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Introduction

Introduction

Localization theory has been a common procedure in
commutative algebra and algebraic geometry

Construction of rings of fractions.
Localization of rings and modules.

Axiomatization of the concept of localization in algebraic
topology

Precedents: Serre (1953), Adams (1961).
Development: Quillen (1969), Sullivan (1970), Bousfield–Kan
(1972).
Localization of spaces at sets of primes. Homological
localizations.
Localization with respect to a map: Bousfield, Farjoun (1994–96).
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Introduction

Introduction

Localization theory has become a standard practice in modern
homotopy theory

The main problem of algebraic topology is the classification of
homotopy types using algebraic invariants such as homotopy or
homology groups.
The idea behind localization is to consider a problem one prime at
a time, solve it at each prime, and then put the solutions back
together to obtain a full integral solution.
This type of division into p-primary problems for each p can be
carried out at the level of (co)homology groups, homotopy groups,
and even at the level of spaces.
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Introduction

Stable homotopy

Studies stable phenomena in algebraic topology with respect to
the suspension functor.
The stable homotopy category has a smash product similar to the
tensor product of modules, that is associative and commutative
and has a unit.
Using this smash product, we can consider rings and modules in
stable homotopy and study the effect of localization functors on
these structures.

Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 6 / 39



Introduction

Introduction

Stable homotopy

Studies stable phenomena in algebraic topology with respect to
the suspension functor.
The stable homotopy category has a smash product similar to the
tensor product of modules, that is associative and commutative
and has a unit.
Using this smash product, we can consider rings and modules in
stable homotopy and study the effect of localization functors on
these structures.

Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 6 / 39



Introduction

Introduction

Stable homotopy

Studies stable phenomena in algebraic topology with respect to
the suspension functor.
The stable homotopy category has a smash product similar to the
tensor product of modules, that is associative and commutative
and has a unit.
Using this smash product, we can consider rings and modules in
stable homotopy and study the effect of localization functors on
these structures.

Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 6 / 39



Introduction

Introduction

Stable homotopy

Studies stable phenomena in algebraic topology with respect to
the suspension functor.
The stable homotopy category has a smash product similar to the
tensor product of modules, that is associative and commutative
and has a unit.
Using this smash product, we can consider rings and modules in
stable homotopy and study the effect of localization functors on
these structures.

Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 6 / 39



Some examples of localization functors

Outline of the talk

1 Introduction

2 Some examples of localization functors

3 Stable homotopy theory

4 Localization functors in stable homotopy

5 Preservation of structures

6 Localization of Eilenberg-Mac Lane spectra

Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 7 / 39



Some examples of localization functors

Localization functors on groups

Example (Abelianization)
Let G be any group and [G, G] the commutator subgroup of G. The
quotient G/[G, G] is called the abelianization of G and denoted Gab.
We have a functor L1 : Grp −→ Grp defined as L1(G) = Gab.

There is a natural map G −→ Gab and (Gab)ab
∼= Gab.

Example (P-localization)
Let P be a set of primes, A an abelian group and ZP be the integers
localized at P. We have a functor L2 : Ab −→ Ab defined as
L2(A) = A⊗ ZP .

There is a natural map A ∼= A⊗ Z 1⊗i−→ A⊗ ZP and L2L2A ∼= L2A, since
ZP ⊗ ZP

∼= ZP .
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Some examples of localization functors

Localization functors on topological spaces

Let Top denote the category of topological spaces. Given a space X
we can construct its Postnikov tower:

X
τ0

�� τ1 ##GG
GG

GG
GG

G

τ2
))SSSSSSSSSSSSSSSSSS

τk
,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

P0X P1Xoo P2Xoo · · ·oo PnXoo · · ·oo

The map (τk )∗ : πi(X ) −→ πi(PkX ) is an isomorphism for i ≤ k and
πi(PkX ) = 0 for i > k . The Postnikov tower of a space is unique up to
homotopy.

Example (Postnikov sections)
For every k ≥ 0, there is a functor L3 : Ho(Top) −→ Ho(Top) defined
by L3(X ) = Pk (X ).
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Some examples of localization functors

Localization functors on topological spaces

Let Top1 denote the category of simply connected spaces and let P be
a set of primes. Given any simply connected space X we can
construct another space XP such that its homotopy groups are the
P-localization of the homotopy groups of X , i.e., πk (XP) ∼= πk (X )⊗ ZP .

Example (P-localization)

There is a functor L4 : Ho(Top1) −→ Ho(Top1) called P-localization
defined as L4(X ) = XP .
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Stable homotopy theory

The stable homotopy category

Stable homotopy theory studies stable phenomena in algebraic
topology with respect to the suspension functor

ΣX = X × [0, 1]/(X × {0}) t (X × {1}).

X �X X�
2

Theorem (Freudenthal, 1937)
If X and Y are CW-complexes of finite dimension, then the sequence
of maps induced by the suspension functor

[X , Y ] −→ [ΣX ,ΣY ] −→ [Σ2X ,Σ2Y ] −→ · · · stabilizes
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Stable homotopy theory

The stable homotopy category

Stable homotopy theory studies stable phenomena in algebraic
topology with respect to the suspension functor

ΣX = X × [0, 1]/(X × {0}) t (X × {1}).

X �X X�
2

Theorem (Freudenthal, 1937)
If X and Y are CW-complexes of finite dimension, then the sequence
of maps induced by the suspension functor

[X , Y ] −→ [ΣX ,ΣY ] −→ [Σ2X ,Σ2Y ] −→ · · · stabilizes

Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 12 / 39



Stable homotopy theory

The stable homotopy category

Example (Homotopy groups of spheres)

The group homomorphism πn+k (Sn) −→ πn+k+1(Sn+1) is an
isomorphism for n > k + 1.

The idea is to construct a category to isolate these problems. Roughly
speaking the stable category is obtained from the category of
topological spaces by introducing spheres of negative dimensions.
The objects of the stable homotopy category Hos are called spectra.

Spanier–Whitehead (1953).
Boardman (1964).
Adams (1974).
Elmendorf et al. (1997), Hovey et al. (2000).
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Stable homotopy theory

The stable homotopy category

Definition
A spectrum is a sequence of spaces {En}n∈Z and structure maps
εn : ΣEn −→ En+1.

Maps in Hos are homotopy classes of maps [X , Y ].
The suspension functor Σ is invertible in Hos. We can suspend
and desuspend any spectrum. If E is a spectrum and k ∈ Z, then
(ΣkE)n = En+k , and εn = εn+k .
The wedge of two spectra (X ∨ Y )n = Xn ∨ Yn and εn = εn ∨ ε′n.
The homotopy groups of a spectrum are defined as

πk (E) = lim
n→∞

πn+k (En).
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Stable homotopy theory

Examples of spectra

Examples
The suspension spectrum Σ∞X of a space X is defined as
(Σ∞X )n = ΣnX for n ≥ 0 and structure maps εn = id .

πk (Σ∞X ) = lim
n→∞

πn+k (ΣnX ) = πs
k (X ).

The sphere spectrum S is Σ∞S0.
Given any abelian group G, the Eilenberg-Mac Lane spectrum HG
is defined as (HG)n = K (G, n) for n ≥ 0. The structure maps are
the adjoint maps to the equivalence maps K (G, n)→ ΩK (G, n +1)
In this case, πk (HG) = G if k = 0 and zero if k 6= 0.
Spectra arising from (co)homology theories. K (K -theory), MU
(complex cobordism), K (n) (Morava K -theory), E(n)
(Johnson-Wilson).
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Stable homotopy theory

Properties of the stable homotopy category

We have homotopy, homology and cohomology groups in positive
and negative dimensions.
Additive ([X , Y ] is always an abelian group).
Triangulated category (fiber sequences=cofiber sequences).
There is a smash product X ∧ Y analogous to the tensor product,
that is associative, commutative and S is the unit. It has a right
adjoint F (X , Y ) called the function spectrum

[X ∧ Y , Z ] ∼= [X , F (Y , Z )]

Any spectrum E gives rise to a homology and a cohomology
theory

Ek (X ) = πk (E ∧ X ) Ek (X ) = [X ,ΣkE ].

(Hos,∧, S, F (−,−)) is a closed symmetric monoidal category.
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Stable homotopy theory

Properties of the stable homotopy category

For any cofiber sequence X −→ Y −→ Z of spectra, and any
spectrum E , we have exact sequences of abelian groups:

· · · ← [Σ−1Z , E ]← [X , E ]← [Y , E ]← [Z , E ]← [ΣX , E ]← · · ·
· · · → [E ,Σ−1Z ]→ [E , X ]→ [E , Y ]→ [E , Z ]→ [E ,ΣX ]→ · · ·

(Universal coefficients) For any spectrum E , any abelian group G
and any k ∈ Z, we have exact sequences:

0→ Ext((HZ)n−1(E), G)→ (HG)n(E)→ Hom((HZ)n(E), G)→ 0
0→ (HZ)n(E)⊗G→ (HG)n(E)→ Tor((HZ)n−1(E), G)→ 0

(Künneth formula) For any spectra E and F and for every n ∈ Z,
we have an exact sequence:

0→
⊕

i+j=n

(HZ)i(E)⊗ (HZ)j(F )→ (HZ)n(E ∧ F )

→
⊕

i+j=n−1

Tor((HZ)i(E), (HZ)j(F ))→ 0

Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 17 / 39
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Localization functors in stable homotopy

Outline of the talk
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Localization functors in stable homotopy

Localization with respect to a map

Let f : A −→ B a map of spectra in Hos.
A spectrum X is f -local if the induced map
f ∗ : F c(B, X ) −→ F c(A, X ) is a homotopy equivalence.
A map g : X −→ Y is an f -equivalence if the induced map
g∗ : F c(Y , Z ) −→ F c(X , Z ) is a homotopy equivalence for every
f -local spectrum Z .

F c(−,−) denotes the connective cover of the function spectrum, i.e.,
πkF c(X , Y ) = πkF (X , Y ) for k ≥ 0 and zero if k < 0.

Definition
An f -localization of X consists of an f -local spectrum Lf X together with
an f -equivalence X −→ Lf X .

There is an f -localization functor Lf : Hos −→ Hos which is unique
up to homotopy.
Lf is an idempotent functor on Hos.
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Localization functors in stable homotopy

f -localization and the suspension functor

For every spectrum X , there is a natural map

ΣLf X −→ Lf ΣX .

If we use in the definition of f -localizations the full function spectrum
F (−,−) instead of F c(−,−), then this map is always an equivalence.

Definition
We say that the functor Lf commutes with suspension if this map is an
equivalence ,i.e., ΣLf X ' Lf ΣX .

Theorem
The localization functor Lf commutes with suspension if and only if it
preserves cofiber sequences of spectra.
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Localization functors in stable homotopy

Examples
Nullifications

Let f : A −→ ∗. The corresponding localization functor Lf is called
nullification with respect to A, and it is denoted by PA.

Example

If A = Σk+1S for some k ∈ Z, then PA is the k -th Postnikov section
functor. For every spectrum X and every k ∈ Z, we have that
πn(PΣk+1SX ) = πnX if n ≤ k and zero if n > k .

In general nullification functors do not commute with suspension.
There is a natural map PCX −→ Lf X , where C is the cofiber of the
map f : A −→ B.

Theorem
This map is an equivalence if and only if Lf commutes with suspension.
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Localization functors in stable homotopy

Examples
Homological localizations

For any spectrum E there is a homological localization functor LE with
respect to E (Adams, Bousfield).

A map of spectra f : X −→ Y is an E-equivalence if
fk : Ek (X ) −→ Ek (Y ) is an isomorphism for all k ∈ Z.
A spectrum Z is E-local if each E-equivalence f : X −→ Y
induces a homotopy equivalence F (Y , Z ) ' F (X , Z ).
An E-localization of a spectrum X is an E-equivalence X −→ LEX
such that LEX is E-local.

Theorem (Bousfield)
For any spectrum E, there exists a spectrum A such that LEX ' PAX
for every X.
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Localization functors in stable homotopy

Examples
Localization at sets of primes

Let P be a set of primes. The P-localization of a spectrum X is the
natural map 1 ∧ η : X ' X ∧ S −→ X ∧MZP = XP , where MZP is the
Moore spectrum associated to ZP .

P-localization P-localizes homotopy and homology groups.

πk (XP) ∼= πk (X )⊗ ZP , Ek (XP) ∼= Ek (X )⊗ ZP .

P-localization commutes with suspension and it is a nullification
functor.

Theorem
If we define g : ∨q 6∈P S −→ ∨q 6∈PS then XP ' PCX for any X, where
C = cof (∨k<0Σ

kg).
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Preservation of structures

Outline of the talk

1 Introduction

2 Some examples of localization functors

3 Stable homotopy theory

4 Localization functors in stable homotopy

5 Preservation of structures

6 Localization of Eilenberg-Mac Lane spectra
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Preservation of structures

Structures on groups and spaces

Abelian groups

Let L : Ab −→ Ab be a localization functor:
If R is a (commutative) ring, then LR is a (commutative) ring and
the localization map is a map of rings.
If M is an R-module, then LM is an R-module and the localization
map is a map of R-modules.

Topological spaces

Let L : Ho(Top) −→ Ho(Top) be a localization functor:
If X is an H-space, then LX homotopy equivalent to an H-space
and the localization map is an H-map.
If X is a loop space, then LX is homotopy equivalent to a loop
space and the localization map is a loop map.
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Preservation of structures

Ring spectra and module spectra

There are examples of several structures preserved by localization
functors in different categories:

Abelian groups, nilpotent groups, rings.
Generalized Eilenberg–Mac Lane spaces (GEMs), loop spaces,
H-spaces.

Definition
A ring spectrum is a spectrum E together with two maps
µ : E ∧ E −→ E and η : S −→ E such that the following diagrams
commute up to homotopy:

E ∧ E ∧ E
1∧µ //

µ∧1
��

E ∧ E
µ

��
E ∧ E µ

// E

E ∧ S
1∧η //

JJJJJJJJJJ

JJJJJJJJJJ E ∧ E
µ

��

S ∧ E
η∧1oo

tttttttttt

tttttttttt

E .

E is commutative if µ ◦ τ ' µ, where τ is the twist map.
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Preservation of structures

Ring spectra and module spectra

Given a ring spectrum E , we can also consider modules over E .

Definition
An E-module is a spectrum M together with a structure map
m : E ∧M −→ M such that the following diagrams commute up to
homotopy:

E ∧ E ∧M
µ∧1 //

1∧m
��

E ∧M

m
��

E ∧M m
// M

S ∧M
η∧1 //

KKKKKKKKKK

KKKKKKKKKK E ∧M

m
��

M.

Examples
If R is a ring with unit and M is an R-module, then HR is a ring
spectrum and HM is an HR-module.
K , MU, K (n) and E(n) for every n.
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Preservation of structures

Localization of rings and modules

Theorem
If the localization functor Lf commutes with suspension, then the
following hold:

If E is a ring spectrum, then Lf E has a unique ring structure such
that the localization map lE : E −→ Lf E is a ring map. Moreover, if
E is commutative, so is Lf E.
If M is an E-module, then Lf M has a unique E-module structure
such that the localization map lM : M −→ Lf M is a map of
E-modules. Moreover Lf M admits a unique Lf E-module structure
extending the E-module structure.

If Lf does not commute with suspension, then it does not preserve the
structures of ring spectra and module spectra in general.
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Preservation of structures

Localization of rings and modules

Example (Rudyak)
Given n ∈ N and a prime p, let K (n) be the ring spectrum
corresponding to the n-th Morava K -theory referred to the prime p.
Then PΣSK (n) is not a ring spectrum.

If PΣSK (n) is a ring spectrum, then so is PΣSK (n)∧HZ/p. But the unit
of this ring spectrum is null since K (n) ∧ HZ/p ' 0. Therefore
PΣSK (n) ∧ HZ/p = 0. The cofiber sequence

Σdk(n) −→ K (n) −→ PΣSK (n),

where d = 2(pn − 1) and k(n) is the connective cover of K (n), and the
fact that the mod p cohomology of k(n) is a nonzero quotient of the
Steenrod algebra, yield to a contradiction.
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Preservation of structures

Localization of rings and modules

Theorem
For any f -localization functor the following hold:

If E is a connective ring spectrum and Lf E is connective, then Lf E
has a unique ring structure such that the localization map
lE : E −→ Lf E is a ring map. Moreover, if E is commutative, so is
Lf E.
If M is an E-module and E is connective, then Lf M has a unique
E-module structure such that the localization map lM : M −→ Lf M
is a map of E-modules. Moreover if Lf E is also connective, then
Lf M admits a unique Lf E-module structure extending the
E-module structure.

The hypothesis that Lf E be connective holds for example when E , A
and B are all connective, where f : A −→ B.
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Preservation of structures

Localization of stable GEMs

Definition
Let R be a ring with unit. A spectrum E is a stable R-GEM if
E ' ∨k∈ZΣkHAk where each Ak is an R-module. If R = Z we call E a
stable GEM.

Any HR-module M is homotopy equivalent to ∨k∈ZΣkHAk , where
Ak
∼= πk (M).

Theorem
If E is a stable R-GEM, then so is Lf E, and the localization map is a
map of HR-modules.

Theorem
Let G be an abelian group and k ∈ Z. Then Lf Σ

kHG is equivalent to
ΣkHG1 ∨ Σk+1HG2. If G is an R-module, then so are G1 and G2.
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Localization of Eilenberg-Mac Lane spectra

Outline of the talk

1 Introduction

2 Some examples of localization functors

3 Stable homotopy theory

4 Localization functors in stable homotopy

5 Preservation of structures

6 Localization of Eilenberg-Mac Lane spectra
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Localization of Eilenberg-Mac Lane spectra

Homological localization

If E and X are connective spectra, then LEX ' LMGX (Bousfield), where
G = ZP or ⊕p∈PZ/p, for a set P of primes. If X or E fail to be
connective, then LEX is more difficult to compute. LK S has infinitely
many nontrivial homotopy groups in negative dimensions.

Bousfield’s arithmetic square

For any spectrum E and X , we have the following arithmetic square

LEX //

��

∏
p∈P LEZ/pX

��
LEQX // LEQ(

∏
p∈P LEZ/pX ),

where EG = E ∧MG and P is the set of all primes.
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Localization of Eilenberg-Mac Lane spectra

Homological localization

Theorem
Let Ap = Ext(Z/p∞, G), Bp = Hom(Z/p∞, G), and let P be the set of
primes p such that HZ/p is not E-acyclic and G is not uniquely
p-divisible. For any spectrum E and any abelian group G, we have the
following:

If HQ is E-acyclic, then LEHG '
∏

p∈P(HAp ∨ ΣHBp).
If HQ is not E-acyclic, then there is a cofiber sequence

LEHG→ H(G⊗Q)∨
∏
p∈P

(HAp ∨ΣHBp)→ MQ∧
∏
p∈P

(HAp ∨ΣHBp).

Some computations:
For any HR-module X , LK (n)X = 0 if n 6= 0 and LK (0)X ' X ∧MQ.
LK X and LE(n)X are both rationalization for any HR-module X .
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Localization of Eilenberg-Mac Lane spectra

Computations of LEHG

Condition I. EQ = 0 and E ∧ HZ/p = 0 for every prime p.
Condition II. EQ 6= 0 and E ∧ HZ/p = 0 for every prime p.
Condition III. EQ = 0 and E ∧ HZ/p 6= 0 for every prime p ∈ P.
Condition IV. EQ 6= 0 and E ∧ HZ/p 6= 0 for every prime p ∈ P.

Condition I Condition II Condition III Condition IV
LEHZ 0 HQ

∏
p∈P HẐp HZP

LEHZ/pk 0 0 HZ/pk HZ/pk

LEHQ 0 HQ 0 HQ
LEHZR 0 HQ

∏
p∈P∩R HẐp HZP∩R

LEHZ/p∞ 0 0 ΣHẐp HZ/p∞

LEHẐp 0 HQ̂p HẐp HẐp
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p∈P∩R HẐp HZP∩R

LEHZ/p∞ 0 0 ΣHẐp HZ/p∞
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Javier J. Gutiérrez (University of Utrecht) Localization and Preservation of Structures 35 / 39



Localization of Eilenberg-Mac Lane spectra

Computations of LEHG

Definition
An abelian group is reduced if it has no nontrivial divisible subgroups.

Theorem
If G is reduced, then LEHG ' HA for some A.
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Localization of Eilenberg-Mac Lane spectra

Smashing localizations

A localization functor Lf is smashing if, for every X , the natural
map 1 ∧ lS : X −→ X ∧ Lf S is an f -localization. (E is smashing if
LE is smashing.)
Every smashing localization Lf is a homological localization,
namely Lf = LE , where E = Lf S.
The spectra K and E(n) are smashing.

Theorem
If Lf is smashing, then (HZ)k (Lf S) = 0 if k 6= 0 and it is a subring of
the rationals if k = 0.

Corollary
If Lf is smashing and (HZ)0(Lf S) ∼= Q, then either Lf X = LMQX for
every X or Lf S has infinitely many nonzero homotopy groups in
negative dimensions.
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Localization of Eilenberg-Mac Lane spectra

Homotopical localizations of HZ. Rigid rings

A ring with unit R is a rigid ring if the evaluation map Hom(R, R) −→ R
given by ϕ 7→ ϕ(1R) is an isomorphism.

Examples

Z/n, ZP , Ẑp,
∏

p∈P Z/p, all solid rings in the sense of Bousfield–Kan.
However Z/p∞ is not a rigid ring.

Rigid rings were used to describe the f -localizations of the sphere S1

(Casacuberta–Rodríguez–Tai).

Theorem
Given k ∈ Z, we have that Lf Σ

kHZ ' ΣkHA, where A has a rigid ring
structure. All rigid rings appear as f -localizations of HZ, taking
f : S −→ MA.
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Localization of Eilenberg-Mac Lane spectra

Homotopical localizations of HZ. Rigid rings

Corollary
There is a proper class of non-equivalent f -localization functors.

Theorem
If G is a reduced abelian group and k ∈ Z, then

Lf Σ
kHG ' ΣkHA

for some abelian group A.

Corollary
Let G be any abelian group and k ∈ Z. If Z/p∞ does not appear as a
direct summand of G for any prime p, then Lf Σ

kHG ' ΣkHA for some
abelian group A.
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