}$, yielding together a right action.

- A C-coloured operad is a C-coloured collection P equipped with unit maps $I \rightarrow P(c ; c)$ and composition product maps

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

Coloured operads

- Let \mathcal{E} be a cocomplete closed symmetric monoidal category. Let C be a set, whose elements will be called colours. A C-coloured collection is a set P of objects $P\left(c_{1}, \ldots, c_{n} ; c\right)$ in \mathcal{E} for every $n \geq 0$ and each tuple ($c_{1}, \ldots, c_{n} ; c$) of colours, together with maps

$$
\sigma^{*}: P\left(c_{1}, \ldots, c_{n} ; c\right) \longrightarrow P\left(c_{\sigma(1)}, \ldots, c_{\sigma(n)} ; c\right)
$$

for all permutations $\sigma \in \Sigma_{n}$, yielding together a right action.

- A C-coloured operad is a C-coloured collection P equipped with unit maps $I \rightarrow P(c ; c)$ and composition product maps

$$
\begin{aligned}
& P\left(c_{1}, \ldots, c_{n} ; c\right) \otimes P\left(a_{1,1}, \ldots, a_{1, k_{1}} ; c_{1}\right) \otimes \cdots \otimes P\left(a_{n, 1}, \ldots, a_{n, k_{n}} ; c_{n}\right) \\
& \quad \longrightarrow P\left(a_{1,1}, \ldots, a_{1, k_{1}}, a_{2,1}, \ldots, a_{2, k_{2}}, \ldots, a_{n, 1}, \ldots, a_{n, k_{n}} ; c\right)
\end{aligned}
$$

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

$$
C=\{\circ, ০, ০, \circ\}
$$

$P(\mathrm{O}, \mathrm{\circ}, \mathrm{\circ} ; \mathrm{\circ}) \otimes P(\mathrm{\circ}, \mathrm{\circ} ; \mathrm{\circ}) \otimes P(\mathrm{O}, \mathrm{\circ}, \mathrm{\circ} ; \mathrm{\circ}) \otimes P(\mathrm{\circ} ; \mathrm{\circ})$

$$
P(০, ০, ০, ০, ০, ০ ; ০)
$$

Algebras over coloured operads

- If P is a C-coloured operad, a P-algebra is an object $\mathbf{X}=(X(c))_{c \in C}$ in \mathcal{E}^{C} together with a morphism of C-coloured operads

$$
P \longrightarrow \operatorname{End}(\mathbf{X}),
$$

where the C-coloured operad $\operatorname{End}(\mathbf{X})$ is defined as

$$
\operatorname{End}(\mathbf{X})\left(c_{1}, \ldots, c_{n} ; c\right)=\operatorname{Hom}_{\varepsilon}\left(X\left(c_{1}\right) \otimes \cdots \otimes X\left(c_{n}\right), X(c)\right)
$$

- Or equivalently,

$$
P\left(c_{1}, \ldots, c_{n} ; c\right) \otimes X\left(c_{1}\right) \otimes \cdots \otimes X\left(c_{n}\right) \longrightarrow X(c) .
$$

Algebras over coloured operads

- If P is a C-coloured operad, a P-algebra is an object $\mathbf{X}=(X(c))_{c \in C}$ in \mathcal{E}^{C} together with a morphism of C-coloured operads

$$
P \longrightarrow \operatorname{End}(\mathbf{X}),
$$

where the C-coloured operad $\operatorname{End}(\mathbf{X})$ is defined as

$$
\operatorname{End}(\mathbf{X})\left(c_{1}, \ldots, c_{n} ; c\right)=\operatorname{Hom}_{\varepsilon}\left(X\left(c_{1}\right) \otimes \cdots \otimes X\left(c_{n}\right), X(c)\right)
$$

- Or equivalently,

$$
P\left(c_{1}, \ldots, c_{n} ; c\right) \otimes X\left(c_{1}\right) \otimes \cdots \otimes X\left(c_{n}\right) \longrightarrow X(c)
$$

The coloured operad S^{C}

Let C be a set of colours. We define a coloured operad S^{C} in Sets whose algebras are C-coloured operads in Sets.

$$
\operatorname{col}\left(S^{C}\right)=\left\{\left(c_{1}, \ldots, c_{n} ; c\right) \mid c_{i}, c \in C, n \geq 0\right\} .
$$

- τ is a bijection $\tau:\{1, \ldots, m\} \longrightarrow$ ir (T) such that $\tau(i)$ has colour a_{j}.

The coloured operad S^{C}

Let C be a set of colours. We define a coloured operad S^{C} in Sets whose algebras are C-coloured operads in Sets.

$$
\operatorname{col}\left(S^{C}\right)=\left\{\left(c_{1}, \ldots, c_{n} ; c\right) \mid c_{i}, c \in C, n \geq 0\right\} .
$$

We will use the following notation, $\bar{c}_{i}=\left(c_{i, 1}, \ldots, c_{i, k_{i}} ; c_{i}\right)$ and $\bar{a}=\left(a_{1}, \ldots, a_{m} ; a\right)$. The elements of $S^{C}\left(\bar{c}_{1}, \ldots, \bar{c}_{n} ; \bar{a}\right)$ are equivalence classes of triples (T, σ, τ) where:

- T is a planar rooted C-coloured tree with m input edges coloured by a_{1}, \ldots, a_{m}, a root edge coloured by a and n vertices.
- σ is a biiection $\sigma:\{1, n\} \longrightarrow V(T)$ with the nronerty that $\sigma(i)$ has k_{i} input edges coloured from left to right by $c_{i, 1}, \ldots, c_{i, k_{i}}$ and one output edge coloured by c_{i}.

colour a_{i}.

The coloured operad S^{C}

Let C be a set of colours. We define a coloured operad S^{C} in Sets whose algebras are C-coloured operads in Sets.

$$
\operatorname{col}\left(S^{C}\right)=\left\{\left(c_{1}, \ldots, c_{n} ; c\right) \mid c_{i}, c \in C, n \geq 0\right\} .
$$

We will use the following notation, $\bar{c}_{i}=\left(c_{i, 1}, \ldots, c_{i, k_{i}} ; c_{i}\right)$ and $\bar{a}=\left(a_{1}, \ldots, a_{m} ; a\right)$. The elements of $S^{C}\left(\bar{c}_{1}, \ldots, \bar{c}_{n} ; \bar{a}\right)$ are equivalence classes of triples (T, σ, τ) where:

- T is a planar rooted C-coloured tree with m input edges coloured by a_{1}, \ldots, a_{m}, a root edge coloured by a and n vertices.

one output edge coloured by c_{i}.
$m\} \longrightarrow i n(T)$ such that $\tau(i)$ has

The coloured operad S^{C}

Let C be a set of colours. We define a coloured operad S^{C} in Sets whose algebras are C-coloured operads in Sets.

$$
\operatorname{col}\left(S^{C}\right)=\left\{\left(c_{1}, \ldots, c_{n} ; c\right) \mid c_{i}, c \in C, n \geq 0\right\} .
$$

We will use the following notation, $\bar{c}_{i}=\left(c_{i, 1}, \ldots, c_{i, k_{i}} ; c_{i}\right)$ and $\bar{a}=\left(a_{1}, \ldots, a_{m} ; a\right)$. The elements of $S^{C}\left(\bar{c}_{1}, \ldots, \bar{c}_{n} ; \bar{a}\right)$ are equivalence classes of triples (T, σ, τ) where:

- T is a planar rooted C-coloured tree with m input edges coloured by a_{1}, \ldots, a_{m}, a root edge coloured by a and n vertices.
- σ is a bijection $\sigma:\{1, \ldots, n\} \longrightarrow V(T)$ with the property that $\sigma(i)$ has k_{i} input edges coloured from left to right by $c_{i, 1}, \ldots, c_{i, k_{i}}$ and one output edge coloured by c_{i}.

The coloured operad S^{C}

Let C be a set of colours. We define a coloured operad S^{C} in Sets whose algebras are C-coloured operads in Sets.

$$
\operatorname{col}\left(S^{C}\right)=\left\{\left(c_{1}, \ldots, c_{n} ; c\right) \mid c_{i}, c \in C, n \geq 0\right\} .
$$

We will use the following notation, $\bar{c}_{i}=\left(c_{i, 1}, \ldots, c_{i, k_{i}} ; c_{i}\right)$ and $\bar{a}=\left(a_{1}, \ldots, a_{m} ; a\right)$. The elements of $S^{C}\left(\bar{c}_{1}, \ldots, \bar{c}_{n} ; \bar{a}\right)$ are equivalence classes of triples (T, σ, τ) where:

- T is a planar rooted C-coloured tree with m input edges coloured by a_{1}, \ldots, a_{m}, a root edge coloured by a and n vertices.
- σ is a bijection $\sigma:\{1, \ldots, n\} \longrightarrow V(T)$ with the property that $\sigma(i)$ has k_{i} input edges coloured from left to right by $c_{i, 1}, \ldots, c_{i, k_{i}}$ and one output edge coloured by c_{i}.
- τ is a bijection $\tau:\{1, \ldots, m\} \longrightarrow i n(T)$ such that $\tau(i)$ has colour a_{i}.

Two such triples $(T, \sigma, \tau),\left(T^{\prime} \sigma^{\prime}, \tau^{\prime}\right)$ are equivalent if and only if there is a planar isomorphism $\varphi: T \longrightarrow T^{\prime}$ such that $\varphi \circ \sigma=\sigma^{\prime}$ and $\varphi \circ \tau=\tau^{\prime}$.

If $C=\{a, b, c\}$, then an element (T, σ, τ) of

$$
s^{c}((a, b ; c),(b, b ; a),(\quad ; a),(c, a ; b) ;(b, b, a, c ; c))
$$

will look like

- Any element in α in Σ_{n} induces a map

Two such triples $(T, \sigma, \tau),\left(T^{\prime} \sigma^{\prime}, \tau^{\prime}\right)$ are equivalent if and only if there is a planar isomorphism $\varphi: T \longrightarrow T^{\prime}$ such that $\varphi \circ \sigma=\sigma^{\prime}$ and $\varphi \circ \tau=\tau^{\prime}$.

Example

If $C=\{a, b, c\}$, then an element (T, σ, τ) of

$$
S^{C}((a, b ; c),(b, b ; a),(; a),(c, a ; b) ;(b, b, a, c ; c))
$$

will look like

- Any element in α in Σ_{n} induces a map

Two such triples $(T, \sigma, \tau),\left(T^{\prime} \sigma^{\prime}, \tau^{\prime}\right)$ are equivalent if and only if there is a planar isomorphism $\varphi: T \longrightarrow T^{\prime}$ such that $\varphi \circ \sigma=\sigma^{\prime}$ and $\varphi \circ \tau=\tau^{\prime}$.

Example

If $C=\{a, b, c\}$, then an element (T, σ, τ) of

$$
S^{C}((a, b ; c),(b, b ; a),(; a),(c, a ; b) ;(b, b, a, c ; c))
$$

will look like

- Any element in α in Σ_{n} induces a map

$$
\alpha^{*}: S^{C}\left(\bar{c}_{1}, \ldots, \bar{c}_{n} ; \bar{a}\right) \longrightarrow S^{C}\left(\bar{c}_{\alpha(1)}, \ldots, \bar{c}_{\alpha(n)} ; \bar{a}\right)
$$

that sends (T, σ, τ) to $(T, \sigma \circ \alpha, \tau)$.

- There is a distiguished element $1_{\bar{a}}$ in $S^{C}(\bar{a} ; \bar{a})$ corresponding to the tree

- The composition product on S^{C} is defined as follows. Given an element (T, σ, τ) of $S^{C}\left(\bar{C}_{1}, \ldots, \bar{C}_{n} ; \overline{\mathrm{a}}\right)$ and n elements $\left(T_{1}, \sigma_{1}, \tau_{1}\right), \ldots,\left(T_{n}, \sigma_{n}, \tau_{n}\right)$ of

respectively, we get an element T^{\prime} of

in the following way:
- There is a distiguished element $1_{\bar{a}}$ in $S^{C}(\bar{a} ; \bar{a})$ corresponding to the tree

- The composition product on S^{C} is defined as follows. Given an element (T, σ, τ) of $S^{C}\left(\bar{C}_{1}, \ldots, \bar{C}_{n} ; \bar{a}\right)$ and n elements $\left(T_{1}, \sigma_{1}, \tau_{1}\right), \ldots,\left(T_{n}, \sigma_{n}, \tau_{n}\right)$ of

$$
S^{C}\left(\bar{d}_{1,1}, \ldots, \bar{d}_{1, k_{1}} ; \bar{c}_{1}\right), \ldots, S^{C}\left(\bar{d}_{n, 1}, \ldots, \bar{d}_{n, k_{n}} ; \bar{c}_{n}\right)
$$

respectively, we get an element T^{\prime} of

$$
S^{C}\left(\bar{d}_{1,1}, \ldots, \bar{d}_{1, k_{1}}, \bar{d}_{2,1}, \ldots, \bar{d}_{2, k_{2}}, \ldots, \bar{d}_{n, 1}, \ldots, \bar{d}_{n, k_{n}} ; \bar{a}\right)
$$

in the following way:

Composition product in S^{C}

(i) T^{\prime} is obtained by replacing the vertex $\sigma(i)$ of T by the tree T_{i} for every i. This is done by identifying the input edges of $\sigma(i)$ in T with the input edges T_{i} via the bijection τ_{i}. The $c_{i, j}$-coloured input edge of $\sigma(i)$ is matched with the $c_{i, j}$-coloured input edge $\tau_{i}(j)$ of T_{i}. (Note that the colours of the input edges and the output of $\sigma(i)$ coincide with the colours of the input edges and the root of T_{i}.)
(ii) The vertices of T^{\prime} are numbered following the order, i.e., first number the subtree T_{1} in T^{\prime} ordered by σ_{1}, then T_{2} ordered by σ_{2} and so on.
(iii) The input edges of T^{\prime} are numbered following τ and the identifications given by τ_{i}.

Composition product in S^{C}

(i) T^{\prime} is obtained by replacing the vertex $\sigma(i)$ of T by the tree T_{i} for every i. This is done by identifying the input edges of $\sigma(i)$ in T with the input edges T_{i} via the bijection τ_{i}. The $c_{i, j}$-coloured input edge of $\sigma(i)$ is matched with the $c_{i, j}$-coloured input edge $\tau_{i}(j)$ of T_{i}. (Note that the colours of the input edges and the output of $\sigma(i)$ coincide with the colours of the input edges and the root of T_{i}.)
(ii) The vertices of T^{\prime} are numbered following the order, i.e., first number the subtree T_{1} in T^{\prime} ordered by σ_{1}, then T_{2} ordered by σ_{2} and so on.
(iii) The input edges of T^{\prime} are numbered following τ and the identifications given by τ_{i}.

Composition product in S^{C}

(i) T^{\prime} is obtained by replacing the vertex $\sigma(i)$ of T by the tree T_{i} for every i. This is done by identifying the input edges of $\sigma(i)$ in T with the input edges T_{i} via the bijection τ_{i}. The $c_{i, j}$-coloured input edge of $\sigma(i)$ is matched with the $c_{i, j}$-coloured input edge $\tau_{i}(j)$ of T_{i}. (Note that the colours of the input edges and the output of $\sigma(i)$ coincide with the colours of the input edges and the root of T_{i}.)
(ii) The vertices of T^{\prime} are numbered following the order, i.e., first number the subtree T_{1} in T^{\prime} ordered by σ_{1}, then T_{2} ordered by σ_{2} and so on.
(iii) The input edges of T^{\prime} are numbered following τ and the identifications given by τ_{i}.

Example

Let $C=\{a, b, c\}$ as before. Let T be an element of

$$
S^{C}((a, b ; c),(c, b ; a),(a, a, a ; b) ;(c, b, a, a, a ; c))
$$

represented by the tree

Example (cont.)

and T_{1}, T_{2} and T_{3} be elements of

$$
\begin{gathered}
S^{C}((a, b ; c),(c ; c) ;(a, b ; c)), S^{C}((b, b ; a),(c ; b) ;(c, b ; a)) \\
\text { and } S^{C}((a, a ; c),(a, c ; b) ;(a, a, a ; b))
\end{gathered}
$$

represented by the trees

respectively.

Example (cont.)

Example (cont.)

By the composition product, we get an element in

$$
S^{C}((a, b ; c),(c ; c),(b, b ; a),(c ; b),(a, c ; b),(a, a ; c) ;(c, b, a, a, a ; c))
$$

that will be represented by the following tree

- The above composition product endows the collection S^{C} with a coloured operad structure. An algebra over S^{C} is a C-coloured operads in Sets and conversely.
- The strong symmetric monoidal functor $(-)_{\varepsilon}:$ Sets $\longrightarrow \mathcal{E}$ defined as $X_{\mathcal{E}}=\coprod_{x \in X} /$ sends coloured operads to coloured operads. Hence S_{ε}^{C} is a coloured operad in ε whose algebras are C-coloured operads in \mathcal{E}.
- More generally, if ε is a closed symmetric monoidal category enriched over a closed symmetric monoidal category ν, then coloured operads in $\mathcal{\nu}$ act on \mathcal{E}. Thus, S_{ν}^{C} is a coloured operad in $\mathcal{\nu}$ whose algebras (when acting on \mathcal{E}) are C-coloured operads in ε.
- The above composition product endows the collection S^{C} with a coloured operad structure. An algebra over S^{C} is a C-coloured operads in Sets and conversely.
- The strong symmetric monoidal functor $(-)_{\mathcal{E}}$: Sets $\longrightarrow \mathcal{E}$ defined as $X_{\mathcal{E}}=\coprod_{x \in X} /$ sends coloured operads to coloured operads. Hence $S_{\mathcal{E}}^{C}$ is a coloured operad in \mathcal{E} whose algebras are C-coloured operads in \mathcal{E}.
- More generally, if ε is a closed symmetric monoidal category enriched over a closed symmetric monoidal category $\mathcal{\nu}$, then coloured operads in \mathcal{V} act on \mathcal{E}. Thus, $S_{\mathcal{V}}^{\mathcal{C}}$ is a coloured operad in ν whose algebras (when acting on ε) are C-coloured operads
- The above composition product endows the collection S^{C} with a coloured operad structure. An algebra over S^{C} is a C-coloured operads in Sets and conversely.
- The strong symmetric monoidal functor $(-)_{\mathcal{E}}$: Sets $\longrightarrow \mathcal{E}$ defined as $X_{\mathcal{E}}=\coprod_{x \in X} /$ sends coloured operads to coloured operads. Hence $S_{\mathcal{E}}^{C}$ is a coloured operad in \mathcal{E} whose algebras are C-coloured operads in \mathcal{E}.
- More generally, if \mathcal{E} is a closed symmetric monoidal category enriched over a closed symmetric monoidal category \mathcal{V}, then coloured operads in \mathcal{V} act on \mathcal{E}. Thus, $S_{V}^{\mathcal{C}}$ is a coloured operad in ν whose algebras (when acting on \mathcal{E}) are \mathcal{C}-coloured operads in \mathcal{E}.

Main result

Theorem (G, 2008)

Let C be any set of colours. Then the category of C-coloured operads with values in symmetric spectra admits a model structure where a map of C-coloured operads $f: P \longrightarrow Q$ is a weak equivalence (resp. fibration) if for every ($c_{1}, \ldots c_{n} ; c$) the induced map

$$
P\left(c_{1}, \ldots, c_{n} ; c\right) \longrightarrow Q\left(c_{1}, \ldots, c_{n} ; c\right)
$$

is a weak equivalence (resp. fibration) of symmetric spectra with the positive model structure.

- The result is also true for any cofibrantly generated simplicial monoidal model category satisfying that every relative FJ-cell complex is a weak equivalence, where $F: \operatorname{Coll}_{C}(\mathcal{E}) \longrightarrow \operatorname{Oper}_{C}(\mathcal{E})$ and $'$ ' is the set of generating trivial cofitorations

Main result

Theorem (G, 2008)

Let C be any set of colours. Then the category of C-coloured operads with values in symmetric spectra admits a model structure where a map of C-coloured operads $f: P \longrightarrow Q$ is a weak equivalence (resp. fibration) if for every ($c_{1}, \ldots c_{n} ; c$) the induced map

$$
P\left(c_{1}, \ldots, c_{n} ; c\right) \longrightarrow Q\left(c_{1}, \ldots, c_{n} ; c\right)
$$

is a weak equivalence (resp. fibration) of symmetric spectra with the positive model structure.

- The result is also true for any cofibrantly generated simplicial monoidal model category satisfying that every relative FJ-cell complex is a weak equivalence, where $F: \operatorname{Coll}_{C}(\varepsilon) \longrightarrow \operatorname{Oper}_{C}(\varepsilon)$ and J is the set of generating trivial cofibrations.

