Localization of Algebras over Coloured Operads

Javier J. Gutiérrez University of Barcelona

(joint work with C. Casacuberta, I. Moerdijk and R. M. Vogt)

Topology in the Swiss Alps

Le Châtelard, May 21-26, 2007

2 Localization functors in stable homotopy

Outline of the talk

2 Localization functors in stable homotopy

- 3 Quillen model categories
- 4 Coloured operads and localization of algebras

• Homotopical localizations preserve loop spaces up to homotopy. In fact, Dror Farjoun proved that

 $L_f(\Omega X) \simeq \Omega L_{\Sigma f} X$

for all spaces *X* and all maps *f*. [E. Dror Farjoun, *Cellular Spaces, Null Spaces and Localization*, Lecture Notes in Math. 1622, Springer, 1996.]

- A homotopical localization is a functor *L* together with a natural map *l_X*: *X* → *LX* for every *X* with the following universal property: for every map *g*: *X* → *LY* there is a map *h*: *LX* → *LY*, unique up to homotopy, such that *h* ∘ *l_X* ≃ *g*.
- **Examples:** Localization at primes; localization with respect to homology theories; Postnikov sections.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Homotopical localizations preserve loop spaces up to homotopy. In fact, Dror Farjoun proved that

 $L_f(\Omega X) \simeq \Omega L_{\Sigma f} X$

for all spaces *X* and all maps *f*. [E. Dror Farjoun, *Cellular Spaces, Null Spaces and Localization*, Lecture Notes in Math. 1622, Springer, 1996.]

A homotopical localization is a functor *L* together with a natural map *l_X*: *X* → *LX* for every *X* with the following universal property: for every map *g*: *X* → *LY* there is a map *h*: *LX* → *LY*, unique up to homotopy, such that *h* ∘ *l_X* ≃ *g*.

• **Examples:** Localization at primes; localization with respect to homology theories; Postnikov sections.

 Homotopical localizations preserve loop spaces up to homotopy. In fact, Dror Farjoun proved that

 $L_f(\Omega X) \simeq \Omega L_{\Sigma f} X$

for all spaces *X* and all maps *f*. [E. Dror Farjoun, *Cellular Spaces, Null Spaces and Localization*, Lecture Notes in Math. 1622, Springer, 1996.]

A homotopical localization is a functor *L* together with a natural map *I_X*: *X* → *LX* for every *X* with the following universal property: for every map *g*: *X* → *LY* there is a map *h*: *LX* → *LY*, unique up to homotopy, such that *h* ∘ *I_X* ≃ *g*.

• **Examples:** Localization at primes; localization with respect to homology theories; Postnikov sections.

< ロ > < 同 > < 回 > < 回 >

 Homotopical localizations preserve loop spaces up to homotopy. In fact, Dror Farjoun proved that

 $L_f(\Omega X) \simeq \Omega L_{\Sigma f} X$

for all spaces *X* and all maps *f*. [E. Dror Farjoun, *Cellular Spaces, Null Spaces and Localization*, Lecture Notes in Math. 1622, Springer, 1996.]

- A homotopical localization is a functor *L* together with a natural map *I_X*: *X* → *LX* for every *X* with the following universal property: for every map *g*: *X* → *LY* there is a map *h*: *LX* → *LY*, unique up to homotopy, such that *h* ∘ *I_X* ≃ *g*.
- Examples: Localization at primes; localization with respect to homology theories; Postnikov sections.

• Homotopical localizations preserve GEMs up to homotopy.

A **GEM** (generalized Eilenberg–Mac Lane space) is a weak product of Eilenberg–Mac Lane spaces $\prod_{n=1}^{\infty} K(A_n, n)$, where A_1 is abelian.

The following categories are equivalent (Dold–Thom):

- The homotopy category of GEMs.
- The homotopy category of topological abelian groups.
- The homotopy category of simplicial abelian groups.
- The homotopy category of chain complexes of abelian groups which are zero in negative dimensions.

• Homotopical localizations preserve GEMs up to homotopy.

A **GEM** (generalized Eilenberg–Mac Lane space) is a weak product of Eilenberg–Mac Lane spaces $\prod_{n=1}^{\infty} K(A_n, n)$, where A_1 is abelian.

The following categories are equivalent (Dold–Thom):

- The homotopy category of GEMs.
- The homotopy category of topological abelian groups.
- The homotopy category of simplicial abelian groups.
- The homotopy category of chain complexes of abelian groups which are zero in negative dimensions.

• Localizations in the category of abelian groups preserve rings and modules over a ring. More precisely, if *R* is a ring, *M* is an *R*-module and *L* is a localization, then *LM* admits a unique *R*-module structure such that $I_M : M \to LM$ is a morphism of *R*-modules, and this *R*-module structure on *LM* can be lifted to an *LR*-structure in a unique way.

Proof: Functoriality and the universal property of *L* yield

 $\operatorname{Hom}(R, \operatorname{End}(M)) \to \operatorname{Hom}(R, \operatorname{End}(LM)) \cong \operatorname{Hom}(LR, \operatorname{End}(LM)).$

• Localizations in the category of abelian groups preserve rings and modules over a ring. More precisely, if *R* is a ring, *M* is an *R*-module and *L* is a localization, then *LM* admits a unique *R*-module structure such that $I_M : M \to LM$ is a morphism of *R*-modules, and this *R*-module structure on *LM* can be lifted to an *LR*-structure in a unique way.

Proof: Functoriality and the universal property of *L* yield

 $\operatorname{Hom}(R, \operatorname{End}(M)) \to \operatorname{Hom}(R, \operatorname{End}(LM)) \cong \operatorname{Hom}(LR, \operatorname{End}(LM)).$

< /₽ > < E > <

• Localizations in the category of abelian groups preserve rings and modules over a ring. More precisely, if *R* is a ring, *M* is an *R*-module and *L* is a localization, then *LM* admits a unique *R*-module structure such that $I_M : M \to LM$ is a morphism of *R*-modules, and this *R*-module structure on *LM* can be lifted to an *LR*-structure in a unique way.

Proof: Functoriality and the universal property of L yield

 $\operatorname{Hom}(R, \operatorname{End}(M)) \to \operatorname{Hom}(R, \operatorname{End}(LM)) \cong \operatorname{Hom}(LR, \operatorname{End}(LM)).$

Outline of the talk

Introduction

2 Localization functors in stable homotopy

- 3 Quillen model categories
- 4 Coloured operads and localization of algebras

The stable homotopy category

A **spectrum** is a sequence of spaces $\{E_n\}_{n \in \mathbb{Z}}$ and structure maps $\varepsilon_n \colon \Sigma E_n \longrightarrow E_{n+1}$.

- Maps in Ho^s are homotopy classes of maps [X, Y].
- The suspension functor Σ is invertible in Ho^s . We can suspend and desuspend any spectrum. If *E* is a spectrum and $k \in \mathbb{Z}$, then $(\Sigma^k E)_n = E_{n+k}$, and $\overline{\varepsilon}_n = \varepsilon_{n+k}$.
- The wedge of two spectra $(X \vee Y)_n = X_n \vee Y_n$ and $\overline{\varepsilon}_n = \varepsilon_n \vee \varepsilon'_n$.
- The homotopy groups of a spectrum are defined as

$$\pi_k(E) = \lim_{n \to \infty} \pi_{n+k}(E_n).$$

▲ @ ▶ ▲ ⊇ ▶ ▲

The stable homotopy category

A **spectrum** is a sequence of spaces $\{E_n\}_{n \in \mathbb{Z}}$ and structure maps $\varepsilon_n \colon \Sigma E_n \longrightarrow E_{n+1}$.

- Maps in Ho^s are homotopy classes of maps [X, Y].
- The suspension functor Σ is invertible in Ho^s. We can suspend and desuspend any spectrum. If E is a spectrum and k ∈ Z, then (Σ^kE)_n = E_{n+k}, and ε_n = ε_{n+k}.
- The wedge of two spectra $(X \vee Y)_n = X_n \vee Y_n$ and $\overline{\varepsilon}_n = \varepsilon_n \vee \varepsilon'_n$.
- The homotopy groups of a spectrum are defined as

$$\pi_k(E) = \lim_{n \to \infty} \pi_{n+k}(E_n).$$

< /₽ > < ∋ > <

Examples

• The suspension spectrum $\Sigma^{\infty} X$ of a space X is defined as $(\Sigma^{\infty} X)_n = \Sigma^n X$ for $n \ge 0$ and structure maps $\varepsilon_n = id$.

$$\pi_k(\Sigma^{\infty}X) = \lim_{n \to \infty} \pi_{n+k}(\Sigma^n X) = \pi_k^s(X).$$

• The sphere spectrum S is $\Sigma^{\infty}S^0$.

Given any abelian group G, the Eilenberg-Mac Lane spectrum HG is defined as (HG)_n = K(G, n) for n ≥ 0. The structure maps are the adjoint maps to the equivalence maps K(G, n) → ΩK(G, n+1) In this case, π_k(HG) = G if k = 0 and zero if k ≠ 0.

Spectra arising from (co)homology theories. K (K-theory), MU (complex cobordism), K(n) (Morava K-theory), E(n) (Johnson-Wilson).

・ロト ・ 一下・ ・ ヨト ・ ヨト

Examples

• The suspension spectrum $\Sigma^{\infty} X$ of a space X is defined as $(\Sigma^{\infty} X)_n = \Sigma^n X$ for $n \ge 0$ and structure maps $\varepsilon_n = id$.

$$\pi_k(\Sigma^{\infty}X) = \lim_{n \to \infty} \pi_{n+k}(\Sigma^n X) = \pi_k^s(X).$$

• The sphere spectrum S is $\Sigma^{\infty}S^{0}$.

Given any abelian group G, the Eilenberg-Mac Lane spectrum HG is defined as (HG)_n = K(G, n) for n ≥ 0. The structure maps are the adjoint maps to the equivalence maps K(G, n) → ΩK(G, n+1) In this case, π_k(HG) = G if k = 0 and zero if k ≠ 0.

Spectra arising from (co)homology theories. K (K-theory), MU (complex cobordism), K(n) (Morava K-theory), E(n) (Johnson-Wilson).

・ロト ・ 一下・ ・ ヨト ・ ヨト

Examples

• The suspension spectrum $\Sigma^{\infty} X$ of a space X is defined as $(\Sigma^{\infty} X)_n = \Sigma^n X$ for $n \ge 0$ and structure maps $\varepsilon_n = id$.

$$\pi_k(\Sigma^{\infty}X) = \lim_{n \to \infty} \pi_{n+k}(\Sigma^n X) = \pi_k^s(X).$$

- The sphere spectrum S is $\Sigma^{\infty}S^{0}$.
- Given any abelian group G, the Eilenberg-Mac Lane spectrum HG is defined as (HG)_n = K(G, n) for n ≥ 0. The structure maps are the adjoint maps to the equivalence maps K(G, n) → ΩK(G, n+1) In this case, π_k(HG) = G if k = 0 and zero if k ≠ 0.

Spectra arising from (co)homology theories. K (K-theory), MU (complex cobordism), K(n) (Morava K-theory), E(n) (Johnson-Wilson).

・ロト ・ 四ト ・ ヨト ・ ヨト

Examples

• The suspension spectrum $\Sigma^{\infty} X$ of a space X is defined as $(\Sigma^{\infty} X)_n = \Sigma^n X$ for $n \ge 0$ and structure maps $\varepsilon_n = id$.

$$\pi_k(\Sigma^{\infty}X) = \lim_{n \to \infty} \pi_{n+k}(\Sigma^n X) = \pi_k^s(X).$$

- The sphere spectrum S is $\Sigma^{\infty}S^{0}$.
- Given any abelian group G, the Eilenberg-Mac Lane spectrum HG is defined as (HG)_n = K(G, n) for n ≥ 0. The structure maps are the adjoint maps to the equivalence maps K(G, n) → ΩK(G, n+1) In this case, π_k(HG) = G if k = 0 and zero if k ≠ 0.
- Spectra arising from (co)homology theories. K (K-theory), MU (complex cobordism), K(n) (Morava K-theory), E(n) (Johnson-Wilson).

< ロ > < 団 > < 豆 > < 豆 >

- Localizations commuting with suspension in the stable homotopy category preserve ring spectra and module spectra. [C. Casacuberta and J. J. Gutiérrez, Homotopical localization of module spectra, *Trans. Amer. Math. Soc.* 357 (2005), 2753–2770.]
- A ring spectrum is a monoid in the stable homotopy category, i.e., a spectrum *R* equipped with a homotopy associative multiplication $R \land R \to R$ and a homotopy unit $S \to R$, where *S* denotes the sphere spectrum. A (left) **module** over a ring spectrum *R* is a spectrum *M* equipped with a map $R \land M \to M$ satisfying the relations of a module over a monoid (up to homotopy).
- Warning: Postnikov sections of ring spectra need not be ring spectra. However, modules over **connective** ring spectra are preserved by any homotopical localization *L*, even if *L* does not commute with suspension.

- Localizations commuting with suspension in the stable homotopy category preserve ring spectra and module spectra. [C. Casacuberta and J. J. Gutiérrez, Homotopical localization of module spectra, *Trans. Amer. Math. Soc.* 357 (2005), 2753–2770.]
- A ring spectrum is a monoid in the stable homotopy category, i.e., a spectrum *R* equipped with a homotopy associative multiplication *R* ∧ *R* → *R* and a homotopy unit *S* → *R*, where *S* denotes the sphere spectrum. A (left) module over a ring spectrum *R* is a spectrum *M* equipped with a map *R* ∧ *M* → *M* satisfying the relations of a module over a monoid (up to homotopy).
- Warning: Postnikov sections of ring spectra need not be ring spectra. However, modules over **connective** ring spectra are preserved by any homotopical localization *L*, even if *L* does not commute with suspension.

- Localizations commuting with suspension in the stable homotopy category preserve ring spectra and module spectra. [C. Casacuberta and J. J. Gutiérrez, Homotopical localization of module spectra, *Trans. Amer. Math. Soc.* 357 (2005), 2753–2770.]
- A ring spectrum is a monoid in the stable homotopy category, i.e., a spectrum *R* equipped with a homotopy associative multiplication $R \land R \to R$ and a homotopy unit $S \to R$, where *S* denotes the sphere spectrum. A (left) **module** over a ring spectrum *R* is a spectrum *M* equipped with a map $R \land M \to M$ satisfying the relations of a module over a monoid (up to homotopy).
- Warning: Postnikov sections of ring spectra need not be ring spectra. However, modules over **connective** ring spectra are preserved by any homotopical localization *L*, even if *L* does not commute with suspension.

- Localizations commuting with suspension in the stable homotopy category preserve ring spectra and module spectra. [C. Casacuberta and J. J. Gutiérrez, Homotopical localization of module spectra, *Trans. Amer. Math. Soc.* 357 (2005), 2753–2770.]
- A ring spectrum is a monoid in the stable homotopy category, i.e., a spectrum *R* equipped with a homotopy associative multiplication $R \land R \to R$ and a homotopy unit $S \to R$, where *S* denotes the sphere spectrum. A (left) **module** over a ring spectrum *R* is a spectrum *M* equipped with a map $R \land M \to M$ satisfying the relations of a module over a monoid (up to homotopy).
- Warning: Postnikov sections of ring spectra need not be ring spectra. However, modules over connective ring spectra are preserved by any homotopical localization *L*, even if *L* does not commute with suspension.

- Localizations commuting with suspension in the stable homotopy category preserve ring spectra and module spectra. [C. Casacuberta and J. J. Gutiérrez, Homotopical localization of module spectra, *Trans. Amer. Math. Soc.* 357 (2005), 2753–2770.]
- A ring spectrum is a monoid in the stable homotopy category, i.e., a spectrum *R* equipped with a homotopy associative multiplication $R \land R \to R$ and a homotopy unit $S \to R$, where *S* denotes the sphere spectrum. A (left) **module** over a ring spectrum *R* is a spectrum *M* equipped with a map $R \land M \to M$ satisfying the relations of a module over a monoid (up to homotopy).
- Warning: Postnikov sections of ring spectra need not be ring spectra. However, modules over connective ring spectra are preserved by any homotopical localization *L*, even if *L* does not commute with suspension.

The following categories are equivalent:

- The homotopy category of modules over the spectrum *H***Z** of ordinary integral homology theory.
- The homotopy category of stable GEMs (wedges of Eilenberg–Mac Lane spectra ΣⁿHA_n, n ∈ Z).
- The homotopy category of chain complexes of abelian groups, i.e., the derived category of **Z**.

Hence, stable GEMs are also preserved by homotopical localizations, since *H***Z** is connective.

 Localizations commuting with suspension in the stable homotopy category also preserve strict ring spectra up to homotopy. A strict ring spectrum is a monoid in a monoidal model category of spectra, e.g., symmetric spectra [M. Hovey, B. Shipley, J. H. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149–208].

Proof: The homotopy category of strict ring spectra is equivalent to the homotopy category of A_{∞} ring spectra. In fact, as we will next explain, **localizations preserve algebras over arbitrary cofibrant operads**, up to homotopy. This also explains why loop spaces are preserved by localizations, since the connected A_{∞} H-spaces are the connected loop spaces.

Question

Is there a similar argument for strict module spectra?

Localizations commuting with suspension in the stable homotopy category also preserve strict ring spectra up to homotopy. A strict ring spectrum is a monoid in a monoidal model category of spectra, e.g., symmetric spectra [M. Hovey, B. Shipley, J. H. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149–208].

Proof: The homotopy category of strict ring spectra is equivalent to the homotopy category of A_{∞} ring spectra. In fact, as we will next explain, **localizations preserve algebras over arbitrary cofibrant operads**, up to homotopy. This also explains why loop spaces are preserved by localizations, since the connected A_{∞} H-spaces are the connected loop spaces.

Question

Is there a similar argument for strict module spectra?

Localizations commuting with suspension in the stable homotopy category also preserve strict ring spectra up to homotopy. A strict ring spectrum is a monoid in a monoidal model category of spectra, e.g., symmetric spectra [M. Hovey, B. Shipley, J. H. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149–208].

Proof: The homotopy category of strict ring spectra is equivalent to the homotopy category of A_{∞} ring spectra. In fact, as we will next explain, **localizations preserve algebras over arbitrary cofibrant operads**, up to homotopy. This also explains why loop spaces are preserved by localizations, since the connected A_{∞} H-spaces are the connected loop spaces.

Question

Is there a similar argument for strict module spectra?

Localizations commuting with suspension in the stable homotopy category also preserve strict ring spectra up to homotopy. A strict ring spectrum is a monoid in a monoidal model category of spectra, e.g., symmetric spectra [M. Hovey, B. Shipley, J. H. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149–208].

Proof: The homotopy category of strict ring spectra is equivalent to the homotopy category of A_{∞} ring spectra. In fact, as we will next explain, **localizations preserve algebras over arbitrary cofibrant operads**, up to homotopy. This also explains why loop spaces are preserved by localizations, since the connected A_{∞} H-spaces are the connected loop spaces.

Question

Is there a similar argument for strict module spectra?

< ロ > < 同 > < 回 > < 回 >

Outline of the talk

Introduction

2 Localization functors in stable homotopy

4 Coloured operads and localization of algebras

Model categories

- A model category is a complete and cocomplete category \mathcal{E} with three distinguished classes of morphisms (*weak equivalences*, *fibrations*, and *cofibrations*) satisfying Quillen's axioms. The homotopy category Ho \mathcal{E} is obtained by formally inverting the weak equivalences.
- The homotopy category Ho \mathcal{E} has the same objects as \mathcal{E} . A morphism $X \to Y$ in Ho \mathcal{E} can be described as a homotopy class of maps $QX \to RY$ where QX is a cofibrant approximation to X and RY is a fibrant approximation to Y. An object QX is **cofibrant** if the map $\emptyset \to QX$ from the initial object of \mathcal{E} is a cofibration, and an object RY is **fibrant** if the map $RY \to *$ to the final object of \mathcal{E} is a fibration.

• • • • • • • • • • • •

Model categories

- A model category is a complete and cocomplete category \mathcal{E} with three distinguished classes of morphisms (*weak equivalences*, *fibrations*, and *cofibrations*) satisfying Quillen's axioms. The homotopy category Ho \mathcal{E} is obtained by formally inverting the weak equivalences.
- The homotopy category Ho \mathcal{E} has the same objects as \mathcal{E} . A morphism $X \to Y$ in Ho \mathcal{E} can be described as a homotopy class of maps $QX \to RY$ where QX is a cofibrant approximation to X and RY is a fibrant approximation to Y. An object QX is **cofibrant** if the map $\emptyset \to QX$ from the initial object of \mathcal{E} is a cofibration, and an object RY is **fibrant** if the map $RY \to *$ to the final object of \mathcal{E} is a fibration.

Quillen model categories

Simplicial and monodial model categories

A model category *E* is monoidal if it has an associative internal product ⊗ with a unit *I* and an internal hom Hom_{*E*}(−,−), satisfying the *pushout-product axiom*, that is, if *f*: *X* → *Y* and *g*: *U* → *V* are cofibrations in *E*, then the induced map

$$(X \otimes V) \prod_{X \otimes U} (Y \otimes U) \longrightarrow Y \otimes V$$

is a cofibration which is a weak equivalence if f or g are.

A model category *E* is simplicial if it is enriched, tensored and cotensored over simplicial sets in such a way that Quillen's *SM7 axiom* holds, namely, if *f* : *X* → *Y* is a cofibration and *g* : *U* → *V* is a fibration in *E*, then the induced map

 $\operatorname{Map}(Y, U) \longrightarrow \operatorname{Map}(Y, V) \times_{\operatorname{Map}(X, V)} \operatorname{Map}(X, U)$

is a fibration which is a weak equivalence if f or g are.

Simplicial and monodial model categories

A model category *E* is monoidal if it has an associative internal product ⊗ with a unit *I* and an internal hom Hom_{*E*}(−,−), satisfying the *pushout-product axiom*, that is, if *f*: *X* → *Y* and *g*: *U* → *V* are cofibrations in *E*, then the induced map

$$(X \otimes V) \coprod_{X \otimes U} (Y \otimes U) \longrightarrow Y \otimes V$$

is a cofibration which is a weak equivalence if f or g are.

A model category *E* is simplicial if it is enriched, tensored and cotensored over simplicial sets in such a way that Quillen's *SM7 axiom* holds, namely, if *f*: *X* → *Y* is a cofibration and *g*: *U* → *V* is a fibration in *E*, then the induced map

$$\operatorname{Map}(Y, U) \longrightarrow \operatorname{Map}(Y, V) \times_{\operatorname{Map}(X, V)} \operatorname{Map}(X, U)$$

is a fibration which is a weak equivalence if f or g are.

Simplicial and monodial model categories

The following are simplicial monoidal model categories:

- Compactly generated topological spaces with the *k*-product.
- Simplicial sets with the levelwise cartesian product.
- Spectra with the smash product

Outline of the talk

Introduction

2 Localization functors in stable homotopy

3 Quillen model categories

Coloured operads

Let *E* be a cocomplete closed symmetric monoidal category. Let *C* be a set, whose elements will be called *colours*. A *C*-coloured collection is a set *P* of objects *P*(*c*₁,..., *c*_n; *c*) in *E* for every *n* ≥ 0 and each tuple (*c*₁,..., *c*_n; *c*) of colours, together with maps

$$\sigma^* \colon P(c_1, \ldots, c_n; c) \longrightarrow P(c_{\sigma(1)}, \ldots, c_{\sigma(n)}; c)$$

for all permutations $\sigma \in \Sigma_n$, yielding together a right action.

 A C-coloured operad is a C-coloured collection P equipped with a unit map I → P(c; c) and composition product maps

$$P(c_{1},...,c_{n};c) \otimes P(a_{1,1},...,a_{1,k_{1}};c_{1}) \otimes \cdots \otimes P(a_{n,1},...,a_{n,k_{n}};c_{n}) \\ \longrightarrow P(a_{1,1},...,a_{1,k_{1}},a_{2,1},...,a_{2,k_{2}},...,a_{n,1},...,a_{n,k_{n}};c)$$

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

A B F A B F

Coloured operads

Let *E* be a cocomplete closed symmetric monoidal category. Let *C* be a set, whose elements will be called *colours*. A *C*-coloured collection is a set *P* of objects *P*(*c*₁,...,*c_n*; *c*) in *E* for every *n* ≥ 0 and each tuple (*c*₁,...,*c_n*; *c*) of colours, together with maps

$$\sigma^* \colon P(c_1, \ldots, c_n; c) \longrightarrow P(c_{\sigma(1)}, \ldots, c_{\sigma(n)}; c)$$

for all permutations $\sigma \in \Sigma_n$, yielding together a right action.

• A *C*-coloured operad is a *C*-coloured collection *P* equipped with a *unit* map $I \rightarrow P(c; c)$ and *composition product* maps

$$P(c_1,...,c_n;c) \otimes P(a_{1,1},...,a_{1,k_1};c_1) \otimes \cdots \otimes P(a_{n,1},...,a_{n,k_n};c_n) \\ \longrightarrow P(a_{1,1},...,a_{1,k_1},a_{2,1},...,a_{2,k_2},...,a_{n,1},...,a_{n,k_n};c)$$

compatible with the action of the symmetric groups and subject to associativity and unitary compatibility relations.

If *P* is a *C*-coloured operad, a *P*-algebra is an object
 X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \operatorname{End}(X)$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(X)(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1)\otimes\cdots\otimes X(c_n), X(c)).$

An operad is a coloured operad with only one colour. Indeed, if *P* is an operad, we view it as a *C*-coloured operad *P'* with *C* = {*c*} by defining

$$P'(\boldsymbol{c},\overset{(n)}{\ldots},\boldsymbol{c};\boldsymbol{c})=P(\boldsymbol{n})$$

for all *n*. Then the *P'*-algebras are precisely the *P*-algebras.
The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The A-algebras are the monoids in E.

If *P* is a *C*-coloured operad, a *P*-algebra is an object
 X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \operatorname{End}(X)$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(X)(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1)\otimes\cdots\otimes X(c_n), X(c)).$

• An operad is a coloured operad with only one colour. Indeed, if *P* is an operad, we view it as a *C*-coloured operad *P'* with $C = \{c\}$ by defining

$$P'(c, \stackrel{(n)}{\ldots}, c; c) = P(n)$$

for all n. Then the P'-algebras are precisely the P-algebras.

The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The A-algebras are the monoids in E.

If *P* is a *C*-coloured operad, a *P*-algebra is an object
 X = (X(c))_{c∈C} in *E^C* together with a morphism of *C*-coloured operads

 $P \longrightarrow \operatorname{End}(X)$

where the C-coloured operad End(X) is defined as

 $\operatorname{End}(X)(c_1,\ldots,c_n;c) = \operatorname{Hom}_{\mathcal{E}}(X(c_1)\otimes\cdots\otimes X(c_n), X(c)).$

• An operad is a coloured operad with only one colour. Indeed, if *P* is an operad, we view it as a *C*-coloured operad *P'* with $C = \{c\}$ by defining

$$P'(c, \stackrel{(n)}{\ldots}, c; c) = P(n)$$

for all n. Then the P'-algebras are precisely the P-algebras.

The associative operad A is defined as A(n) = I[Σ_n] for all n, where I[Σ_n] is a coproduct of copies of the unit I of E indexed by Σ_n. The A-algebras are the monoids in E.

• Let *C* = {*r*, *m*}. Define a *C*-coloured operad Mod whose only nonzero terms are

$$\mathsf{Mod}(r, \stackrel{(n)}{\ldots}, r; r) = I[\Sigma_n]$$

and

$$Mod(c_1,\ldots,c_n;m) = I[\Sigma_n]$$

when exactly one c_i is *m* and the rest (if any) are *r*. Then an algebra over Mod is a pair (*R*, *M*) where *R* is a monoid and *M* is an *R*-bimodule. By using non-symmetric operads, one obtains left *R*-modules and right *R*-modules similarly.

Hence, modules can be viewed as algebras over coloured operads.

Choose C = {r, 0, 1} and let P be an operad. Define a C-coloured operad Mor whose value on (c₁,..., c_n; c) is

$$\begin{array}{ll} P(n) & \text{if } c = r \text{ and } c_i = r \text{ for all } i, \text{ or } c = r \text{ and } n = 0; \\ P(n) & \text{if } c = 0, \text{ exactly one } c_i \text{ is } 0, \text{ and the rest are } r; \\ P(n) & \text{if } c = 1, \text{ exactly one } c_i \text{ is } 1, \text{ and the rest are } r; \\ P(n) & \text{if } c_i \neq r \text{ for all } i, c \neq r, \text{ and } \max(c_1, \dots, c_n) \leq c; \\ 0 & \text{ otherwise.} \end{array}$$

Then an algebra over Mor consists of a triple (X(r), X(0), X(1))where X(r) is a *P*-algebra and X(0) and X(1) are modules over X(r) together with a morphism $X(0) \rightarrow X(1)$ of modules.

Hence, morphisms of modules can be viewed as algebras over coloured operads.

通 ト イ ヨ ト イ ヨ ト

Choose C = {r, 0, 1} and let P be an operad. Define a C-coloured operad Mor whose value on (c₁,..., c_n; c) is

$$\begin{cases} P(n) & \text{if } c = r \text{ and } c_i = r \text{ for all } i, \text{ or } c = r \text{ and } n = 0; \\ P(n) & \text{if } c = 0, \text{ exactly one } c_i \text{ is } 0, \text{ and the rest are } r; \\ P(n) & \text{if } c = 1, \text{ exactly one } c_i \text{ is } 1, \text{ and the rest are } r; \\ P(n) & \text{if } c_i \neq r \text{ for all } i, c \neq r, \text{ and } \max(c_1, \dots, c_n) \leq c; \\ 0 & \text{ otherwise.} \end{cases}$$

Then an algebra over Mor consists of a triple (X(r), X(0), X(1))where X(r) is a *P*-algebra and X(0) and X(1) are modules over X(r) together with a morphism $X(0) \rightarrow X(1)$ of modules.

Hence, morphisms of modules can be viewed as algebras over coloured operads.

• A model structure on the category of *C*-coloured operads for any *C* was described in [C. Berger and I. Moerdijk, Axiomatic homotopy theory for operads, *Comment. Math. Helv.* **78** (2003), 805–831].

Theorem

Let *L* be a homotopical localization functor on a simplicial monoidal model category \mathcal{E} . Let *C* be any set and let *P* be a cofibrant *C*-coloured operad with values in simplicial sets. Let *X* be a *P*-algebra such that *X*(*c*) is cofibrant for all $c \in C$. Suppose that the class of *L*-equivalences is closed under tensor products. Then *LX* admits a homotopy unique *P*-algebra structure such that $I_X : X \to LX$ is a map of *P*-algebras.

• A model structure on the category of *C*-coloured operads for any *C* was described in [C. Berger and I. Moerdijk, Axiomatic homotopy theory for operads, *Comment. Math. Helv.* **78** (2003), 805–831].

Theorem

Let *L* be a homotopical localization functor on a simplicial monoidal model category \mathcal{E} . Let *C* be any set and let *P* be a cofibrant *C*-coloured operad with values in simplicial sets. Let *X* be a *P*-algebra such that *X*(*c*) is cofibrant for all $c \in C$. Suppose that the class of *L*-equivalences is closed under tensor products. Then *LX* admits a homotopy unique *P*-algebra structure such that $I_X : X \to LX$ is a map of *P*-algebras.

< ロ > < 同 > < 回 > < 回 >

Proof: For all $(c_1, \ldots, c_n; c)$, the map

$$X(c_1) \otimes \cdots \otimes X(c_n) \longrightarrow LX(c_1) \otimes \cdots \otimes LX(c_n)$$

is an *L*-equivalence by assumption, and it is also a cofibration since X(c) is cofibrant for all *c*. Hence, the map

 $\mathsf{Map}(LX(c_1) \otimes \cdots \otimes LX(c_n), LX(c)) \longrightarrow \mathsf{Map}(X(c_1) \otimes \cdots \otimes X(c_n), LX(c))$

is a fibration and a weak equivalence. By definition,

$$\mathsf{Map}(LX(c_1)\otimes\cdots\otimes LX(c_n),LX(c))=\mathsf{End}(LX)(c_1,\ldots,c_n;c)$$

and

$$\operatorname{Map}(X(c_1)\otimes\cdots\otimes X(c_n),LX(c))=\operatorname{Hom}(X,LX)(c_1,\ldots,c_n;c).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Define a *C*-coloured operad $End(I_X)$ as the following pull-back:

We just saw that the right-hand vertical arrow is a fibration and a weak equivalence. Hence, the left-hand vertical arrow is also a fibration and a weak equivalence.

Then, since *P* is cofibrant, the *P*-algebra structure map $P \rightarrow \text{End}(X)$ admits a lift $P \rightarrow \text{End}(I_X)$, which yields precisely a *P*-algebra structure on *LX* such that I_X is a map of *P*-algebras, and the uniqueness up to homotopy of this *P*-algebra structure follows from the homotopy uniqueness of the lift.

・ 日 ・ ・ ヨ ・ ・ ・ 日 ・ ・

Consequences

If we choose a coloured operad P whose algebras are strict R-module spectra, and consider a cofibrant approximation $P_{\infty} \rightarrow P$, we find that homotopical localizations commuting with suspension preserve strict R-modules up to homotopy, and also module maps between them.

For arbitrary *R*, the homotopy category of *R*-module spectra in the classical sense is *not* equivalent to the homotopy category of strict *R*-module spectra. For example, the latter is equivalent to the derived category of *A* if *A* is a discrete ring and R = HA.