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Preface

These are lecture notes for an introductory course on Riemannian geometry.
The readers are supposed to be familiar with the basic notions of the theory
of smooth manifolds, such as vector fields and their flows, differential forms,
integration of volume forms and the theorem of Stokes. This material has
been covered in the first semester of the third year by Ioan Mărcut [15].
In addition, it will be helpful if the readers are familiar with the classical
differential geometry of curves (the formulas of Frenet) and surfaces (various
curvatures and the Theorema Egregium on the intrinsic nature of the Gauss
curvature) in R3.

Such a course is offered at our university in the second semester of the
second year, based on a book by Andrew Pressley [19] and lecture notes
by the author [11]. While teaching that course I got so excited about the
Theorema Egregium that I took the trouble to present six different proofs
of it in my lecture notes: Theorem 4.6 as corollary of Theorem 4.5 (a very
interesting proof, as will become clear in our section on sectional curvature),
Theorem 4.9 (a neat formula, but the proof is just tricky algebra), Theorem
5.9 (a very nice proof, which was a starting point for Riemann), two proofs
in Theorem 5.10 (both formulas give a nice geometric interpretation) and
finally a maybe not too rigorous geometric (but very beautiful) argument
right above Theorem 4.10. As Michael Atiyah tells in his interview [1] with
Iz Singer on the occasion of their joint Abel prize in 2004: ”I think it is said
that Gauss had ten different proofs for the law of quadratic reciprocity. Any
good theorem should have several proofs, the more the better.” I took this
advice of Sir Michael literally.

However, in order to avoid too many constraints on the audience, we start
in the first chapter with a short discussion of classical differential geometry of
submanifolds M in a Euclidean space Rn. We discuss the extrinsic definition
of geodesics onM , and explain the intrinsic nature of the geodesic equations.
The principal curvatures for hypersurfaces are introduced, and we end with
a formulation of the Theorema Egregium.

In the second chapter we discuss vector bundles with connections on a
manifold M . This material is the basic language to be spoken for modern
differential geometry. The curvature of a connection, parallel transport and
holonomy, flat connections and monodromy are the main concepts to be
discussed. Since our third year students (for whom this course is meant)
are not yet familiar with the concept of fundamental group and universal
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covering space these notions will be discussed to some extent.
In the third chapter we discuss with the standard approach to Rieman-

nian geometry, via the Levi-Civita connection ∇ and its Riemannian cur-
vature ∇2. Subsequently, we discuss various curvatures derived from the
Riemannian curvature, namely the sectional curvature, the Ricci curvature
and the scalar curvature. Geodesics are characterized by the property that
their tangent vectors are parallel along the curve with respect to the Levi-
Civita connection. In geodesic normal coordinates around a given point the
Riemann curvatures are just the second order coefficient in the expansion of
the Riemannian metric, which in turn gives geometric meaning to the various
curvatures. We discuss the second fundamental form for submanifolds of a
Riemannian manifold. Finally, we discuss in two sections some in my opinion
important theorems without proofs, in the spirit of Berger’s book to give a
little panoramic overview [3] and end with a little bit of history. This third
chapter is the central subject of these lectures.

4



1 Classical Differential Geometry

1.1 Smooth Curves in Euclidean Space

Let γ : (a, b) → Rm be a smooth motion in Rm. The parameter t ∈ (a, b) can
be thought of as time, and (following Newton) the first and second derivative
at time t are denoted by

γ̇(t) , γ̈(t)

and represent the velocity and acceleration of the motion. The length of the
velocity is called the speed of the motion. The motion is called regular if
γ̇ 6= 0 on (a, b), in which case γ(t) + Rγ̇(t) is just the tangent line of the
smooth curve γ at time t. Let us assume that the motion is regular. If
(a, b) ∋ t ↔ s ∈ (c, d) is a reparametrization and we write γ(t) = δ(s(t)) ⇔
δ(s) = γ(t(s)) then we have

γ̇ = δ′ṡ , γ̈ = δ′′ṡ2 + δ′s̈

with the prime for the derivative with respect to the new parameter s.
We denote by x · y the standard scalar product of the vectors x, y ∈ Rm.

A direct calculation shows that

(γ̇ · γ̇)γ̈ − (γ̈ · γ̇)γ̇
(γ̇ · γ̇)2 =

(δ′ · δ′)δ′′ − (δ′′ · δ′)δ′
(δ′ · δ′)2

and so the length of this vector has geometric meaning. It is called the
curvature of the regular curve.

A reparametrization is called proper is ṡ > 0. There is an essentially
unique proper reparametrization for which |δ′| ≡ 1, called the arclength,
commonly denoted by s and given by s =

∫

|γ̇|dt. Note that for arclength
parametrization the curvature is just the length of δ′′. If the curvature of
a regular curve vanishes identically then the curve is just a straight line
segment.

Theorem 1.1. A planar regular curve γ : (a, b) → R2 with curvature κ(t) >
0 for all t is up to reparametrization and up to a Euclidean motion uniquely
determined by its curvature function κ : (a, b) → R+.

Proof. Let s ∈ (c, d) be the arclength parameter of γ and put δ(s) = γ(s(t))
as before. Since δ′′ · δ′ = 0 we have

δ′′(s) = κ(s)Jδ′(s)
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with J ∈ SO(R2) such that J2 = −1. The equation J2 = −1 in SO(R2) has
just two solutions, and since κ is positive by assumption J is independent of
s. For a given function κ : (c, d) → R+ the above second order differential
equation has a unique solution δ : (c, d) → R2 with freely prescribed initial
conditions δ(s0) ∈ R2 and δ′(s0) ∈ R2 of length one at some initial point
s0 ∈ (c, d). These initial conditions can be eliminated by a translation and
a rotation respectively, so by a proper motion of R2. The two choices for J
correspond to two choices for δ′′(s0) under the condition δ′′(s0) · δ′(s0) = 0,
and these give mirror images of the curve. Altogether the initial conditions
can be eliminated by a motion of the plane.

Exercise 1.2. Show that the above theorem is false if the condition κ(s) > 0
for all s is deleted.

Exercise 1.3. Fix a complex structure J ∈ SO(R2) such that J2 = −1. For
an arclength parametrized planar curve γ : (a, b) → R2 define the signed cur-
vature k : (a, b) → R by the equation δ′′(s) = k(s)Jδ′(s), and so κ(s) = |k(s)|.
Show that the above theorem, with curvature replaced by signed curvature and
Euclidean motion replaced by proper Euclidean motion, remains valid also if
k(s) vanishes for some s.

Exercise 1.4. Suppose the smooth curve γ : (a, b) → Rm is regular and
parametrized by arclength, that is |γ̇| ≡ 1. In addition assume that the vectors

γ̇, γ̈, · · · , γm·

are linearly independent, with γj· the order j derivative of γ with respect to t.
The orthonormal basis t1, · · · , tm obtained from the above basis by the Gram–
Schmidt process is called the moving frame along the given curve. Show that

ṫj = −κj−1tj−1 + κjtj+1

for all j = 1, · · · , m with t0 = tm+1 = 0. The scalars κj for j = 1, · · · , m− 1
are called the curvatures of the given curve. Hint: Show that ṫj lies in the
span of t1, · · · , tj+1. This forces the definition of the scalars κj for j =
1, · · · , m− 1, and the Frenet formulae follow easily. Prove the fundamental
theorem that for arbitrary smooth functions κj > 0 for j = 1, · · · , m−1 there
exists locally a curve in Rm with these curvatures, and such curve is unique
up to a Euclidean motion.
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1.2 Submanifolds of Euclidean Space

Let M be a smooth submanifold in Rn of dimension m. Assume M is given
by local coordinates, that is locally given as the image of a smooth injective
map

x = (x1, · · · , xm) 7→ y(x) = (y1(x), · · · , yn(x)) ∈ R
n

defined on an open subset U of Rm, such that the vectors

∂iy(x)

for i = 1, · · · , m are independent for all x ∈ U . Here ∂i stands for ∂/∂xi.
These m vectors span the tangent space TyM at the given point y of M .

Definition 1.5. In the coordinate map x 7→ y(x) on M the symmetric ex-
pression

ds2 =
∑

gij(x)dx
idxj

with coefficients gij(x) = ∂iy(x) · ∂jy(x) is called the first fundamental form.
Its square root ds is also called the length element on M . The summation is
always taken over those indices which appear both as upper and lower index.

The first fundamental form on M enables one to compute the length of
piecewise smooth curves on M . Indeed, let [a, b] ∋ t 7→ x(t) ∈ U be a
piecewise smooth curve in U . The arclength

s =

∫

ds =

∫

√

∑

gij(x)ẋiẋjdt

of the piecewise smooth curve t 7→ y(x(t)) onM gives a new parametrization,
for which the curve on M is traversed with unit speed. Equivalently the
length L of this curve on M is given by

L =

∫ b

a

√

∑

gij(x)ẋiẋjdt

since the length is just the total arclength.
If B ⊂ U is a compact box then the volume V of the image y(B) ⊂M can

be computed using the first fundamental form by integration of the smooth
density

dV = (det gij(x))
1/2dx1 · · ·dxm
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over the region B. The proof follows from the Jacobi substitution theorem,
and the fact that the volume of the parallelotope spanned by the m vectors
∂iy(x) is equal to the square root of the determinant of the Gram matrix
gij(x) of these m vectors in Rn. The smooth density dV is called it the
volume element on M .

Decomposing vectors in Rn according to Rn = TyM ⊕ NyM with the
normal space NyM the orthogonal complement of the tangent space TyM at
y ∈M we can write

∂i∂jy(x) =
∑

Γk
ij(x)∂ky(x) + nij(x)

with Γk
ij : U → R the so called Christoffel symbols.

Theorem 1.6. The Christoffel symbols Γk
ij are given by

2Γk
ij =

∑

{∂igjl + ∂jgil − ∂lgij}glk

and so are rational expressions in the coefficients of the first fundamental
form and their first order partial derivatives. Here gij denotes the inverse
matrix of gij.

Proof. Taking the scalar product of ∂i∂jy(x) with ∂ly(x) yields

∂i∂jy(x) · ∂ly(x) =
∑

Γk
ij(x)gkl(x)

with the usual convention of differential geometry that sums run over all
those indices which appear both as lower and upper index. Hence we get

Γk
ij(x) =

∑

(∂i∂jy(x) · ∂ly(x))glk(x)

and in addition

∂igjl(x) + ∂jgil(x)− ∂lgij(x) = 2∂i∂jy(x) · ∂ly(x)

by direct verification.

The Riemann curvature coefficients are defined by

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik +

∑

{Γl
inΓ

n
jk − Γl

jnΓ
n
ik}
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and at this point these are just functions with four indices, more precisely
three lower indices and one upper index, just like the Christoffel symbols have
two lower indices and one upper index. If the submanifoldM ⊂ Rn with local
coordinates (x1, · · · , xm) ∈ U is deformed in a rigid way, meaning that the
first fundamental form remains constant, then the Christoffel symbols Γk

ij

and the Riemann curvature coefficients Rl
ijk do not change likewise.

However, different local coordinates give different Γk
ij and Rl

ijk. But at
this point it is unclear what the geometric meaning is of these curvature
coeficients. The key point is that there exist in an intrinsic way a first order
differential operator∇mapping vector fields to vector fields with one forms as
coefficients and an element R ∈ Ω2(End(TM)) such that in local coordinates

∇(∂j) =
∑

k

(
∑

j

Γk
ijdx

i)⊗ ∂k , R(∂k) =
∑

l

(
∑

i<j

Rl
ijkdx

i ∧ dxj)⊗ ∂l

with ∇ the Levi-Civita connection and R the Riemann curvature. So in
local coordinates ∇ is a matrix with entries

∑

i Γ
k
ijdx

i from Ω1(M) and R
is a matrix with entries

∑

i<j R
l
ijkdx

i ∧ dxj from Ω2(M). But this probably
does not make any sense right now.

Hence our goals will be an introduction of the various concepts, both in
an intrinsic and coordinate free way. For this we shall develop the language
of vector bundles and connections on a manifold, and subsequently specialize
this to the case of the tangent bundle with its canonical Levi-Civita connec-
tion on a Riemannian manifold.

1.3 Geodesics on Submanifolds of Euclidean Space

We keep the notation of the previous section. A smooth curve (a, b) → U, t 7→
x(t) in U yields a smooth curve

γ : (a, b) →M, t 7→ γ(t) = y(x(t))

in M ⊂ Rn and any smooth curve in y(U) ⊂ M can be obtained this way.
The velocity γ̇ and the acceleration γ̈ are given by

γ̇(t) =
∑

ẋi(t)∂iy(x(t))

γ̈(t) =
∑

ẍk(t)∂ky(x(t)) +
∑

ẋi(t)ẋj(t)∂i∂jy(x(t))

with γ̇(t) ∈ Ty(x(t))M while γ̈(t) ∈ Rn.
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Definition 1.7. The curve γ is called a geodesic on M if its acceleration
γ̈(t) lies in the normal space Ny(x(t))M for all t ∈ (a, b).

Exercise 1.8. Geodesics are traversed on M with constant speed.

Taking the scalar product of γ̈ with ∂ly(x) shows that the curve γ is a
geodesic onM if and only if the curve t 7→ u(t) satisfies the geodesic equations

ẍk +
∑

Γk
ij(x)ẋ

iẋj = 0

for all k. This is a system of nonlinear second order ordinary differential
equations. The local existence and uniqueness theorem for such differential
equations says that for a given initial point y ∈ y(U) ⊂ M and a given
initial tangent vector v ∈ TyM there exists an ǫ > 0 and a unique solution
(ǫ, ǫ) → U, t 7→ x(t) such that γ(t) = y(x(t)) is a geodesic onM with γ(0) = y
and γ̇(0) = v.

Our definition of geodesic on M is extrinsic in the sense that we need to
go out from the submanifold M to the ambient vector space Rn. However
using Theorem 1.6 it follows that the geodesic equations (and hence also
the geodesics on M as their solutions) can be derived only using the first
fundamental form. Concepts on M that can be defined just using the first
fundamental form are so called intrinsic notion. However the fact that the
concept of geodesic is intrinsic may not come as a surprise, because it turns
out that the distance between two nearby points on a geodesic is the length of
that geodesic segment, and this property characterizes constant speed curves
on M as geodesics.

Exercise 1.9. Suppose in local coordinates (x1, · · · , xm−1, xm) ∈ V × (−ǫ, ǫ)
on M that the curves x1, · · · , xm−1 constant and xm = t are unit speed
geodesics and are orthogonal to the hypersurface xm = 0. In other words
we have gim(x

1, · · · , xm−1, 0) ≡ δim (Kronecker delta) for i = 1, · · · , m and
the geodesic equations hold for the curves x1, · · · , xm−1 constant and xm = t.
Show that Γk

mm ≡ 0 for k = 1, · · · , m and conclude that glm ≡ δlm for
l = 1, · · · , m. Conclude that geodesics are locally length minimizing curves.

1.4 Hypersurfaces in Euclidean Space

Suppose M is a oriented hypersurface of dimension m in Rm+1 and so we
have given a global smooth choice of unit normal n(y) orthogonal to TyM
for all y ∈M .
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Definition 1.10. If x = (x1, · · · , xm) 7→ y(x) = (y1(x), · · · , ym+1(x)) ∈
Rm+1 are local coordinates and we write

∂i∂jy(x) =
∑

Γk
ij(x)∂ky(x) + hij(x)n(y(x))

then the symmetric expression

∑

hij(x)dx
idxj

is called the second fundamental form of the oriented hypersurface M in the
given local coordinates.

Fix a point y = y(x) ∈ M and a nonzero tangent vector t(y) ∈ TyM .
The plane y+Rt(y)+Nn(y) cuts M locally near y in a planar regular curve.
Choose a smooth parametrization (−ǫ, ǫ) ∋ t 7→ γ(t) = y(x(t)) of this planar
curve with γ(0) = y and γ̇(0) = t(y). The expression

k(ẋ1, · · · , ẋm) =
∑

hij ẋ
iẋj

∑

gijẋiẋj

(with gij = gij(x), hij = hij(x) the coefficients at x = x(0) and ẋi = ẋi(0) the
derivatives at t = 0) is the signed curvature of this plane curve at y relative
to the orientation Jt(y) = n(y).

If we vary v = (v1, · · · , vm) over nonzero vectors in Rm then we get a
family of planar curves t 7→ γ(t) whose tangent vector γ̇(0) =

∑

vi∂iy(x)
varies over nonzero vectors in Ty(M). The nonzero critical points of the
signed curvature function (v1, · · · , vm) 7→ k(v1, · · · , vm) are solutions of the
equations

∂k(v1, · · · , vm)
∂vi

=
2
∑

(hij − k(v1, · · · , vm)gij)vj
∑

gijvivj
= 0

for i = 1, · · · , m. Hence the critical values of k as function on Rm − {0} are
the solutions of the equation

det(hij − kgij) = 0

and called the principal curvatures k1, · · · , km of the hypersurfaceM ⊂ Rm+1

at the point x ∈M . The corresponding nonzero linear subspaces ker(h−kg)
of Rm are called the principal directions.
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Exercise 1.11. Show that the principal directions corresponding to distinct
principal curvatures are orthogonal with respect to the first fundamental form.

In the case m = 2 of surfaces in R3 the principal curvatures k1, k2 were
introduced by Monge. They are defined extrinsically, and the example of a
vertical cylinder over a plane curve shows that they are not intrinsic quanti-
ties. The symmetric expressions

H = k1 + k2 , K = k1k2

are called the mean curvature and the Gauss curvature respectively. It was an
utmost remarkable insight of Gauss from 1827 that the the Gauss curvature
K is an intrinsic quantity: it depends only on the first fundamental form [10].
Gauss was so excited about this fact that he baptized his result the Theorema
Egregium, which is Latin for the splendid theorem. Around that time Latin
was still the common language for writing mathematics papers. Riemann
in his famous Habilitationsvortrag from 1854, entitled Über die Hypothesen,
welche der Geometrie zu Grunde liegen, gave an outline of an intrinsic road
towards the notion of curvatures in spaces of dimension m ≥ 2 just in terms
of its length element. The ideas of Riemann were taken up by the Italian
geometers Enrico Betti and Francesco Brioschi, and subsequently by Eugenio
Beltrami (student of Brioschi), Luigi Bianchi and Gregorio Ricci-Curbasto
(students of Betti) and Tullio Levi-Civita (student of Ricci-Curbasto).

For the moment this ends our discussion of classical differential geometry.
From the next section on we will follow the modern approach to differential
geometry, using the language of manifolds, vector bundles and connections.
From the start we shall work intrinsically, and if possible we shall work in
a coordinate free manner in order that the geometric ideas are not obscured
by extensive manipulation with formulas.
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2 Vector Bundles and Connections

2.1 Tensor Products

In this section all vector spaces will be real vector spaces, although everything
extends verbatim to vector spaces over arbitrary fields.

Definition 2.1. Let U and V be vector spaces. The tensor product of U
and V is a vector space U ⊗ V , equipped with a bilinear map

U × V → U ⊗ V, (u, v) 7→ u⊗ v

such that any bilinear map b : U × V →W in a third vector space W defines
a unique linear map B : U ⊗ V →W with

B(u⊗ v) = b(u, v)

for all (u, v) ∈ U × V .

The vector u⊗ v ∈ U ⊗ V is called a pure tensor, and the uniqueness of
the linear map B (given the bilinear map b) implies that U⊗V is spanned by
pure tensors. If U⊗V and U⊛V are two tensor products with corresponding
bilinear maps (u, v) 7→ u ⊗ v and (u, v) 7→ u ⊛ v respectively, then the well
defined linear map U ⊗V → U ⊛V, u⊗ v 7→ u⊛ v has an inverse, and so is a
linear isomorphism. Hence, if the tensor product exists then it is unique up
to isomorphism.

For the existence, we take U ⊗ V the quotient of the free vector space on
the set U × V modulo the linear subspace R generated by the elements

(u1 + u2, v)− (u1, v)− (u2, v) , (λu, v)− λ(u, v)

(u, v1 + v2)− (u, v1)− (u, v2) , (u, λv)− λ(u, v)

for u, u1, u2 ∈ U and v, v1v2 ∈ V and λ ∈ R. Moreover put u⊗v = (u, v)+R.
We have the following natural isomorphism

R⊗ U ∼= U , U ⊗ V ∼= V ⊗ U

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

(U ⊕ V )⊗W ∼= (U ⊗W )⊕ (V ⊗W )

for all vector spaces U, V,W . If A ∈ End(U) and B ∈ End(V ) then A⊗B ∈
End(U ⊗ V ) is defined by (A⊗ B)(u ⊗ v) = (Au)⊗ (Bv) for u ∈ U, v ∈ V .
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Indeed, the bilinear map U × V → U ⊗ V, (u, v) 7→ (Au) ⊗ (Bv) lifts by
definition to a linear A⊗ B ∈ End(U ⊗ V ).

If U and V are subspaces of the real function spaces on sets X and Y
respectively then U⊗V becomes a subspace of the real function space on the
set X × Y by (u ⊗ v)(x, y) = u(x)v(y) for u ∈ U , v ∈ V and x ∈ X , y ∈ Y .
In fact U ⊗ V is the subspace of the real function space on X × Y generated
by all functions u⊗ v for u ∈ U, v ∈ V . In case X and Y are finite sets and
U and V are equal to the full function spaces on X and Y respectively then
U ⊗ V is equal to the full function space on the finite set X × Y . Hence we
conclude that dim(U ⊗ V ) = dim(U) dim(V ).

If U is a finite dimensional vector space with dual vector space U∗ then

U∗ ⊗ V ∼= Hom(U, V )

with Hom(U, V ) the space of linear maps from U to V , and the isomorphism
is given by (u∗ ⊗ v)(u) = u∗(u)v for u ∈ U, u∗ ∈ U∗, v ∈ V .

If both U and V are finite dimensional vector spaces then the vector space
U∗ ⊗ V ∗ ∼= (U ⊗ V )∗ can be identified with the vector space of bilinear maps
U × V → R, and more generally for any vector space W the vector space
Hom(U ⊗ V,W ) can be identified with the vector space of bilinear maps
U × V → W .

Definition 2.2. If U is a finite dimensional vector space then we denote
inductively T 0(U) = R and T p+1(U) = T p(U) ⊗ U for all p ∈ N. Since
⊗ : T p(U) ⊗ T q(U) → T p+q(U) is a linear isomorphism for all p, q ∈ N the
tensor algebra

T (U) = ⊕p≥0T
p(U)

becomes a graded associative algebra with respect to tensor multiplication ⊗.

Elements of T p(U∗) are multilinear functions of p arguments from U by
putting

(u∗1 ⊗ · · · ⊗ u∗p)(u1, · · · , up) = u∗1(u1) · · ·u∗p(up)
and the tensor product ⊗ turns T (U∗) = ⊕p≥0T

p(U∗) into an associative
algebra, in fact the universal associative algebra generated by the vector
space U∗ of linear functionals on U .

Let I±(U) be the two sided homogeneous ideal of T (U) generated by the
quadratic tensors (u ⊗ v) ± (v ⊗ u) for u, v ∈ U respectively. The quotient
algebras

S(U) = ⊕p≥0S
p(U) = T (U)/I−(U) , ∧(U) = ⊕p≥0 ∧p (U) = T (U)/I+(U)
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are graded associative algebras, called the symmetric algebra and exterior
algebra on the vector space U respectively.

The commutative associative algebra P (U) = ⊕p≥0P
p(U) of polynomial

functions on U is generated by U∗, and so is a quotient algebra of T (U∗).
In fact P (U) is the universal commutative associative algebra generated by
U∗, from which it easily follows that P (U) ∼= S(U∗) with u∗1u

∗
2 ≡ u∗1 ⊗ u∗2 for

u∗1, u
∗
2 ∈ U∗ under this identification.
Let Ap(U) be the vector space of alternating multilinear functions of p

arguments from U in the sense that

α(uσ(1), · · · , uσ(p)) = ε(σ)α(u1, · · · , up)
for all σ ∈ Sp and u1, · · · , up ∈ U . For α ∈ Ap(U) and β ∈ Aq(U) the wedge
product α ∧ β ∈ Ap+q(U) is defined by

(α ∧ β)(u1, · · · , up+q) =
∑

σ∈S(p,q)

ε(σ)α(uσ(1), · · · , uσ(p))β(uσ(p+1), · · · , uσ(p+q))

with the sum over all shuffles σ ∈ Sp+q with σ(i) < σ(j) for all i < j
taken from either {1, · · · , p} or {p+1, · · · , p+ q} and u1, · · · , up+q ∈ U . For
example, for p = q = 1 this amounts to

u∗1 ∧ u∗2 = u∗1 ⊗ u∗2 − u∗2 ⊗ u∗1

for u∗1, u
∗
2 ∈ U∗. It is easy to check that

(α ∧ β) ∧ γ = α ∧ (β ∧ γ)
for α ∈ Ap(U), β ∈ Aq(U), γ ∈ Ar(U), and so A(U) = ⊕p≥0A

p(U) becomes
an associative algebra with respect to the wedge product generated by U∗. It
follows that A(U) ∼= ∧(U∗) with u∗1 ∧ u∗2 ≡ 2u∗1⊗u∗2 under this identification.
For u∗1, · · · , u∗p ∈ U∗ and u1, · · · , up ∈ U we have (u∗1∧· · ·∧u∗p)(u1, · · · , up) =
det(u∗i (uj)).

Exercise 2.3. Show that (α∧ β)∧ γ = α∧ (β ∧ γ) and β ∧ α = (−1)pqα∧ β
for all α ∈ Ap(U), β ∈ Aq(U), γ ∈ Ar(U).

Exercise 2.4. For u ∈ U let iu : Ap(U) → Ap−1(U) be defined by

iu(α)(u1, · · · , up−1) = α(u, u1, · · · , up−1)

for u1, · · · , up−1 ∈ U . The element iu(α) is called the contraction of the
vector u ∈ U with the form α ∈ Ap(U). Show that

iu(α ∧ β) = iu(α) ∧ β + (−1)pα ∧ iu(β)

for α ∈ Ap(U) and β ∈ Aq(U).
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2.2 Vector Bundles

Let M be a smooth manifold of dimension m.

Definition 2.5. A smooth real vector bundle of rank n on a smooth manifold
M of dimension m is a smooth map p : E → M of manifolds, such that

1. ∀ x ∈M , the fiber Ex := p−1(x) is a real vector space of dimension n,

2. each x ∈ M has an open neighborhood U in M and a diffeomorphism
ϕU from EU := p−1(U) onto U × R

n, called a local trivialization over
U , such that the following diagram

EU U × R
n

U

ϕU

p prU

commutes with prU the projection on the first factor,

3. the induced map ϕx : Ex → Rn is a linear isomorphism.

The manifold E is called the total space of the vector bundle, the manifold
M the base space, and p the projection map.

We shall write vector bundle for smooth real vector bundle. The trivial
vector bundle prM :M ×Rn →M on M is the simplest example of a vector
bundle on M of rank n. Vector bundles of rank one are called line bundles.
Any construction of linear algebra on vector spaces, such as the direct sum
⊕, the tensor product ⊗, the dual vector space and symmetric power Sp or
exterior powers ∧p, or their duals P p or Ap, all can be performed likewise
with vector bundles on M .

A smooth map s : U → EU with ps = idU is called a section on U ,
and we denote by Γ(EU) the real vector space of all sections on U under
pointwise addition and scalar multiplication. In case U = M we simply
write Γ(EM) = Γ(E). The algebra of smooth functions on M is denoted by
F(M). Pointwise multiplication gives Γ(E) the structure of a module over
F(M). The zero section, defined by x 7→ 0x with 0x the zero vector in Ex, is
the zero vector in Γ(E). The zero section gives an embedding of the manifold
M inside a vector bundle E on M .
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If φU : EU → U ×Rn and φV : EV → V ×Rn are local trivializations of a
vector bundle p : E → M over open neighborhoods U and V of M then we
denote for x ∈ U ∩ V and v ∈ Rn

hV U : U ∩ V → GLn(R), φV φ
−1
U (x, v) = (x, hV U(x)v)

for the transition function from EU to EV . It is clear that hWV hV U = hWU

on the intersection U ∩ V ∩W and hUU = 1, which are called the cocycle
conditions . Up to isomorphism the vector bundle E can be recovered from
its transition functions for an open covering U = {Uα}α∈I of M by forming

{⊔α∈I(Uα × R
n)}/∼

with Uα×R
n ∋ (x, v) ∼ (x, hβα(x)v) ∈ Uβ ×R

n for x ∈ Uα ∩Uβ and v ∈ R
n.

The cocycle conditions hγβhβα = hγα, hαα = 1 turn the relation ∼ into an
equivalence relation.

The space of sections Γ(M ×Rn) for the trivial bundle on M of rank n is
equal to F(M)n. The tangent bundle TM ofM has rank m = dimM and its
sections are just the smooth vector fields on M . We denote X(M) = Γ(TM)
for the space of all smooth vector fields on M . The dual cotangent bundle
T ∗M has again rank m and its sections are the smooth differentials. The pth

exterior power ∧pT ∗M has rank
(

m
p

)

and its sections are the smooth p-forms

on M . We denote Ωp(M) = Γ(∧pT ∗M) for the space of smooth p-forms
on M . In case p = m the vector bundle ∧mT ∗M is a line bundle, and its
sections are the smooth volume forms on M . The manifold M is orientable
if there exists a nowhere vanishing volume form in Ωm(M). The elements
of Ωp(E) := Γ(∧pT ∗M ⊗ E) are called smooth p-forms with values in E. A
section for the vector bundle T p(T (M))⊗T q(T ∗(M)) = T (M)⊗p ⊗T ∗(M)⊗q

on M is called a tensor field of type (p, q).
We now come to the important concept of pull back of vector bundles.

Let f : M → N be a smooth map of manifolds and let p : E → N be a
vector bundle on N . Then the pull back f ∗p : f ∗E → M will be a vector
bundle on M , defined as follows.

As a set, f ∗E is the collection of those points (x, e) ∈ M × E for which
f(x) = p(e), or equivalently e lies in the fiber Ef(p). The projection map f ∗p :
f ∗E →M is defined by f ∗p(x, e) = x, so just the restriction to f ∗E ⊂M×E
of the projection on the first factor. A local trivialization of f ∗E around
x ∈ M is obtained as follows. Let V be a trivializing neighborhood of f(x)
for the vector bundle E → N , with ψV : EV → V ×Rn the local trivialization.
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Then U := f−1(V ) becomes a trivializing neighborhood of x for the vector
bundle f ∗E → M . Indeed, the map idU × ψV is a diffeomorphism from
(f ∗E)U = (U × EV ) ∩ f ∗E onto graph(f |U) × Rn ⊂ U × V × Rn. Here we
have used that

graph(f |U) = {(y, f(y)); y ∈ U} ⊂ U × V

is a smooth submanifold and the projection pr : graph(f |U) → U on the first
factor is a diffeomorphism. The composition φU := (pr×idRn)(idU×ψV ) gives
the desired local trivialization from (f ∗E)U onto U × R

n. If s ∈ Γ(E) is a
section, that is s : N → E with p(s(y)) = y for all y ∈ N , then f ∗s ∈ Γ(f ∗E)
is defined by f ∗s(x) = (x, s(f(x))) for all x ∈ M . Indeed f(x) = p(s(f(x)))
and so f ∗s(x) ∈ f ∗E, and also f ∗p(f ∗s(x)) = f ∗p(x, s(f(x))) = x for all
x ∈M . This identifies f ∗Γ(E) with a linear subspace of Γ(f ∗E). The former
space is module over f ∗F(N) while the latter is a module over F(M). In
fact Γ(f ∗E) = F(M) ⊗ f ∗Γ(E) with the tensor product taken as modules
over f ∗(F(N)).

Exercise 2.6. A Euclidean structure g on a vector bundle p : E → M is a
function which assigns to each x ∈ M a Euclidean form gx on the fiber Ex

at x varying smoothly with x, in the sense that x 7→ gx(ex, fx) is a smooth
function on M for any two smooth sections e, f ∈ Γ(E). Using a partition of
unity argument show that vector bundles always admit a Euclidean structure.

Exercise 2.7. If f : M → N is a smooth map of manifolds and p : E → N
a vector bundle on N with a Euclidean structure g then the pull back bundle
f ∗p : f ∗E → M inherits a natural Euclidean structure f ∗g.

2.3 Connections

A smooth vector field X ∈ X(M) has a time t flow φt : Dt → M defined
on its maximal domain Dt ⊂ M . For each x ∈ M there exists ǫ > 0 such
that x ∈ Dt for all |t| < ǫ, and the curve t 7→ γ(t) = φt(x) is an integral
curve of X in the sense that γ̇(t) = Xγ(t). Under proper domain restrictions
we have φt(φs(x)) = φt+s(x) and we speak of a one parameter group of
diffeomorphisms.

The Lie derivative LX is a linear operator defined on the vector spaces
of p-forms Ωp(M) and vector fields X(M) by

LX(α) =
d

dt
{φ∗

tα}t=0 , LX(Y ) =
d

dt
{φ∗

tY }t=0
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for α ∈ Ωp(M) and X, Y ∈ X(M). On differential forms the Lie derivative is
just given by the Cartan formula

LX = diX + iXd

with d : Ωp(M) → Ωp+1(M) the exterior derivative and iX : Ωp(M) →
Ωp−1(M) the contraction with the vector field X . For X, Y ∈ X(M) the
Lie bracket [X, Y ] ∈ X(M) is defined by [X, Y ] = LX(Y ). It turns out that
L[X,Y ] = [LX ,LY ] as linear operators on Ωp(M) or on X(M) with the latter
bracket [·, ·] the commutator bracket of linear operators. Written out for the
action on X(M) this amounts to

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0

which is called the Jacobi identity. Hence the vector space X(M) becomes a
Lie algebra, and in fact the Lie algebra of the diffeomorphism group Diff(M)
of M . The linear maps X 7→ LX become Lie algebra representations on
Ωp(M) and X(M).

The name ”derivative” in Lie derivative is justified because

LX(fα) = LX(f)α+ fLX(α) ,LX(fY ) = LX(f)Y + fLX(Y )

for f ∈ F(M), α ∈ Ωp(M) and X, Y ∈ X(M). For all f, g ∈ F(M) we have

LfX(g) = fLX(g)

and in fact the value of LX(f) at some point x ∈ M depends only on the
value of Xx ∈ TxM . This need no longer be true for the action of LX on
Ωp(M) for p ≥ 1 or on X(M) where the outcome at some point x ∈ M will
also depend on the values of X in a small neighborhood of x. For example,
we have

LfX(Y ) = fLX(Y )− LY (f)X

for f ∈ F(M) and X, Y ∈ X(M). Hence the value of of LX(Y ) at x ∈ M
depends only on Xx ∈ TxM for all Y ∈ X(M) if and only if Xx = 0.

Definition 2.8. A connection ∇ on a vector bundle p : E → M is a linear
map

∇ : Γ(E) → Ω1(E)

with the property (Leibniz rule)

∇(fs) = df ⊗ s+ f∇(s)
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for all f ∈ F(M) and s ∈ Γ(E). Moreover we require the connection to be
local in nature, which means that for each open subset U of M we also have
compatible connections

∇U : Γ(EU) → Ω1(EU)

in the sense that ∇(s)|U = ∇U(s|U) for all s ∈ Γ(E).
For a given connection ∇ and X ∈ X(M) the covariant derivative ∇X

along X is the linear map

∇X : Γ(E) → Γ(E) , ∇X(s) = iX(∇(s))

which has the properties

∇X(fs) = LX(f)s+f∇X(s), ∇fX(s) = f∇X(s), ∇X+Y (s) = ∇X(s)+∇Y (s)

for all f ∈ F(M), s ∈ Γ(E) and X, Y ∈ X(M).

An important remark is that the value of the covariant derivative ∇X(s)
of a section s ∈ Γ(E) along X ∈ X(M) at some point x ∈ M only depends
on the value Xx ∈ TxM . So for X ∈ X(M) nonzero there does not exist a
connection ∇ on the tangent bundle TM whose covariant derivative along
X is equal to the Lie derivative LX : X(M) → X(M).

If ∇1,∇2 : Γ(E) → Ω1(E) are two connections on the same vector bundle
then for any f ∈ F(M) the affine combination

f∇1 + (1− f)∇2 : Γ(E) → Ω1(E)

is again a connection. Hence the connections form an affine subspace of the
vector space Hom(Γ(E),Ω1(E)). The difference

∇1 −∇2 : Γ(E) → Ω1(E)

of two connections is in fact a linear map of modules over F(M), and so is
a global section of the vector bundle Hom(E, T ∗M ⊗ E) over M , that is an
element of Ω1(End(E)).

Exercise 2.9. Let (E1 → M,∇1) and (E2 → M,∇2) be two vector bundles
with connections on M . Show that the direct sum bundle E1 ⊕E2 →M and
the tensor product bundle E1 ⊗ E2 → M have natural connections

∇(s1 ⊕ s2) = ∇1(s1)⊕∇2(s2) , ∇(s1 ⊗ s2) = ∇1(s1)⊗ s2 + s1 ⊗∇2(s2)
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for s1 ∈ Γ(E1) and s2 ∈ Γ(E2). In addition, we have a natural connection ∇
on the vector bundle Hom(E1, E2) defined by

∇(S)(s) = ∇2(S(s))− S(∇1(s))

for S ∈ Γ(Hom(E1, E2)) and s ∈ Γ(E1), so that S(s) ∈ Γ(E2)

Exercise 2.10. Show that any vector bundle E → M on a manifold M has
a connection ∇.

Exercise 2.11. Suppose (E, g) is a vector bundle on M with a Euclidean
stucture g. A connection ∇ on E is called compatible with g if

d(g(s1, s2)) = g(∇(s1), s2) + g(s1,∇(s2))

for all sections s1, s2 ∈ Γ(E). Show that for any connection ∇ on E there
exists a connectionn ∇g on E with

d(g(s1, s2)) = g(∇gs1, s2) + g(s1,∇s2)

for all s1, s2 ∈ Γ(E), and conclude that any Euclidean vector bundle (E, g)
on M has a connection, which is compatible with the g.

A simple example of a connection on the rank one trivial bundle prM :
M × R → M with is given by the exterior derivative d : F(M) → Ω1(M)
with covariant derivative along X the Lie derivative LX . More generally,
any ω ∈ Ω1(M) determines a connection ∇(f) = df + fω with covariant
derivative ∇X(f) = LX(f) + fω(X), and any connection on the trivial line
bundle on M is of this form.

More generally, consider the rank n trivial bundle prM : M × Rn → M
with Γ(M × Rn) = F(M) ⊗ Rn and Ω1(M × Rn) = Ω1(M) ⊗ Rn. The
standard basis of Rn is denoted {ep; p = 1, · · · , n}. Given a connection ∇ on
this bundle the differentials ωp

q ∈ Ω1(M) are defined by

∇(eq) =
∑

ωp
q ⊗ ep

and called the connection forms of∇ in the basis ep. A section s ∈ Γ(M×Rn)
can be uniquely written as

s =
∑

spep
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for certain functions sp ∈ F(U) for p = 1, · · · , n. Using the Leibniz rule the
connection ∇ is given by

∇(s) =
∑

(dsp +
∑

sqωp
q )⊗ ep

and the covariant derivative ∇X along X ∈ X(M) becomes

∇X(s) =
∑

{LX(s
p) +

∑

sqωp
q (X)}ep

and we can think of a connection in a local frame as given by a ”matrix of
one forms”.

2.4 Curvature of a Connection

Let (E →M,∇) be a vector bundle with connection on M . The connection
∇ : Γ(E) → Ω1(E) can be extended to a linear map

∇ : Ωp(E) → Ωp+1(E)

for all p ≥ 0 by the Leibniz rule

∇(α⊗ s) = dα⊗ s+ (−1)pα ∧ ∇(s)

for all α ∈ Ωp(M) and s ∈ Γ(E).

Exercise 2.12. Show that ∇((fα)⊗ s) = ∇(α⊗ (fs)) as should and hence
∇ : Ωp(E) → Ωp+1(E) is well defined.

Proposition 2.13. Let (E1 → M,∇1) and (E2 → M,∇2) be two vector
bundles with connections on M , and let ∇ be the corresponding connection
on the tensor product bundle E = E1 ⊗ E2 →M . Define natural maps

∧ : Ωp(E1)⊗ Ωq(E2) → Ωp+q(E1 ⊗ E2)

by (α⊗ s1) ∧ (β ⊗ s2) = (α ∧ β)⊗ (s1 ⊗ s2). Then we have

∇(ε1 ∧ ε2) = (∇1ε1) ∧ ε2 + (−1)pε1 ∧ (∇2ε2)

for all ε1 ∈ Ωp(E1) and ε2 ∈ Ωq(E2).
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Proof. For ε1 = α⊗ s1 ∈ Ωp(E1) and ε2 = β ⊗ s2 ∈ Ωq(E2) we have

∇(ε1 ∧ ε2) = ∇((α ∧ β)⊗ (s1 ⊗ s2)) = d(α ∧ β)⊗ (s1 ⊗ s2)+

(−1)p+q(α ∧ β) ∧ ∇(s1 ⊗ s2) = (dα ∧ β + (−1)pα ∧ dβ)⊗ (s1 ⊗ s2)+

(−1)p+q(α ∧ β) ∧ (∇1s1 ⊗ s2 + s1 ⊗∇2s2) = (dα⊗ s1) ∧ (β ⊗ s2)+

(−1)p(α⊗ s1) ∧ (dβ ⊗ s2) + (−1)p(α⊗∇1s1) ∧ (β ⊗ s2)+

(−1)p+q(α⊗ s1) ∧ (β ⊗∇2s2) = ∇1(α⊗ s1) ∧ (β ⊗ s2)+

(−1)p(α⊗ s1) ∧ ∇2(β ⊗ s2) = (∇1ε1) ∧ ε2 + (−1)pε1 ∧ (∇2ε2)

and the desired formula follows.

Theorem 2.14. If (E →M,∇) is a vector bundle with connection then

∇∇(α ∧ ε) = α ∧R(ε)

with α ∈ Ωp(M), ε ∈ Ωq(E) and R ∈ Ω2(End(E)) the so called curvature of
the connection.

Proof. We apply the above proposition with (E1 = M × R,∇1 = d) the
trivial rank one bundle with the trivial connection and (E2 = E,∇2 = ∇ the
given vector bundle with connection on M , and hence for α ∈ Ωp(M) and
ε ∈ Ωq(E) we get

∇(α ∧ ε) = (dα) ∧ ⊗ε + (−1)pα ∧ (∇ε)

by the above theorem. In turn we get

∇∇(α ∧ ε) = (ddα) ∧ ε+ (−1)p+1dα ∧∇ε+ (−1)pdα ∧∇ε+ α ∧ ∇∇ε

which implies that ∇∇(α ∧ ε) = α ∧∇∇ε and so ∇∇ : Ωp(E) → Ωp+2(E) is
a morphism of modules over Ω(M).

Theorem 2.15. Let (E → M,∇) be a vector bundle with connection on
M . Equip the vector bundle End(E) →M with its natural connection ∇ (by
abuse of notation), given by ∇(A)s = ∇(As)−A∇s for A ∈ Γ(End(E)) and
s ∈ Γ(E). Then the curvature R ∈ Ω2(End(E)) satisfies

∇R = 0

which is called the second Bianchi identity.
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Proof. For all ε = (α⊗ s) ∈ Ωp(E) we have the Ricci identity

∇∇(ε) = R ∧ ε

and since ∇(∇∇) = (∇∇)∇ we find

∇(R ∧ ε) = ∇(∇∇ε) = ∇∇(∇ε) = R ∧ ∇ε

which in turn implies ∇(R) ∧ ε = 0 for all ε ∈ Ωp(E). Hence ∇(R) = 0.

Theorem 2.16. As equality in Γ(End(E)) we have

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

for all X, Y ∈ X(M).

Proof. Recall that for α ∈ Ωp(M) we have (using the Cartan formula and
induction on p) the identity

dα(X0, · · · , Xp) =
∑

i

(−1)iLXi
(α(X0, · · · , X̂i, · · · , Xp))

+
∑

i<j

(−1)i+jα([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xp))

for X0, · · · , Xp ∈ X(M). Using the Leibniz rule

∇(α⊗ s) = dα⊗ s+ (−1)pα ∧ ∇(s)

it follows that for ε = α⊗ s ∈ Ωp(E) we get likewise

(∇ε)(X0, · · · , Xp) =
∑

i

(−1)i∇Xi
(ε(X0, · · · , X̂i, · · · , Xp))

+
∑

i<j

(−1)i+jε([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xp))

as an identity in Γ(E). In particular, for X, Y ∈ X(M) one has

(∇∇s)(X, Y ) = ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s

which in turn implies

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

as identity in Γ(End(E)).
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Definition 2.17. A connection ∇ : Γ(E) → Ω1(E) on a vector bundle
p : E → M with curvature R ∈ Ω2(End(E)) is called flat or integrable
if R ≡ 0.

Clearly connections on vector bundles on a manifold M of dimension one
are always flat. The exterior derivative d as the trivial connection on the
trivial line bundle M × R → M (or trivial vector bundle M × Rn → M) is
flat.

Exercise 2.18. Show that for X,X0, X1, · · · , Xp ∈ X(M) and ω ∈ Ωp(M)

LX(ω(X1, · · · , Xp)) = (LXω)(X1, · · · , Xp)

+
∑

i

ω(X1, · · · , Xi−1, [X,Xi], Xi+1, · · · , Xp)

and conclude that

dω(X0, · · · , Xp) =
∑

i

(−1)iLXi
(ω(X0, · · · , X̂i, · · · , Xp))

+
∑

i<j

(−1)i+jω([Xi, Xj], X0, · · · , X̂i, · · · , X̂j , · · · , Xp))

by using the Cartan formula LX = diX + iXd.

Exercise 2.19. Verify the identity

(∇ε)(X0, · · · , Xp) =
∑

i

(−1)i∇Xi
(ε(X0, · · · , X̂i, · · · , Xp))

+
∑

i<j

(−1)i+jε([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xp))

in the above proof using the analogous (above) identity for exterior derivation
d : Ωp(M) → Ωp+1(M) instead of ∇ : Ωp(E) → Ωp+1(E).

Exercise 2.20. For the trivial vector bundle prM : M × R
n → M with

sections s =
∑

spep ∈ Γ(M × Rn) and a connection ∇ given by

∇(s) =
∑

(dsp +
∑

sqωp
q )⊗ ep

with matrix of one forms ωp
q show that the curvature is given by

∇∇(s) =
∑

sq(dωp
q +

∑

ωp
r ∧ ωr

q)⊗ ep .

These formulas are abbreviated by ∇ = d + ω and R = dω + ω ∧ ω.
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Exercise 2.21. Keep the notation of the previous exercise and choose lo-
cal coordinates (x1, · · · , xm) on M . Suppose the matrix of connection one
forms has the form ωp

q =
∑

Γp
iqdx

i for smooth functions Γp
iq of these local

coordinates. Show that the matrix of curvature two forms Rp
q is given by

Rp
q =

∑

i<j

Rp
ijqdx

i ∧ dxj , Rp
ijq = ∂iΓ

p
jq − ∂jΓ

p
iq +

∑

{Γp
irΓ

r
jq − Γp

jrΓ
r
iq}

with as usual ∂i = ∂/∂xi for i = 1, · · · , m. Here the indices i, j = 1, · · · , m
while p, q = 1, · · · , n with m the dimension of the base manifold M and n
the rank of vector bundle E.

2.5 Parallel Transport and Holonomy

Let f : M → N be a smooth map between manifolds. If p : E → N is a
smooth vector bundle on N then the pull back vector bundle f ∗E along f
was defined as the set of pairs (x, e) ∈ M × E with f(x) = p(e). This set
f ∗E is a submanifold on M × E, and the projection f ∗p : f ∗E → M on the
first factor makes it a vector bundle.

A connection∇ on E determines a connection f ∗∇ on f ∗E, called the pull
back of ∇ along f and defined as follows. Let V ⊂ N be a trivializing open
set for E with a local frame ep ∈ Γ(EV ) for p = 1, · · · , n. Then f ∗ep = epf for
p = 1, · · · , n is a local frame for (f ∗E)U with U = f−1(V ) ⊂ M . If ∇ on V
has connection one forms ωp

q ∈ Ω1(V ) in the frame {ep} then the connection
one forms of f ∗∇ on U in the frame f ∗ep are given by f ∗ωp

q ∈ Ω1(U). In
other words, the covariant derivative (f ∗∇)X along X ∈ X(M) acts on a
local section s =

∑

spf ∗ep on U as

(f ∗∇)X(s) =
∑

{LX(s
p) +

∑

sqiX(f
∗ωp

q )}f ∗ep

with iX(f
∗ωp

q ) = if∗(X)ω
p
q ∈ F(U).

For the rest of this section let (E,∇) be a vector bundle with connection
onM . Let γ : [a, b] →M be a smooth arc inM from x = γ(a) to y = γ(b), by
which we mean that γ has a smooth extension to (a−ǫ, b+ ǫ) for some ǫ > 0.
A section s for (γ∗E, γ∗∇) is called horizontal if (γ∗∇)s = 0. If U ⊂ M is
a trivializing open set for E and γ([a, b]) ⊂ U the condition (γ∗∇)s = 0 can
be written as

ṡp(t) +
∑

sq(t)Ap
q(t) = 0
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for all p = 1, · · · , n with Ap
q(t) = γ∗(ωp

q )(∂t) smooth functions of t ∈ [a, b].
This is a linear first order system of ordinary differential equations. By
the existence and uniqueness theorem for first order ordinary differential
equations there exists for each vector s(a) ∈ (γ∗E)a a unique horizontal
section s for γ∗E with the prescribed initial value for t = a. By linearity of
the system of differential equations the map (γ∗E)a → (γ∗E)b, s(a) 7→ s(b) is
a linear map. If [a, b] ∋ t ↔ t̃ ∈ [ã, b̃] is a smooth reparametrization and we
denote γ̃(t̃) := γ(t(t̃)) then t 7→ s(t) is a horizontal section for (γ∗E, γ∗∇) if
and only if t̃ 7→ s̃(t̃) := s(t(t̃)) is a horizontal section for (γ̃∗E, γ̃∗∇). Indeed,
we have

∂ts
p(t) +

∑

sq(t)Ap
q(t) = {∂t̃sp(t̃) +

∑

s̃q(t̃)Ãp
q(t̃)}

dt̃

dt

since Ãp
q(t̃)dt̃ = γ̃∗(ωp

q ) ↔ γ∗(ωp
q ) = Ap

q(t)dt under the substitution t̃ ↔ t.
The corresponding linear map

Par(γ) : Eγ(a)
∼= (γ∗E)a → Eγ(b)

∼= (γ∗E)b

is called parallel transport in (E,∇) along the arc γ. Parallel transport is
invariant under smooth reparametrizations of the arc γ.

For γ a piecewise smooth arc in M parallel transport is defined as the
composition of the parallel transports along the smooth pieces of γ. More
precisely, if γ : [a, b] → M and δ : [b, c] → M are two piecewise smooth arcs
in M with the end point γ(b) of γ equal to the begin point δ(b) of δ then the
composition δγ : [a, c] →M is the piecewise smooth arc

δγ(t) =

{

γ(t) ∀t ∈ [a, b]
δ(t) ∀t ∈ [b, c]

taken in this order: traverse δ after γ is traversed. Hence

Par(δγ) = Par(δ)Par(γ)

just by definition.

Exercise 2.22. Show that parallel transport Par(γ) : Eγ(a) → Eγ(b) in (E,∇)
along an arc γ in M is an invertible linear map.

If γ : [a, b] → M is a piecewise smooth loop based at x = γ(a) = γ(b) ∈M
then parallel transport along the loop γ based at x ∈ M is also called the
holonomy along γ. The set of all holonomies of piecewise smooth loops based
at x ∈ M is a subgroup of the general linear group GL(Ex). It is called the
holonomy group of (E,∇) at x ∈M and is denoted Holx(E,∇).
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Exercise 2.23. Let (E,∇) be a vector bundle with connection on a connected
manifold M . Show that parallel transport along an arc γ from x to y induces
an isomorphism from Holx(E,∇) onto Holy(E,∇).

Exercise 2.24. A Euclidean structure g on a vector bundle E → M is called
compatible a connection ∇ on E if ∇(g) = 0, or equivalently if

LX(g(s1, s2)) = g(∇X(s1), s2) + g(s1,∇X(s2))

for all X ∈ X(M) and all s1, s2 ∈ Γ(E). Suppose g is a Euclidean structure
on a vector bundle compatible with a connection (E,∇) on M . Show that
parallel transport

Par(γ) : Eγ(a) → Eγ(b)

along a piecewise smooth arc γ : [a, b] → M preserves the corresponding
Euclidean structures, in the sense that

gγ(a)(e, f) = gγ(b)(Par(γ)e,Par(γ)f)

for any e, f ∈ Eγ(a). Conclude that the holonomy group Holx(E,∇) based at
x ∈M is a subgroup of the orthogonal group O(Ex, gx).

2.6 Fundamental Group

Let Z be an arcwise connected topological space. A good example to have
in mind is a domain Z in C.

Definition 2.25. A path in Z is a continuous map γ : [0, 1] → Z, t 7→ γ(t).
The point γ(0) is called the begin point and the point γ(1) the end point of
γ. If begin and end point of γ coincide then γ is called a loop with base point
γ(0) = γ(1).

Definition 2.26. Let γ1 and γ2 be two paths in Z with equal begin points
γ1(0) = γ2(0) and equal end points γ1(1) = γ2(1). The paths γ1 and γ2
are called homotopic if there exists a continuous map h : [0, 1] × [0, 1] →
Z, (s, t) 7→ h(s, t) such that

h(0, t) = γ1(t) , h(1, t) = γ2(t) ∀t ∈ [0, 1] ,

h(s, 0) = γ1(0) = γ2(0) , h(s, 1) = γ1(1) = γ2(2) ∀s ∈ [0, 1] .

The map h is called the homotopy between the paths γ1 and γ2.
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In other words the two paths γ1 and γ2 are homotopic if there exists a
one parameter continuous family (with parameter s ∈ [0, 1]) of paths

γ1+s : [0, 1] → Z

γ1+s(0) = γ1(0) = γ2(0) , γ1+s(1) = γ1(1) = γ2(1) ∀s ∈ [0, 1] .

The link with our previous notation is γ1+s(t) = h(s, t). If γ1(0) = γ2(0) = z0
and γ1(1) = γ2(1) = z1 then we draw the following schematic picture.

γ1 γ1+s γ2

z0

z1

s

t

We shall write γ1 ∼ γ2 if the paths γ1 and γ2 in Z with equal begin points
and equal end points are homotopic. It is easy to show that being homotopic
is an equivalence relation. The equivalence class of a path γ : [0, 1] → Z is
denoted by [γ].

Definition 2.27. Let γ1, γ2 : [0, 1] → Z be two paths in Z with γ1(1) = γ2(0).
We define a new path γ2γ1 : [0, 1] → Z by

γ2γ1(t) =

{

γ1(2t) ∀t ∈ [0, 1
2
]

γ2(2t− 1) ∀t ∈ [1
2
, 1]

The path γ2γ1 is called the product of γ2 and γ1, and is always taken in this
order, start with γ1 and then follow with γ2.

It is easy to show that if γ1 ∼ γ3 and γ2 ∼ γ4 and the end point z1 of
γ1, γ3 coincides with the begin point z1 of γ2, γ4 then γ2γ1 ∼ γ4γ3. Here is a
schematic picture of the homotopy.

29



γ1

γ2

γ3

γ4

γ1+s

γ3+s

s

t

Hence the product [γ2][γ1] of the homotopy classes of paths γ2 and γ1 as in
Definition 2.27 is well defined. We leave it as an exercise to show that the
product of paths is associative on homotopy classes of paths.

Theorem 2.28. For z0 ∈ Z a fixed point let Π1(Z, z0) denote the collection of
homotopy classes of loops in Z with base point z0. The product rule on paths
in Z according to Definition 2.27 defines a group structure on Π1(Z, z0). The
unit element is represented by the constant path

ǫ(t) = z0 ∀t ∈ [0, 1]

based at z0. The inverse [γ]−1 of [γ] ∈ Π1(Z, z0) is represented by the loop

γ−1(t) = γ(1− t) ∀t ∈ [0, 1]

which is just the original loop γ but traversed in opposite direction.

Definition 2.29. The group Π1(Z, z0) is called the fundamental group of
the arcwise connected topological space Z with base point z0.

Elements of Π1(Z, z0) are homotopy classes of loops, but sometimes one
refers to the elements of Π1(Z, z0) simply as loops (based at z0). Even worse,
in the notation one simply writes γ ∈ Π1(Z, z0) rather than [γ] ∈ Π1(Z, z0).
If δ : [0, 1] →M is a path with begin point z0 = δ(0) and end point z1 = δ(1)
then the map

Π1(Z, z0) → Π1(Z, z1), γ 7→ δγδ−1

is an isomorphism of groups. This isomorphism depends only on the homo-
topy class of δ and is unique (that is independent of the choice of some δ

30



connecting the two base points) up to inner automorphisms. The inner iso-
morphism class of the fundamental group of Z at some base point is denoted
Π1(Z). The arcwise connected space Z is called simply connected if its fun-
damental group is trivial. The space Z is called contractible if the identity
map and the constant map, sending all of Z to some base point in Z, are
homotopic. Clearly contractible spaces are simply connected. Examples of
contractible spaces are star shaped regions in Rm, like the open unit ball Bm

or the hypercube (−1, 1)m or Rm itself.

Example 2.30. Let Z = C× = C− {0} and z0 = 1. If γ(t) = exp(2πit) for
t ∈ [0, 1] then Π1(Z, z0) is a cyclic group with generator γ.

γ

10⋆ b

Example 2.31. Let Z = P− {0, 1,∞} = C− {0, 1} with P = C ∪ {∞} the
complex projective line and take z0 = 1

2
. Choose loops γ0, γ1, γ∞ around the

points 0, 1,∞ respectively as in the picture.

γ∞

γ0

γ1
0

1
1
2

⋆ ⋆b

It is easy to see that γ∞γ1γ0 = 1 in Π1(Z,
1
2
). It can be shown that Π1(Z,

1
2
) is

isomorphic to the group on three generators γ0, γ1, γ∞ with the single relation
γ∞γ1γ0 = 1.
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Remark 2.32. Because the fundamental group Π1(Z) is unique up to inner
automorphisms the Abelianized fundamental group

Π1(Z)
Abel = Π1(Z)/[Π1(Z),Π1(Z)]

is a canonically defined Abelian group, and is called the first homology group
of the space Z, denoted H1(Z). By abuse of notation the class [γ] ∈ H1(Z)
is called the cycle of the loop [γ] ∈ Π1(Z, z0).

Example 2.33. The Pochhammer contour γP ∈ Π1(P− {0, 1,∞}, 1
2
) is de-

fined by
γP = [γ0, γ1] = γ0γ1γ∞

with [·, ·] for the commutator in the fundamental group Π1(P− {0, 1,∞}, 1
2
).

The second equality follows from the topological relation γ∞γ1γ0 = 1.

0 11
2

⋆ ⋆b

γP

The Pochhammer contour was introduced independently by Jordan in 1887
and Pochhammer in 1890. The Pochammer contour is nontrivial in homo-
topy, but the associated cycle is trivial in homology.

Exercise 2.34. Show that if the end points of γ1 ∼ γ2 coincide with the begin
points of γ3 ∼ γ4 then γ3γ1 ∼ γ4γ2.

γ1

γ3

γ2

γ4

γ1+s

γ3+s

z0

z1

z2

s

t
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Exercise 2.35. Suppose that γ1, · · · , γ6 are paths in Z such that γ1 ∼ γ4,
γ2 ∼ γ5, γ3 ∼ γ6 and the products γ3(γ2γ1) and (γ6γ5)γ4 are well defined. In
other words we assume that the begin points of γ1, γ4 equal z0, the end points
of γ1, γ4 and the begin points of γ2, γ5 equal z1, the end points of γ2, γ5 and
the begin points of γ3, γ6 equal z2, and finally the end points of γ3, γ6 equal
z3. Show that γ5(γ3γ1) ∼ (γ6γ4)γ2. In turn this implies that the group law
on the fundamental group is associative. A picture of the homotopy is given
by the picture below.

γ1
γ4

γ2

γ5
γ3

γ6

z0

z1

z2

z3

s

t

Exercise 2.36. Show that in the notation of Theorem 2.28 we have ǫγ ∼
γǫ ∼ γ and γγ−1 ∼ γ−1γ ∼ ǫ.

γ−1

γ

γs ǫ

z0

z0

s

t

Here γs(t) is equal to γ−1(2t) for t ∈ [0, (1 − s)/2], is constant equal to
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γ−1(1− s) = γ(s) for t ∈ [(1− s)/2, (1 + s)/2], and is equal to γ(2t− 1) for
t ∈ [(1 + s)/2, 1]

2.7 Flat Connections and Monodromy

LetM be a connected manifold, and (E,∇) a vector bundle with connection
on M . If γ : [0, 1] → is a piecewise smooth path with begin point γ(0) and
end point γ(1) then parallel transport

Par(γ) : Eγ(0) → Eγ(1)

in (E,∇) along γ is a linear isomorphism. The product γ2γ1 of two piecewise
smooth paths with the end point γ1(1) of γ1 equal to the begin point γ2(0)
of γ2 was defined by first traversing γ1 and subsequently γ2 both at double
speed, which in turn implies

Par(γ2γ1) = Par(γ2)Par(γ1)

as equality in Hom(Eγ1(0), Eγ2(1)) with γ1(0) the begin point of γ1 and γ2(1)
the end point of γ2.

Definition 2.37. The connection ∇ on a vector bundle E → M is called
flat or integrable if its curvature R = ∇∇ vanishes identically.

Theorem 2.38. Suppose (E,∇) is a vector bundle with a flat connection on
a connected manifold M . Each x ∈M has an open neighborhood U such that
for each vector e ∈ Ex there exists a unique horizontal section s ∈ Γ(EU)
with the prescribed initial value s(x) = e.

Proof. Since the theorem is local in nature we can and will takeM = (−1, 1)m

an open hypercube and E =M ×Rn the trivial vector bundle on M . Hence
a section s ∈ Γ(E) can be identified with a smooth function s : M → R

n.
Writing s =

∑

spep with {ep} the standard basis of Rn and also ∇i = ∇∂i

we get

∇i(s) =
∑

{∂i(sp) +
∑

Γp
iqs

q}ep
with ωp

q =
∑

Γp
iqdx

i as in Exercise 2.21. By Theorem 2.16 the flatness of ∇
amounts to

[∇i,∇j] = 0

as operators on Γ(E) for all i, j = 1, · · · , m.

34



Pick a vector e ∈ Rn. Integration along the first coordinate axis of the
equation ∇1(s) = 0 yields a unique function

(−1, 1) ∋ x1 7→ s(x1, 0, · · · , 0)

with values in Rn and initial value s(0) = e. For each x1 ∈ (0, 1) we can
integrate the equation ∇2(s) = 0 along the second coordinate and obtain a
unique function

(−1, 1)2 ∋ (x1, x2) 7→ s(x1, x2, 0, · · · , 0)

with values in Rn and equal to the previous function for x2 = 0.
We claim that ∇1s(x

1, x2, 0 · · · , 0) = 0 for all x1, x2 ∈ (−1, 1). Indeed,
we know by construction that

∇1s(x
1, 0, 0, · · · , 0) = 0, ∇2s(x

1, x2, 0, · · · , 0) = 0

for all x1, x2 ∈ (−1, 1). Since ∇2∇1 = ∇1∇2 we get

∇2∇1s(x
1, x2, 0, · · · , 0) = ∇1∇2s(x

1, x2, 0, · · · , 0) = 0

and so by the existence and uniqueness theorem the claim follows. This
proves the theorem in case m = 2.

Proceed by induction on j. Say we have a function s(x1, · · · , xj , 0, · · · , 0)
satisfying

∇is(x
1, · · · , xj , 0, · · · , 0) = 0

for i = 1, · · · , j and all x1, · · · , xj ∈ (−1, 1). Hence we get a function
s(x1, · · · , xj+1, 0 · · · , 0) for all x1, · · · , xj+1 ∈ (−1, 1) by integration of the
equation

∇j+1s(x
1, · · · , xj+1, 0, · · · , 0) = 0

along the coordinate xj+1 with the already found initial value for xj+1 = 0.
By the same argument as above using ∇j+1∇i = ∇i∇j+1 we find

∇is(x
1, · · · , xj+1, 0 · · · , 0) = 0

for all x1, · · · , xj+1 ∈ (−1, 1) and i = 1, · · · , m. This gives the desired
horizontal section s on M = (−1, 1)m with initial value s(0) = e
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In the setting of the above theorem let γ : [0, 1] → U be a piecewise
smooth arc in U met begin point x = γ(0) and end point y = γ(1) some
point in U . The parallel transport operator

Par(γ) : Ex → Ey

sends a vector e ∈ Ex to the vector s(y) ∈ Ey with s ∈ Γ(EU) solution of
∇s = 0 and s(x) = e. Indeed γ∗s is solution of (γ∗∇)γ∗s = γ∗(∇s) = 0
and γ∗s(0) = s(x) is sent by parallel transport to γ∗s(1) = s(y). Using the
Lemma of Lebesgue it follows that for homotopic piecewise smooth arcs γ1, γ2
in M both with begin point x and end point y we get Par(γ1) = Par(γ2) in
Hom(Ex, Ey).

Definition 2.39. Let (E,∇) be a vector bundle with flat connection on M .
For [γ] ∈ Π1(M,x) the holonomy along a representing loop γ is called the
monodromy of [γ] and is denoted Monx([γ]) ∈ GL(Ex). The map

Monx : Π1(M,x) → GL(Ex)

is a homomorphism, called the monodromy representation of (E,∇) with base
point x ∈ M .

LetM be a connected manifold and x ∈M a base point. The monodromy
map

(E,∇) 7→ (Ex,Monx)

is a functor from the category of real vector bundles (E,∇) with a flat connec-
tion on M to the category of finite dimensional real representations of the
fundamental group Π1(M,x). Being a functor means that the assignment
(E,∇) 7→ (Ex,Monx) is compatible with constructions of linear algebra (like
⊕,⊗,Hom, Sp,∧p, · · · ) in the two categories.

A natural question at this point is to describe the image of this functor:
Which representations of Π1(M,x) can occur as monodromy representations
on the fiber Ex of some vector bundle (E,∇) with flat connection on M?
The remarkable answer is that any finite dimensional real representation of
Π1(M,x) can occur in this way!

It is even easy to understand why this is true, once you understand the
concept of the universal covering space. For M a connected manifold with a
fixed base point x ∈ M we denote by M̃ the set of homotopy classes of paths
with begin point x. The natural map

p : M̃ →M, [δ] 7→ δ(1)
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is a local homeomorphism, which in turn provides M̃ with a unique manifold
structure for which p : M̃ → M becomes a local diffeomorphism. The fiber
p−1(x) is naturally identified as a set with the fundamental group Π1(M,x).
Moreover the map

M̃ ×Π1(M,x) → M̃, (δ, γ) 7→ δγ

defines a right action of Π1(M,x) on M̃ with quotient space M . Restriction
of this action to p−1(x) is just right multiplication in Π1(M,x). The map
p : M̃ →M is just the quotient map for this action of Π1(M,x) on M̃ by so
called deck transformations.

Now let Π1(M,x) → GL(Rn) be a real representation of dimension n.
Consider the trivial vector bundle (M̃ × Rn, ∇̃ = d) with connection on
M̃ . Let Π1(M,x) act on M̃ × Rn from the right by (δ, v)γ = (δγ, γ−1v).
This action maps horizontal local sections to horizontal local sections, and
so defines a vector bundle with flat connection

(E = (M̃ × R
n)/Π1(M,x),∇)

onM with p∗(E,∇) = (M̃×Rn, d) and with monodromy equal to the original
representation.

Remark 2.40. The same result is valid in the setting of a complex manifold
M with E a holomorphic vector bundle on M and ∇ a flat holomorphic
connection on E → M . Again all representations of the fundamental group
Π1(M,x) do occur as monodromy representations of such a pair (E,∇). In
case M is the complement in a smooth projective manifold M = M ⊔ ∂M
of a normal crossings subvariety ∂M ⊂ M it was shown by Pierre Deligne
that E has an extension over ∂M to an algebraic vector bundle E on M and
the connection ∇ has an extension ∇ as a rational connection on E → M
with simple poles along ∂M . Such a connection ∇ on E → M is called
regular singular along ∂M . In case M is the complement of a finite set S
in the projective line P the existence of such a regular singular connection
was conjectured in 1857 by Riemann [22]. The conjecture was formulated
by Hilbert as Problem 21 in his famous list of mathematical problems from
1900 [12]. The Riemann–Hilbert problem was solved by Plemelj in 1908 in
the original case that M is the complement in the projective line P of a finte
set. In the general univariable setting it was solved by Röhrl in 1957 [8]. The
Riemann–Hilbert problem in the general multivariable setting was solved by
Deligne in 1970 [5].
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3 Riemannian Geometry

3.1 Riemannian Manifolds

Let M be a smooth manifold of dimension m.

Definition 3.1. A Riemannian metric g on M assigns to each point x ∈M
a positive definite scalar product gx on the tangent space TxM at x of M ,
which depends smoothly on x in the sense that x 7→ gx(Xx, Yx) is a smooth
function on M for any two smooth vector fields X, Y ∈ X(M). The pair
(M, g) of a smooth manifold M with a Riemannian metric g on M is called
a Riemannian manifold.

It follows from Exercise 2.6 that smooth manifolds admit Riemann met-
rics, in fact in abundance. The study of smooth manifolds is the domain of
differential topology, while the additional ingredient of a Riemannian metric
is the starting point for differential geometry. For example, on a Riemannian
manifold (M, g) one can measure the length L of a piecewise smooth arc
γ : [a, b] →M on M by the formula

L =

∫ b

a

√

gγ(t)(γ̇(t), γ̇(t))dt

where γ̇(t) = (Tγ)(d/dt) is the tangent vector along the arc in M . In local
coordinates x = (x1, · · · , xm) on M a Riemannian metric just takes the form

ds2 =
∑

gij(x)dx
idxj

with gij(x) = ds2(∂i, ∂j) a positive definite symmetric matrix, depending
smoothly on x. The volume element in local coordinates

dV = (det(gij(x))
1/2dx1 · · · dxm

defines a smooth density onM , and enables one to compute the Riemannian
volume of compact domains in M .

Clearly the restriction of a Riemannian metric on M to a submanifold
N of M is a Riemannian metric on N . The restriction of the Euclidean
metric

∑

(dyi)2 on Rn to a submanifold M is a Riemannian metric, which
in local coordinates is just the first fundamental form. However the classical
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terminology first fundamental form is somewhat outdated, and Riemannian
metric has become the standard terminology these days.

A smooth map f from a Riemannian manifold (M, g) to a Riemannian
manifold (N, h) is called an isometric immersion if

hf(x)(Txf(u), Txf(v)) = gx(u, v)

for all x ∈ M and all u, v ∈ TxM . Since Txf : TxM → Tf(x)N is then an in-
jective linear map for all x ∈M isometric immersions are indeed immersions.
An isometric immersion, which is also an embedding, is called an isometric
embedding. The Whitney embedding theorem says that each manifold M
of dimension m can be embedded in R

n for n sufficiently large, and in fact
n = 2m + 1 is always possible. The proof in case M has a finite atlas is in
fact quite easy, and is given in the notes of Marcut. However a much more
difficult and spectacular result is the Nash isometric embedding theorem,
obtained by John Nash in 1956.

Theorem 3.2. Every connected smooth Riemannian manifold (M, g) of di-
mension m can be isometrically embedded in Euclidean space Rn for n suffi-
ciently large, and in fact n = (m+ 2)(m+ 3)/2 is always possible.

The dramatic life of John Nash has been recorded by Sylvia Nasar [18].
Nash graduated from Princeton University in 1950 with a PhD (of just 28
pages) in game theory, in which he introduced what are now called Nash
equilibria for noncooperative games. After that he went to MIT, where
he obtained the isometric embedding theorem in 1956. In 1994 Nash was
awarded the Nobel Prize for economy for his work in game theory. In 2015
he was awarded the Abel Prize for his work on partial differential equations
leading to the isometric embedding theorem. On the way home from the
latter ceremony he and his wife died in a car traffic accident.

In the real analytic setting of smooth functions with locally convergent
power series expansions a local isometric embedding theorem in Rn with
n = m(m + 1)/2 was conjectured by Ludwig Schläfli in 1873, and proved
independently by Élie Cartan and Maurice Janet in 1926.

An isometric immersion, which is also a diffeomeorphism, is simply called
an isometry. The isometries of a Riemannian manifold (M, g) onto itself
form a subgroup Isom(M, g) of the diffeomorphism group Diff(M) of the
underlying manifold M , which is called the isometry group of (M, g).

Both translations and orthogonal linear transformations are isometries of
the Euclidean space Em, which by definition is the Cartesian space Rn with
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the standard translation invariant Riemannian metric. Hence Rm ⋊ O(Rm)
is a subgroup of Isom(Em).

Exercise 3.3. Show that a distance preserving transformation A of Em with
A(0) = 0 satisfies (Au,Av) = (u, v) for all u, v ∈ Rm. Conclude that each
A ∈ Isom(Em) with A(0) = 0 is a linear transformation of Rm, and so
A ∈ O(Rm). In turn deduce that Isom(Em) = Rm ⋊O(Rm).

Let Sm be the unit sphere in Em+1 with the induced Riemannian metric.
The orthogonal group O(Rm+1) acts on the round sphere Sm by isometries,
and so O(Rm+1) becomes a subgroup of Isom(Sm). It will be shown later on
that Isom(Sm) = O(Rm+1).

Let Rm,1 be the vector space Rm+1 with Lorentzian scalar product

(x, y) = x1y1 + · · ·+ xmym − xm+1ym+1

and let O(Rm,1) be the associated Lorentz group. The associated Lorentzian
space with translation invariant Lorentzian metric

ds2 = (dy1)2 + · · ·+ (dym)2 − (dym+1)2

is denoted by Lm,1. The hypersurface

H
m = {y ∈ L

m,1; (y, y) = −1, ym+1 > 0}

is a connected component of the two sheeted hyperboloid and is acted upon
by the forward Lorentz group O+(R

m,1), which is an index two subgroup of
of the full Lorentz group O(Rm,1). It has still two connected components
(for m ≥ 1) which are separated by the determinant. The Lorenztian metric
on Lm,1 restricts to a Riemannian metric on Hm. The Riemannian manifold
Hm is called hyperbolic space of dimension m, and the forward Lorentz group
O+(R

m,1) becomes a subgroup of Isom(Hm). It will be shown later on that
Isom(Hm) = O+(R

m,1).
The above three spaces Em, Sm,Hm have transitive isometry groups, for

which the stabilizer group of a point acts on the tangent space at that point
as the full orthogonal group. It can be shown that a connected Riemannian
manifold with such a highly transitive isometry group is one of these three
spaces. For a general Riemannian manifold the isometry group will usually
be trivial.
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Exercise 3.4. In the ball model for hyperbolic geometry one considers the
stereographic projection

y : Bm = {x ∈ R
m; |x| < 1} → H

m , y(x) = (2x, 1 + |x|2)/(1− |x|2)

with center the south pole s = (0, · · · , 0,−1) ∈ Rm,1. Show that under this
projection the Riemannian metric in the hyperbolic ball model becomes

ds2 = 4
(dx1)2 + · · ·+ (dxm)2

(1− |x|2)2

with

dV =
2mdx1 · · · dxm
(1− |x|2)m

the associated volume element.

The hyperbolic metric on Bm is conformal with the Euclidean metric. The
four Circle Limit woodcuts by M.C. Escher are nice illustrations of isometric
tesselations of the hyperbolic disc D = B

2.

3.2 Levi-Civita Connection and Riemann Curvature

Let (M, g) be a Riemannian manifold. The next key result is called the
Fundamental Theorem of Riemannian Geometry and is due to Levi-Civita.

Theorem 3.5. There is a unique connection ∇ on the tangent bundle TM
such that

• LX(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ)

• ∇XY −∇YX − [X, Y ] = 0

for all X, Y, Z ∈ X(M). This connection is called the Levi-Civita connection
of (M, g).

The first condition expresses that the Riemannian metric g is horizontal
(or flat) for the Levi-Civita connection ∇, see Exercise 2.24, and is called the
flatness of metric condition. Hence parallel transport preserves the Rieman-
nian metric, and so the holonomy group Holx(M, g) with respect to the Levi-
Civita connection will be a subgroup of the orthogonal group O(TxM, gx) for
all x ∈M .
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The second condition is called the symmetry condition of the Levi-Civita
connection. In local coordinates x1, · · · , xm on M with local vector fields
∂i = ∂/∂xi the covariant derivative is given by ∇∂i(∂j) =

∑

Γk
ij∂k with Γk

ij

the Christoffel symbols in these coordinates. The symmetry condition of the
Levi-Civita connection amounts to the requirement Γk

ji = Γk
ij for all i, j, k

since [∂i, ∂j] = 0.
For f ∈ F(M) the gradient vector field ∇f ∈ X(M) on a Riemannian

manifold (M, g) is defined by

g(∇f,X) = df(X) = LX(f)

for all X ∈ X(M), so the Riemannian metric g is used to dualize df ∈ Ω1(M)
to ∇f ∈ X(M). Subsequently the element ∇2f = ∇(∇f) ∈ Ω1(TM) =
Ω1(M)⊗X(M) can be dualized using the Riemannian metric g to an element
Hessf ∈ Ω1(M)⊗ Ω1(M). Explicitly, since ∇g = 0 we have

Hessf(X, Y ) := g(∇X∇f, Y ) = LX(g(∇f, Y ))− g(∇f,∇XY )

and so
Hessf(X, Y ) = LX(LY (f))− df(∇XY )

for all X, Y ∈ X(M). Hence

Hessf(X, Y )− Hessf(Y,X) = −df(∇XY −∇YX − [X, Y ])

and so the symmetry condition in the theorem can be rewritten as

Hessf(X, Y ) = Hessf(Y,X)

for all X, Y ∈ X(M). The symmetric bilinear form

Hessf(X, Y ) = g(∇X(∇f), Y )

on X(M) is called the Hessian of the function f ∈ F(M). In the case of Rm

with the translation invariant connection ∇ = d the matrix Hessf(∂i, ∂j) is
just the usual matrix ∂i∂jf of second order partial derivatives.

After these initial remarks we now come to the (rather straightforward)
proof of the Fundamental Theorem of Riemannian Geometry.

Proof. The flatness of metric and symmetry conditions in the above theorem
amount to

LX(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ)
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and
g(∇XY, Z)− g(∇YX,Z)− g([X, Y ], Z) = 0

for all X, Y, Z ∈ X(M).
The trick for the proof is to consider the expression

LXg(Y, Z) + LY g(X,Z)−LZg(X, Y )

for X, Y, Z ∈ X(M). Using the flat metric condition this can be rewritten as

g(∇XY +∇YX,Z) + g(∇XZ −∇ZX, Y ) + g(∇YZ −∇ZY,X)

and becomes

2g(∇XY, Z)− g([X, Y ], Z) + g([X,Z], Y ) + g([Y, Z], X)

by the symmetry condition. Hence we get

2g(∇XY, Z) = LXg(Y, Z) + LY g(X,Z)−LZg(X, Y ) +

+g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X)

for all X, Y, Z ∈ X(M), which gives a well defined formula for ∇.

Let us spell out the above formulas in local coordinates (x1, · · · , xm) on
M with ∂i the derivative and dxi the differential for the coordinate xi. The
connection one forms ωk

j and the Christoffel symbols Γk
ij of the Levi-Civita

connection in these local coordinates are defined by

∇(∂j) =
∑

ωk
j ⊗ ∂k, ω

k
j =

∑

Γk
ijdx

i, ∇∂i∂j =
∑

Γk
ij∂k

and so with Riemannian metric ds2 =
∑

gijdx
idxj we get

∑

Γk
ijgkl = g(∇∂i∂j , ∂l) = {∂igjl + ∂jgil − ∂lgij}/2

using the last formula in the above proof. Hence the Christoffel symbols are
given by

Γk
ij =

∑

{∂igjl + ∂jgil − ∂lgij}glk/2
with gij the inverse matrix of gij. This is just the formula already found
in Theorem 1.6 in the setting of submanifolds of Euclidean space. In this
setting the covariant derivative ∇∂i∂j is just the orthogonal projection of
the Euclidean derivative along ∂i of the tangent field ∂j onto the tangent
bundle TM of the submanifold M ⊂ Rn, as defined just before Theorem 1.6.
Note that Γk

ij is symmetric under i ↔ j, but this is of course an immediate
consequence of the symmetry condition for the Levi-Civita connection.
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Definition 3.6. For a Riemannian manifold (M, g) the Riemann curvature
R ∈ Ω2(End(TM)) is defined as the square of the Levi-Civita connection
∇, just like in the case of a general vector bundle with connection, and so
R(X, Y ) ∈ Γ(End(TM)) for all X, Y ∈ X(M). By Theorem 2.16 this then
amounts to the formula

R(X, Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z

for all X, Y, Z ∈ X(M).

It will be our goal to come grips with this admittedly abstract definition
of Riemann curvature in more geometric terms. The next theorem gives some
simple algebraic properties of the Riemann curvature, and is proved by just
calculations.

Theorem 3.7. The Riemann curvature tensor satisfies

• g(R(Y,X)Z,W ) = −g(R(X, Y )Z,W )

• g(R(X, Y )W,Z) = −g(R(X, Y )Z,W )

• g(R(X, Y )Z,W ) + g(R(Y, Z)X,W ) + g(R(Z,X)Y,W ) = 0

• g(R(Z,W )X, Y ) = g(R(X, Y )Z,W )

for all X, Y, Z,W ∈ X(M).

Proof. The first item is trivial, because by definition R ∈ Ω2(End(TM)) is
antisymmetric under interchange of first and second argument.

The second item that R(X, Y ) ∈ Γ(End(TM)) is antisymmetric with
respect to g follows from the flatness of metric condition of the Levi-Civita
coonection ∇. Indeed, we have by definition

g(R(X, Y )W,Z) = g(∇X∇YW,Z)− g(∇Y∇XW,Z)− g(∇[X,Y ]W,Z)

and by flatness of metric we get

g(R(X, Y )W,Z) = LXg(∇YW,Z)− g(∇YW,∇XZ)+

−LY g(∇XW,Z) + g(∇XW,∇YZ)− g(∇[X,Y ]W,Z)

and adding g(R(X, Y )Z,W ) to it yields

(LXLY −LYLX − L[X,Y ])g(W,Z) = 0
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using again the flatness of metric.
The third item, which is called the (first, as opposed to the second, see

Theorem 2.15) Bianchi identity, is a consequence of the symmetry condition
of the Levi-Civita connection. Indeed, addition of the three equations

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

R(Y, Z)X = ∇Y∇ZX −∇Z∇YX −∇[Y,Z]X

R(Z,X)Y = ∇Z∇XY −∇X∇ZY −∇[Z,X]Y

and using the symmetry condition gives on the right hand side

∇X [Y, Z] +∇Y [Z,X ] +∇Z [X, Y ]−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]Y

= [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0

by again using the symmetry condition.
The fourth item is just a formal consequence of the other three items.

Indeed, addition of the four Bianchi identities

g(R(X, Y )Z,W ) + g(R(Y, Z)X,W ) + g(R(Z,X)Y,W ) = 0

−g(R(X, Y )W,Z)− g(R(Y,W )X,Z)− g(R(W,X)Y, Z) = 0

−g(R(Z,W )X, Y )− g(R(W,X)Z, Y )− g(R(X,Z)W,Y ) = 0

g(R(Z,W )Y,X) + g(R(W,Y )Z,X) + g(R(Y, Z)W,X) = 0

using the antisymmetry in the first and last two arguments gives that all
terms on the left hand side cancel, except the terms 1 + 4 + 7 + 10, which
implies

2g(R(X, Y )Z,W ) + 2g(R(Z,W )Y,X) = 0

and the desired formula follows. Note that this proof can recovered from this
last equation, by remembering that the four Bianchi identities needed have
all four W,Z, Y,X as their last argument. The first term of these Bianchi
identities with an appropriate sign then follow, and by cyclic symmmetry in
the first three arguments the complete set of Bianchi identities can be written
down.

In local coordinates (x1, · · · , xm) we shall denote

R(∂i, ∂j)∂k =
∑

Rl
ijk∂l

45



and
Rijkh = g(R(∂i, ∂j)∂k, ∂h) =

∑

Rl
ijkglh

for the coefficients of the Riemann curvature. The Christoffel symbols were
found to be

Γk
ij =

∑

{∂igjl + ∂jgil − ∂lgij}glk/2
and since by Exercise 2.21 we have

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik +

∑

{Γl
irΓ

r
jk − Γl

jrΓ
r
ik}

we see that the Riemann curvature coefficients are explicit expressions in the
Riemannian metric coefficients and their first and second order derivatives.
In local coordinates the above theorem reads

Rijkh = −Rjikh, Rijkh = −Rijhk

Rijkh +Rkijh +Rjkih = 0, Rijkh = Rkhij

and these are the symmetry relations and the Bianchi identities.

Theorem 3.8. If the Riemann curvature R of a Riemannian manifold (M, g)
vanishes identically then there exist local coordinates x1, · · · , xm in which the
Riemannian metric becomes locally Euclidean in the sense that g(∂i, ∂j) = δij
or equivalently ds2 =

∑

(dxi)2.

Proof. Let x ∈ M be a base point, and pick an orthonormal basis ei of
(TxM, gx). By Theorem 2.38 there exist flat vector fields Xi ∈ X(U) on a
suitable open neighborhood U of x inM and equal to ei at x. By the flatness
of metric condition for ∇ we get g(Xi, Xj) = δij on U . By the symmetry
condition for ∇ and the flatness of the Xi we get

[Xi, Xj] = ∇Xi
Xj −∇Xj

Xi = 0

for i, j = 1, · · · , m. Since the vector fields Xi commute with each other the
corresponding flows t 7→ φi,t commute likewise. For ǫ > 0 sufficiently small
and |xi| < ǫ the smooth map

(x1, x2 · · · , xm) 7→ φ1,x1(φ2,x2(· · ·φm,xm(x) · · · ))

defines local coordinates around x. In these coordinates the vector fields Xi

correspond to ∂i and so in these coordinates the Riemannian metric becomes
ds2 =

∑

(dxi)2. Hence (M, g) is a locally Euclidean manifold.
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Exercise 3.9. If f ∈ F(M) is a smooth function on a manifold M then
x ∈ M is called a critical point of f if the differential df ∈ Ω1(M) vanishes
at x, or equivalently if LX(f) vanishes at x for all X ∈ X(M). In this case
the Hessian Hessf of f at the critical point x is the bilinear form on TxM
defined by taking for Hessf(X, Y ) the value of LXLY (f) at the point x. Show
that Hessf defines a symmetric bilinear form on TxM which coincides with
the previously defined Hessian ∇2f in case of a Riemannian manifold (M, g).

Exercise 3.10. Check from the definition of the Levi-Civita connection that
the familiar formulas Γk

ij =
∑

{∂igjl + ∂jgil − ∂lgij}glk/2 for the Christoffel
symbols hold.

It will be convenient and natural to denote

R(X, Y, Z,W ) = g(R(X, Y )Z,W )

and so the Riemann curvature tensor R will be considered both an element
of Ω2(End(TM)), so a trilinear form on X(M) with values in X(M), or a
quadrilinear form on X(M) with values in F(M).

3.3 Sectional Curvature

We have seen that the Riemann curvature tensor of a Riemannian manifold
(M, g) is a quadrilinear form

X(M)⊗ X(M)⊗ X(M)⊗ X(M) → R, (X, Y, Z,W ) 7→ g(R(X, Y )Z,W )

which is antisymmetric under both X ↔ Y and Z ↔ W and symmetric
under (X, Y ) ↔ (Z,W ). Hence it can also be considered as a symmetric
bilinear form on ∧2

X(M). We know from linear algebra that a symmetric
bilinear form is uniquely determined by its associated quadratic form. This
leads to the following definition.

For two vector fields X, Y ∈ X(M) the expression

K(X, Y ) =
−R(X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )2

is well defined at those points x ∈M where Xx, Yx are linearly independent,
and is called the sectional curvature of the pair (X, Y ). If U is the maximal
open subset of M on which X and Y are pointwise linearly independent,
then K(X, Y ) ∈ F(U).

47



The denominator in the above formula at x ∈ M is just the square of
the Riemannian area of the parallelogram in TxM spanned by Xx and Yx. If
we denote by P = RX + RY the plane (that is rank two) subbundle of TU
spanned by X and Y then it follows that

K(P ) = K(X, Y ) ∈ F(U)

is independent of the chosen frame X, Y for P .

Definition 3.11. Let V be a finite dimensional real vector space. A form of
curvature type on V is a quadrilinear form

R : V 4 → R, (x, y, z, w) 7→ R(x, y, z, w)

with the properties

R(y, x, z, w) = −R(x, y, z, w), R(x, y, w, z) = −R(x, y, z, w)
R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0

R(z, w, x, y) = R(x, y, z, w)

for all x, y, z, w ∈ V . We call these relations the antisymmetry, the Bianchi
and the symmetry identity respectively.

If dimV = m then the forms of curvature type on V form a vector space
of dimension m2(m2 − 1)/12 (see the proof of Riemann’s formula).

Theorem 3.12. A form of curvature type R on V is completely determined
by the knowledge of the values R(x, y, x, y) for all x, y ∈ V .

Proof. Suppose we know the values R(x, y, x, y) for all x, y ∈ V . Using the
quadrilinearity and the symmetry identity we have

R(x+ z, y, x+ z, y) = R(x, y, x, y) + 2R(x, y, z, y) +R(z, y, z, y)

and so we also know the values R(x, y, z, y) for all x, y, z ∈ V . Likewise the
expression

R(x, y + w, z, y + w)−R(x, y, z, y)− R(x, w, z, w)

is known for all x, y, z, w ∈ V . This expression can be rewritten as

R(x, y, z, w) + R(x, w, z, y) = R(x, y, z, w)− R(y, z, x, w)
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using the symmetry and antisymmetry identities.
Suppose that R′ is yet another form of curvature type on V such that

R(x, y, x, y) = R′(x, y, x, y) for all x, y ∈ V . Then we conclude from the
above that

R(x, y, z, w)− R(y, z, x, w) = R′(x, y, z, w)− R′(y, z, x, w)

for all x, y, z, w ∈ V , and so the expression R(x, y, z, w) − R′(x, y, z, w) is
invariant under cyclic permutations of x, y, z. In turn this implies that

3{R(x, y, z, w)− R′(x, y, z, w)} =

{R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w)}−
{R′(x, y, z, w) +R′(y, z, x, w) +R′(z, x, y, w)} = 0

by the Bianchi identity. Hence R = R′ as forms of curvature type.

Corollary 3.13. The Riemann curvature of a Riemannian manifold is com-
pletely determined by its sectional curvature.

Remark 3.14. Given a quadrilinear form R on V of curvature type let us
denote κ(x, y) = R(x, y, x, y) for x, y ∈ V . One can check that (sauf erreur)

6R(x, y, z, w) =
∂2

∂s∂t
{κ(x+ sw, y + tz) − κ(x+ sz, y + tw)}|s=t=0 =

{κ(x+ w, y + z)− κ(x+ w, y)− κ(x+ w, z)− κ(x, y + z)+

−κ(w, y + z) + κ(x, z) + κ(y, w)} − {κ(x+ z, y + w)− κ(x+ z, y)+

−κ(x+ z, w)− κ(x, y + w)− κ(z, y + w) + κ(x, w) + κ(y, w)}
for all x, y, z, w ∈ V . The proof should be a substantial amount of verification,
using the quadrilinearity of R and the various symmetry relations for R and
(possibly) the first Bianchi identity. I have not done this calculation, and
(maybe) a better question would be where such a formula comes from.

In the definition of the sectional curvature K(X, Y ) the minus sign in the
numerator is chosen in order that the sectional curvature coincides with the
Gauss curvature in the case of surfaces, as will be shown in the next theorem.

Theorem 3.15. Let M be a smooth surface in R3 with local coordinates

R
2 ⊃ U → M ⊂ R

3, x = (x1, x2) 7→ y(x) = (y1(x), y2(x), y3(x))

as described in [11] and [19]. Then the Gauss curvature K of M is equal to
the sectional curvature K(∂1, ∂2).
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Proof. Let K denote the Gauss curvature. The Gauss equations

EK = (Γ2
11)v − (Γ2

21)u + Γ2
21Γ

1
11 + Γ2

22Γ
2
11 − Γ2

11Γ
1
21 − Γ2

12Γ
2
21

FK = (Γ2
12)v − (Γ2

22)v + Γ2
21Γ

1
12 + Γ2

22Γ
2
12 − Γ2

11Γ
1
22 − Γ2

12Γ
2
22

FK = (Γ1
21)u − (Γ1

11)v + Γ1
11Γ

1
21 + Γ1

12Γ
2
21 − Γ1

21Γ
1
11 − Γ1

22Γ
2
11

GK = (Γ1
22)u − (Γ1

12)v + Γ1
11Γ

1
22 + Γ1

12Γ
2
22 − Γ1

21Γ
1
12 − Γ1

22Γ
2
12

were derived as Theorem 4.5 of [11]. Note that in the second and the third
equations two terms on the right hand side cancel. The classical notation
E, F,G for the coefficients of the first fundamental form with coordinates
(u, v) as used in [11] is related to our present notation by E = g11, F =
g12 = g21, G = g22 and u = x1, v = x2. We have slightly rewritten the Gauss
equations from [11] using that Γk

ij = Γk
ji. The coefficients of the Riemann

curvature form are given by

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik +

∑

{Γl
irΓ

r
jk − Γl

jrΓ
r
ik}

with indices i, j, k, l taken from 1, 2. Hence the Gauss equations become

EK = R2
211, FK = R2

212, FK = R1
121, GK = R1

122

which in turn implies that

R1212 = R1
121F +R2

121G = (F 2 −EG)K

and so the sectional curvature K(∂1, ∂2) := −R1212/(EG − F 2) equals the
Gauss curvature K. This legitimates the use of the same letter K for both
sectional curvature and Gauss curvature.

3.4 Ricci Curvature

Let Rx denote the Riemann curvature form on the tangent space TxM at
x ∈ M , so that Rx(u, v) ∈ End(TxM) for all u, v ∈ TxM . For u, v ∈ TxM
the map

TxM → TxM, e 7→ Rx(e, u)v

is linear over R, and its trace is denoted Ricx(u, v) and is called the Ricci
form at x of u, v ∈ TxM . In other words, if e1, · · · , em is an orthonormal
basis of TxM with respect to gx then

Ricx(u, v) =

m
∑

i=1

gx(Rx(ei, u)v, ei) = −
m
∑

i=1

Rx(u, ei, v, ei)
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and so the symmetry relation for the first two and last two arguments of
the Riemann curvature form Rx(·, ·, ·, ·) = gx(Rx(·, ·), ·, ·) implies that the
Ricci form Ricx is a symmetric bilinear form on TxM . As a tensor the Ricci
curvature Ric has the same type as the Riemannian metric g, namely both
assign to a pair of vector fields a function.

In local coordinates (x1, · · · , xm) with local vector fields ∂i = ∂/∂xi and
Riemann curvature coefficients Rl

ijk defined by R(∂i, ∂j)∂k =
∑

Rl
ijk∂l the

Ricci curvature coefficients become Ricij = Ric(∂i, ∂j) =
∑

Rk
kij.

By abuse of notation, the Ricci form Ricx on TxM defines a symmetric
linear operator Ricx on (TxM, gx) by

Ricx(u, v) = gx(Ricxu, v)

for u, v ∈ TxM . Its trace is a real number and is denoted

S(x) = trRicx =

m
∑

j=1

Ricx(ej, ej)

and called the scalar curvature of M .

Exercise 3.16. Show that for a surface the Ricci form is equal to the Gauss
curvature times the first fundamental form. Hence the Ricci operator is equal
to the multiplication operator by the Gauss curvature and the scalar curvature
is equal to twice the Gauss curvature. Hint: Use formulas from the proof of
Theorem 3.15.

Exercise 3.17. Let e1, · · · , em be an orthonormal basis of the Euclidean space
(TxM, gx) and let Pij = Rei+Rej be the plane spanned by ei and ej for i < j.
Show that S(x) =

∑

i<j 2Kx(Pij) with K the sectional curvature and S the
scalar curvature.

Exercise 3.18. Let X, Y ∈ X(M) be smooth vector fields on M . How
do the Riemann curvature R(X, Y ) ∈ Γ(End(TM)), the sectional curvature
K(X, Y ) ∈ F(M) and the Ricci curvature Ric(X, Y ) ∈ F(M) change under
a constant scaling g 7→ λg for λ > 0 of the Riemannian metric g.

Exercise 3.19. For m = 3 we have m2(m2−1)/12 = m(m+1)/2 = 6 and so
the number of parameters of Riemann curvature forms and Ricci curvature
forms coincides. Show that for a Riemannian manifold of dimension m = 3
the Riemann curvature is determined by the Ricci curvature.
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Remark 3.20. The Ricci form was introduced by the Italian mathematician
Gregorio Ricci-Curbasto in 1887 [20]. Ricci introduced the curvature form
named after him with the hope that the integral curves of the directions given
by the diagonalization of the Ricci curvature form with respect to the Riemann
metric form would yield nice curves in the manifold, analogous to the lines of
curvature for the second fundamental form of a smooth surface in R3. But for
a general Riemannian manifold (M, g) Ricci was quite disappointed to find
no good geometric interpretation of the Ricci curvature lines. However, in the
twentieth century the Ricci form turned out to become an utmost interesting
concept.

At the beginning of this century the Ricci form became a crucial tool in
the theory of general relativity of Einstein from 1915. The manifolds are
four dimensional, representing spacetime, and the Riemannian metric g gets
replaced by a Lorenztian metric g of signature (+−− −) for time and space
respectively. If we denote in local coordinates the Einstein tensor by

Gij = Ricij − 1
2
Sgij

then the Einstein field equations are given by

Gij + Λgij =
8πG

c4
Tij

with Λ the cosmological constant, Tij the stress-energy tensor, G Newton’s
gravitational constant and c the speed of light in vacuum. The Einstein field
equations can be interpreted as a set of equations, which describe how the
matter-energy distribution over spacetime (the right hand side) determines
the curvature of spacetime (the left hand side). For the development of his
theory Einstein came to grips with the intricacies of Riemannian geometry
with the help of his friend and classmate Marcel Grossmann, who was a
mathematician with keen knowledge of geometry.

At the end of this century Ricci flow became a central object of study. The
Ricci flow equation for a connected Riemannian manifold (M, g) is given by
the geometric evolution equation

∂tg = −2Ric(g)

(the factor 2 is irrelevant and just for historic reasons and we write Ric(g)
just to emphasize the dependence of Ric on g) and in case M is compact also
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the normalized geometric evolution equation

∂tg =
2

m
S0g − 2Ric(g)

for a time dependent Riemannian metric g (starting at time t = 0 with the
given metric g on M). They were introduced by Richard Hamiton in 1981.
Here S0 is the mean (average) of the scalar curvature over M . For example,
for a compact connected surface the normalized Ricci flow equation becomes

∂tg = (S0 − S)g = 2(K0 −K)g

with mean Gauss curvature K0 = 1, 0 or −1 if the genus of the surface is
0, 1 or ≥ 2 respectively, using Exercise 3.16. This equation has the property
of smearing out the Gauss curvature, and makes g converge to the constant
curvature metric on the surface. In dimension three the Ricci flow was deeply
studied by Grigori Perelman in his proof of the Poincaré Conjecture from
2003, which says that a connected and simply connected smooth threefold is
homemorphic to the standard round sphere S3.

3.5 Geodesics

Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇ and
Riemann curvature R = ∇2.

Definition 3.21. A smooth curve (a, b) ∋ t 7→ γ(t) ∈M is called a geodesic
if the tangent field γ̇(t) = dγ(d/dt) ∈ Tγ(t)M is parallel along γ, that is
∇γ̇(t)(γ̇(t)) = 0 for all t ∈ (a, b).

Geodesics are traversed wth constant speed, because

d

dt
{g(γ̇(t), γ̇(t))} = 2g(∇γ̇(t)(γ̇(t)), γ̇(t)) = 0

by flatness of metric for ∇. In local coordinates x1, · · · , xm the Levi-Civita
connection becomes

∇∂i(∂j) =
∑

Γk
ij∂k

with Christoffel symbols by Exercise 3.10 given by

Γk
ij =

∑

{∂igjl + ∂jgil − ∂lgij}glk/2
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the geodesic equations take the form

ẍk +
∑

Γk
ijẋ

iẋj = 0

just like we found for submanifolds of Rn in the first chapter. Indeed we have
γ̇ =

∑

ẋi∂i and so ∇γ̇(γ̇) =
∑{ẍk +∑

Γk
ijẋ

iẋj}∂k.
Exercise 3.22. Check that in local coordinates x1, · · · , xm for geodesics t 7→
xi(t) the expression

∑

gij ẋ
iẋj is constant, and so geodesics are traversed with

constant speed.

The geodesic equations are second order nonlinear differential equations.
The existence and uniqueness theorem for such equations gives that for fixed
initial point x ∈ M there exists δ, ǫ > 0 such that for all v ∈ TxM with
gx(v, v) < δ2 there exist a geodesic

(−ǫ, ǫ) ∋ t 7→ γv(t) ∈M

with initial position γv(0) = x and initial velocity γ̇v(0) = v.
The geodesic equations are invariant under rescaling of time t 7→ ct with

0 < c ≤ 1 a constant. Therefore it follows from the chain rule that for all
0 ≤ c ≤ 1 we have

γcv(t) = γv(ct)

whenever both sides are defined. If we take ρ = δǫ/2 and gx(v, v) < ρ2 then
γv(t) = γ2v/ǫ(ǫt/2) is defined for |t| < 2. Hence the exponential map

expx : {v ∈ TxM ; gx(v, v) < ρ2} →M, expx(v) = γv(1)

is well defined and smooth.
The derivative d(expx)0 of the exponential map at the origin of TxM is

equal to the identity, as linear map from TxM to TxM . Indeed, we have

d(expx)0(v) =
d

dt
{expx(tv)}|t=0 =

d

dt
{γtv(1)}|t=0 =

d

dt
{γv(t)}|t=0 = v

which proves the claim. Hence it follows from the inverse function theorem
that after a possibly shrinking of ρ > 0 the exponential map expx becomes
a diffeomorphism from {v ∈ TxM ; gx(v, v) < ρ2} onto an open neighborhood
of x in M . The image under expx of orthonormal coordinates x1, · · · , xm on
the Euclidean space (TxM, gx) gives Riemann normal coordinates around the
point x in the Riemannian manifold M . The geodesics that begin at x are
called radial geodesics .
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Theorem 3.23 (Gauss’s lemma). Given x ∈ M a fixed base point, let S be
the unit sphere in (TxM, gx) and let

F : [0, ρ)× S → U, F (r, v) = expx(rv)

be so called geodesic polar coordinates on a suitable neighborhood U of x in
M. Then the pull back F ∗g of the Riemannian metric g under F has the form

F ∗g = dr2 + r2h(r)

with h(r) a Riemannian metric on S depending on r ∈ [0, ρ) and with h(0)
the standard Euclidean metric on S, or equivalently with

dr2 + r2h(0) = (dx1)2 + · · ·+ (dxm)2

equal to the standard Euclidean metric on TxM in orthonormal coordinates
x1, · · · , xm. In particular, in geodesic normal coordinates around x the radial
geodesics intersect the spheres Sr = {v ∈ TxM ; gx(v, v) = r2} orthogonally
for all r ∈ (0, ρ).

Proof. Take y1 = r =
√

(x1)2 + · · ·+ (xm)2 and local coordinates y2, · · · , ym
on S. The fact that y1 = t while y2, · · · , ym remain constant give unit speed
geodesics implies (using the geodesic equations ÿk +

∑

Γk
ij ẏ

iẏj = 0) that
g11 ≡ 1 and Γk

11 ≡ 0 in these coordinates for k = 1, · · · , m. Using the familiar
expression for the Christoffel symbols Γk

ij =
∑

{∂igjl + ∂jgil − ∂lgij}glk/2 of
the metric F ∗g =

∑

gijdy
idyj this implies that

∂1{g1k(y1, · · · , ym)} ≡ 0

for k = 1, · · · , m. Note that this argument already occurred in Exercise 1.9.
Since d(expx)0 is the identity operator we find that

g1k(0, y
2, · · · , ym) ≡ 0

for k = 2, · · · , m and hence we conclude

g1k(y
1, y2, · · · , ym) ≡ δ1k

for k = 1, · · · , m. But this says that in the Riemannian metric
∑

gijdy
idyj

the term (dy1)2 = dr2 appears with coefficient 1 while all terms dy1dyk have
coefficient 0 for k = 2, · · · , m.

Finally the coefficients of dykdyl remain smooth after division by r2 for
k, l = 2, · · · , m because we are working with polar coordinates. This proves
the formula F ∗g = dr2 + r2h(r) with dr2 + r2h(0) equal to the Euclidean
metric on TxM .
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In case M is a surface, we can carry the calculation a little further, which
presumably was done by Riemann in order to come to the next theorem.

Lemma 3.24. In the notation of Gauss’s lemma consider the case of a sur-
face M with geodesic normal coordinates u, v and geodesic polar coordinates
r, θ related by u = r cos θ, v = r sin θ. Then the Riemannian metric in these
coordinates has the form

ds2 = dr2 + r2h(r, θ)dθ2 = du2 + dv2 +H(u, v)(udv− vdu)2

with h(0, θ) ≡ 1 and H(u, v) = (h(r, θ)− 1)/r2 a smooth function around the
origin, with 3H(0, 0) equal to minus the Gauss curvature at the given point.

Proof. Since r =
√
u2 + v2 and θ = arctan(v/u) we get

dr =
udu+ vdv√
u2 + v2

, dθ =
d(v/u)

1 + (v/u)2
=
udv − vdu

u2 + v2

and hence

dr2 =
u2du2 + 2uvdudv + v2dv2

u2 + v2
= du2 + dv2 − (udv − vdu)2

u2 + v2

which in turn implies thatH(u, v) = (h(r, θ)−1)/r2. In the classical notation
ds2 = Edu2 + 2Fdudv +Gdv2 this gives

E = 1 +H(u, v)v2, F = −H(u, v)uv, G = 1 +H(u, v)u2

and since E, F,G are smooth functions of u, v we conclude that H(u, v) is
smooth as well. See however the remark after this lemma.

Using the familiar formulas (with x1 = u, x2 = v)

Γk
ij =

∑

{∂igjl + ∂jgil − ∂lgij}glk/2, Rijkh =
∑

Rl
ijkglh

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik +

∑

{Γl
irΓ

r
jk − Γl

jrΓ
r
ik}

it follows that
R1212(0, 0) = 3H(0, 0)

by straightforward calculation. Hence the lemma follows from Theorem 3.15
where it is shown that R1212(0, 0) is equal to the value of −K(EG − F 2) at
the origin.
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Remark 3.25. In the proof we have claimed that around the origin H is a
smooth function of u, v because E, F,G are smooth functions of u, v. This
is obviously true outside the origin but I do not quite understand how the
smoothness of H(u, v) at the origin follows. However, it is clearly true in the
analytic context by the theorem of Hartogs, and so we might have to work in
the more restricted analytic context.

Theorem 3.26 (Riemann’s formula). If x1, · · · , xm are Riemann normal
coordinates around a point x ∈M of an analytic Riemannian manifold (M, g)
then the Riemannian metric (expx)

∗g =
∑

gijdx
idxj has the form

∑

(dxi)2 +
1

12

∑

Rijkh(0)(x
idxj − xjdxi)(xkdxh − xhdxk) +O(r3)

for r2 =
∑

(xi)2 ↓ 0. Here the value of g(R(∂i, ∂j)∂k, ∂h) at the origin 0 of
TxM is denoted by Rijkh(0).

Proof. Let P d be the vector space of degree d homogenous polynomials in
R[x1, · · · , xm], and so dimP d = m(m + 1) · · · (m + d − 1)/d! for all d ∈ N.
Let Dd be the vector space of differentials on Rm with coefficients from P d,
and so dimDd = m2(m+1) · · · (m+ d− 1)/d! for all d ∈ N. Let E =

∑

xi∂i
be the Euler operator. The contraction operator

iE : Dd
։ P d+1

with the Euler field is clearly surjective, and so the kernel Kd has dimension
equal to d(m− 1)m · · · (m+ d− 1)/(d+ 1)! for all d ∈ N.

In particular, the vector space K1 has dimension m(m− 1)/2 with basis
(xidxj − xjdxi) for 1 ≤ i < j ≤ m and dimK2 = (m − 1)m(m+ 1)/3. The
multiplication map

P 1 ⊗K1
։ K2

is a linear surjection with kernel of dimension m(m − 1)(m − 2)/6 spanned
by the independent vectors

xk ⊗ (xidxj − xjdxi) + xi ⊗ (xjdxk − xkdxj) + xj ⊗ (xkdxi − xidxk)

for 1 ≤ i < j < k ≤ m. It follows that any differential in K2 can be uniquely
written in the form

∑

cijkx
k(xidxj − xjdxi)
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(sum over all indices 1 ≤ i, j, k ≤ m) under the restrictions

cijk + cjik = 0, cijk + ckij + cjki = 0

for all i, j, k.
The vector space Q2 of (symmetric) quadratic differentials on Rm with

degree 2 homogeneous coefficients has basis xixjdxkdxh for 1 ≤ i ≤ j ≤ m
and 1 ≤ k ≤ h ≤ m. Let C2 be the linear subspace of Q2 spanned by the
products

(xidxj − xjdxi)(xkdxh − xhdxk)

for all 1 ≤ i, j, k, h ≤ m. Any quadratic differential in C2 can be uniquely
written in the form

∑

Cijkh(x
idxj − xjdxi)(xkdxh − xhdxk)

under the restrictions

Cijkh = −Cjikh, Cijkh = −Cijhk, Cijkh = Ckhij

Cijkh + Ckijh + Cjkih = 0

for all 1 ≤ i, j, k, h ≤ m. Indeed the antisymmetry condition Cijkh = −Cijhk

allows to rewrite the above element from C2 as
∑

2Cijkhx
k(xidxj − xjdxi)⊗ dxh

and so the Cijkh are unique under the given restrictions by the argument from
the previous paragraph. Since dimK2 = (m−1)m(m+1)/3 this implies that

dimC2 = (m− 1)m2(m+ 1)/12

because of the two symmetry conditions Cijkh = −Cijhk and Cijkh = Ckhij.
By Gauss’s lemma we can expand the Riemannian metric (expx)

∗g in
geodesic normal coordinates as

∑

(dxi)2 +
∑

Cijkh(x
idxj − xjdxi)(xkdxh − xhdxk) +O(r3)

for unique real constants Cijkh with the above constraints. Restriction to
the linear plane Rei + Rej for i < j gives 12Cijij = Rijij(0) by the previous
lemma, and since this is valid in any system of geodesic normal coordinates
around the given point x Riemann’s formula follows from Theorem 3.12
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While in geodesic normal coordinates around the point x ∈ M the first
order deviation of the Riemannian metric (expx)

∗g from the flat Euclidean
metric (dx1)2 + · · ·+ (dxm)2 is equal to zero the coefficients Rijkh(0) of the
Riemann curvature tensor describe the next second order deviation. This is
how Riemann in his famous Habilitation lecture from 1854 introduced and
motivated his curvature concept for a space of arbitrary dimension m ≥ 2
with an arbitrary Riemannian metric as a natural generalization of the Gauss
curvature for surfaces in R

3: The curvature of space describes the deviation
from flat space, and in order to control this deviation it is necessary and
sufficient to know in each point the curvature for any pair of m(m − 1)/2
planar directions Rei + Rej for 1 ≤ i < j ≤ m.

The Theorema Egregium on the intrinsic nature of the Gauss curvature
came in Riemann’s approach for free. Indeed the very concept of geodesics is
intrinsic and hence also geodesic normal coordinates have intrinsic meaning.
For a more extensive discussion on Riemann’ s original work with an English
translation of his Habilitation lecture we refer to Spivak [23].

The next result is a direct consequence of Riemann’s formula.

Corollary 3.27. In Riemann normal coordinates around a point x ∈M the
Riemannian volume element dV has an expansion

dV = {1− 1

6

∑

Ricij(0)x
ixj +O(r3)}dx1 · · · dxm

for r ↓ 0 with Ricij(0) =
∑

Rk
kij(0) =

∑

Rkijh(0)g
hk(0) =

∑

Rkijh(0)δ
hk the

Ricci form at the origin.

Proof. Recall that in local coordinates x1, · · · , xm the volume element has the
form dV = det(gij)

1/2dx1 · · · dxm. In Riemann normal coordinates around
x ∈M Riemann’s formula can be rewritten as

gkh = δkh +
1

6

∑

{Rikjh(0) +Rihjk(0)}xixj +O(r3)

which in turn implies (using det(I + εA) = 1 + ε tr(A) + O(ε2) for square
matrices A) that

det(gkh)
1/2 = {1− 1

6

∑

{Rkijh(0) +Rhijk(0)}δhkxixj +O(r3)}1/2

and the desired formula follows.
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In the case of surfaces with m = 2 the Ricci form is just the Gauss
curvature times the first fundamental form, and indeed for positive Gauss
curvature the area element on the surface is locally decreasing relative to the
Euclidean area form. In the case of surfaces the next corollary was found by
Diquet in 1848.

Corollary 3.28 (Diquet’s formula). The volume V (x, r) of a small radial
geodesic ball around x ∈M with radius r > 0 is given by

V (x, r) = ωmr
m{1− 1

6(m+ 2)
S(x)r2 +O(r3)}

for r ↓ 0 with ωm = πm/2/Γ(m/2 + 1) the volume of the unit ball in Rm and
S(x) = tr(Ricx) the scalar curvature at x.

For example, for the unit sphere S2 with K ≡ 1 a geodesic disc with
radius r ∈ [0, π] has area A(r) = 2π(1 − cos r) as shown by Archimedes.
Hence A(r) = πr2{1 − r2/12 +O(r4)} for r ↓ 0 in accordance with Diquet’s
formula.

Exercise 3.29. Prove Diquet’s formula using the previous corollary with
geodesic normal coordinates around x ∈ M in which the Ricci operator is
diagonalized.

Exercise 3.30. Let (M, g) be a Riemannian manifold with isometry group
Isom(M, g) and stabilizer subgroup Isomx(M, g) for some x ∈M . Show that
the homomorphism

Isomx(M, g) → O(TxM, gx), f 7→ Txf

is a monomorphism. Hint: Use geodesic normal coordinates.

Exercise 3.31. Show that Em, Sm,Hm are model spaces for geometries of
constant sectional curvature equal to 0,+1,−1 respectively, by showing that
the isometry groups have point stabilizer equal to the full orthogonal group of
the tangent space at the given point.

3.6 The Second Fundamental Form

Suppose M is a smooth submanifold of dimension m of a smooth manifold
M̃ of dimension n, and so the codimension of M in M̃ is equal to n − m.
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Suppose g̃ is a Riemannian metric on M̃ . By restriction we get a Riemannian
metric g onM , and so (M, g) →֒ (M̃, g̃) is an isometric embedding. The goal
of this section will be to understand for x ∈ M and P a plane in TxM the
relation between on the one hand the sectional curvature K(P ) measured
inside the submanifold (M, g) and on the other hand the sectional curvature
K̃(P ) measured inside the ambient space (M̃, g̃). The motivation comes
from the classical example of a surface S in flat Euclidean space, which is
the situation dealt with by Gauss.

For each point x ∈ M the inner product g̃x on TxM̃ splits TxM̃ into an
orthogonal direct sum

TxM̃ = TxM ⊕NxM

with the normal space NxM the orthogonal complement of TxM in TxM̃ .
Varying x along M gives a direct sum decomposition of vector bundles

TM̃ |M = TM ⊕NM

with NM = ⊔xNxM the normal bundle ofM in (M̃, g̃). The tangent bundle
TM and the normal bundle NM are vector bundles on M of rank m and n
respectively. Let p : TM̃ |M → TM be the orthogonal projection morphism.
Any vector field X ∈ X(M) extends, at least locally, to a vector field X̃ ∈
X(M̃). The Levi-Civita connection on TM will be denoted by ∇. The
Levi-Civita connection on both TM̃ and its restriction TM̃ |M to M will be
denoted by ∇̃. The latter connection is the pullback of ∇̃ on TM̃ under the
inclusion M →֒ M̃ . Hence the restriction of ∇̃X̃(Ỹ ) to M is equal to ∇̃X(Y )
as section of TM̃ |M .

Proposition 3.32. For X, Y ∈ X(M) we have ∇X(Y ) = p(∇̃X(Y )).

Proof. We check that p(∇̃X(Y )) satisfies the two defining properties of the
covariant derivative ∇X(Y ). For X, Y, Z ∈ X(M) we in

LXg(Y, Z) = (LX̃ g̃(Ỹ , Z̃))|M = g̃(∇̃X̃(Ỹ ), Z̃)|M + g̃(Ỹ , ∇̃X̃(Z̃))|M =

g̃(∇̃X(Y ), Z) + g̃(Y, ∇̃X(Z)) = g(p(∇̃X(Y )), Z) + g(Y, p(∇̃X(Z)))

and so the flatness of metric condition of ∇X(Y ) follows. Likewise the sym-
metry condition

p(∇̃X(Y ))− p(∇̃Y (X)) = p((∇̃X̃(Ỹ )− ∇̃Ỹ (X̃))|M) = p([X̃, Ỹ ]|M) = [X, Y ]

of ∇X(Y ) follows.
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For X, Y ∈ X(M) let H(X, Y ) ∈ Γ(NM) denote the normal component
of ∇̃XY and so

∇̃XY = ∇XY +H(X, Y )

in the above notation.

Proposition 3.33. We have H(X, Y ) = H(Y,X) for all X, Y ∈ X(M).
Moreover, the value H(X, Y )x ∈ NxM of H(X, Y ) at x ∈ M depends only
on the values Xx, Yx ∈ TxM of the vector fields X, Y at x ∈ M . In other
words

H : TM ⊗ TM → NM

is a symmetric vector bundle morphism, called the second fundamental form
of M in M̃ . A physicist would say that the second fundamental form is a
tensor (with values in the normal bundle)!

Proof. The symmetry is obvious since

H(X, Y )−H(Y,X) = (∇̃XY −∇̃YX)−(∇XY −∇YX) = [X, Y ]− [X, Y ] = 0

for all X, Y ∈ X(M). For fixed Y ∈ X(M) the values of ∇̃XY and ∇XY at
x ∈ M depend only on the value Xx of X at x. Hence the value H(X, Y )x
at x ∈ M depends for fixed Y only on Xx. By symmetry we conclude that
the value H(X, Y )x ∈ NxM depends only on the values Xx, Yx ∈ TxM .

The Riemannian submanifold (M, g) →֒ (M̃, g̃) is called totally geodesic
if each geodesic in M remains geodesic in M̃ . The second fundamental form
measures the failure of M to be totally geodesic in M̃ .

Proposition 3.34. The submanifold M is totally geodesic in M̃ if and only
if the second fundamental form H vanishes identically.

Proof. If t 7→ γ(t) is a smooth path in M then ∇̃γ̇(γ̇) = ∇γ̇(γ̇) + H(γ̇, γ̇).
Suppose t 7→ γ(t) is a geodesic in M , that is ∇γ̇(γ̇) = 0. Then t 7→ γ(t)
remains a geodesic in M̃ if and only if ∇̃γ̇(γ̇) = 0 or equivalently if and only
if H(γ̇, γ̇) = 0. Hence all geodesics in M remain geodesics in M̃ if and only
if H ≡ 0.

The curvature R of M can be expressed in terms of the curvature R̃ of
M̃ with help of the second fundamental form.
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Theorem 3.35. We have the so called Gauss equation

R̃(X, Y, Z,W ) = R(X, Y, Z,W )+

g̃(H(X,Z), H(Y,W ))− g̃(H(X,W ), H(Y, Z))

for all X, Y, Z,W ∈ X(M).

Proof. Since ∇̃Y Z = ∇Y Z +H(Y, Z) we get

∇̃X∇̃Y Z = ∇X∇Y Z +H(X,∇YZ) + ∇̃XH(Y, Z)

and hence also

g̃(∇̃X∇̃YZ,W ) = g(∇X∇Y Z,W ) + g̃(∇̃XH(Y, Z),W )

for all X, Y, Z,W ∈ X(M). Differentiation of the identity g̃(H(Y, Z),W ) = 0
in the direction of X gives

g̃(∇̃XH(Y, Z),W ) + g̃(H(Y, Z), ∇̃XW ) = 0

and since ∇̃XW = ∇XW +H(X,W ) the second term in this expression can
also be rewritten as g̃(H(Y, Z), H(X,W )). Hence we find

g̃(∇̃X∇̃Y Z,W ) = g(∇X∇YZ,W )− g̃(H(Y, Z), H(X,W ))

for all X, Y, Z,W ∈ X(M). If we subtract this equality with X and Y
interchanged and use that g̃(∇̃[X,Y ]Z,W ) = g(∇[X,Y ]Z,W ) then the Gauss
equation follows.

For X, Y ∈ X(M) two independent vector fields the sectional curvature
K(P ) in M of the plane subbundle P = RX + RY of TM was defined by

K(P ) =
−R(X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )2

and likewise for K̃ in M̃ . Hence the Gauss equation can be rewritten in the
form

K(P ) = K̃(P ) +
g̃(H(X,X), H(Y, Y ))− g̃(H(X, Y ), H(X, Y ))

g(X,X)g(Y, Y )− g(X, Y )2

63



with P = RX +RY . In particular, in case (M̃, g̃) is the flat Euclidean space
Rn we get

K(P ) =
(H(X,X), H(Y, Y ))− (H(X, Y ), H(X, Y ))

(X,X)(Y, Y )− (X, Y )2

with (·, ·) the scalar product on R
n.

In the special case that M is an oriented hypersurface in Rm+1 the unit
normal map n : M → Sm is a section in the normal bundle NM → M and
classically called the Gauss map. If we write H(X, Y ) = h(X, Y )n then the
second fundamental form

h : TM ⊗ TM → R

becomes scalar valued, and so h is a scalar tensor field onM of the same type
as the Riemannian metric g. The m solutions k1, · · · , km of the equation

det(h− kg) = 0

at a given point are called the principal curvatures of the oriented hyper-
surface M →֒ Rm+1 at the given point, in accordance with the discussion in
Section 1.4. In local coordinates

x = (x1, · · · , xm) 7→ y(x) = (y1(x), · · · , ym+1(x))

for the hypersurface M of Rm+1 we have

∂i∂jy(x) =
∑

Γk
ij(x)∂k + hij(x)n(x)

with Γk
ij =

∑{∂igjl + ∂jgil − ∂lgij}glk/2 the Christoffel symbols and hij the
coefficients of the second fundamental form. Hence

hij(x) = (n(x), ∂i∂jy(x)) = −(∂in(x), ∂jy(x))

since (n(x), ∂jy(x)) = 0 for all j. Since (n(x), n(x)) = 1 we obtain

∂in(x) = −
∑

hij(x)g
jk(x)∂ky(x)

which are the so called Weingarten equations .
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Exercise 3.36. Consider a smooth hypersurface M in Rm+1 around the ori-
gin 0 ∈ Rm+1 given as the graph xm+1 = f(x1, · · · , xm) of a smooth func-
tion f : Rm → R with f(0) = 0 and ∂if(0) = 0 for i = 1, · · · , m. Let
n(0) = (0, · · · , 0, 1) be the unit normal to M at the origin. Show that the
second fundamental form h of M at the origin is equal to the Hessian of f
at the origin in the sense that h(∂i, ∂j) = ∂i∂jf(0).

Exercise 3.37. Let M be a smooth hypersurface in Rm+1 and for x ∈M let
Vx be a three dimensional linear subspace of Rm+1 containing the normal line
NxM . Show that locally near x the intersection

S =M ∩ {x+ Vx}

is a smooth surface with Gauss curvature at x equal to the sectional curvature
Kx(Px) with Px = TxM ∩ Vx.

Exercise 3.38. Show that for a hypersurfaceM in Euclidean space Rm+1 the
principal curvatures ki need not be intrinsic quantities, whereas their pairwise
products kikj for i 6= j are intrinsic quantities.

3.7 The Laplace–Beltrami operator

Let (M, g) be a connected oriented Riemannian manifold with Riemannian
volume form

dvol = (det gij(x))
1/2dx1 ∧ · · · ∧ dxm

in local coordinates x = (x1, · · · , xm). For X ∈ X(M) a smooth vector
field on M the divergence div(X) ∈ F(M) is the unique smooth function
characterized by

LX(dvol) = div(X) dvol

with LX(ω) = d/dt{φ∗
tω}t=0 for ω ∈ Ωm(M) and φt the (local) flow of the

vector field X . For f ∈ F(M) a smooth function the gradient vector field
∇f = gradf ∈ X(M) was defined as the dual (via the Riemannian metric)
of the exterior derivative df ∈ Ω1(M) of the function f .

Definition 3.39. The Laplace–Beltrami operator ∆ is the linear second order
differential operator on F(M) defined by ∆f = div(gradf).
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The vector space Fc(M) of smooth real valued functions with compact
support on M carries a natural inner product given by

(f1, f2) =

∫

M

f1f2 dvol

for f1, f2 ∈ Fc(M). It is easy to check that

∫

M

g(gradf,X) dvol +

∫

M

fdiv(X) dvol = 0

by Stokes’ theorem. In turn this implies that

(f1,∆f2) = −
∫

M

g(gradf1, gradf2) dvol = (∆f1, f2)

for all f1, f2 ∈ Fc(M), and so ∆ is a symmetric linear operator on Fc(M).
The Laplace–Beltrami operator is a nonpositive symmetric operator in the
sense that (∆f, f) ≤ 0 for all f ∈ Fc(M). For this reason some people call
the nonnegative operator −∆ ≥ 0 the Laplace–Beltrami operator of (M, g).

Exercise 3.40. Show that in local coordinates x = (x1, · · · , xm) the Laplace–
Beltrami operator takes the form ∆f =

∑

|g(x)|−1/2∂i(g
ij(x)|g(x)|1/2∂jf)

with |g(x)| = det gij(x).

Exercise 3.41. Show that the Laplace–Beltrami operator is also defined in
case (M, g) is unoriented.

Exercise 3.42. Show that the Laplace–Beltrami operator ∆ is the unique
second order linear differential operator on F(M) with leading symbol the
Riemannian metric (that is in local coordinates ∆ =

∑

gij(x)∂i∂j + · · · with
· · · a first order linear differential operator), which is symmetric on Fc(M)
(that is (∆f1, f2) = (f1,∆f2) for all f1, f2 ∈ Fc(M)) and with ∆1 = 0. In
the possibly unoriented case we write

(f1, f2) =

∫

M

f1f2 dV

with dV = |dvol| the associated smooth positive Riemannian density.
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Suppose now that (M, g) is a compact connected Riemannian manifold,
and consider the eigenvalue problem

∆f + λf = 0

for f ∈ F(M) a nonzero eigenfunction and λ ∈ R the corresponding eigen-
value. It is known that the sequence of eigenvalues

Λ = {λ0 = 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · }

of −∆, counted with multiplicity and called the spectrum of the Riemannian
manifold, increases towards ∞. In particular, all eigenspaces of −∆ are finite
dimensional. The spectral counting function N(λ) is defined for λ > 0 as the
number of eigenvalues less than λ.

Theorem 3.43 (Weyl’s law). The growth for λ→ ∞ of the spectral counting
function N(λ) is given by

N(λ) = (2π)−mωmVol(M, g)λm/2 +O(λ(m−1)/2)

with ωm = πm/2/Γ(1 +m/2) the volume of the unit ball in Rm.

This result was obtained by Hermann Weyl in 1911 in the case of a
bounded domain in Rm (for m = 2, 3), and had been conjectured by Arnold
Sommerfeld and Hendrik Lorentz in 1910. In the case of compact connected
Riemannian manifolds the result is due to Minakshisundaram and Pleijel in
1948 [16], with the error term due to Hörmander in 1968 [13]. Minakshisun-
daram and Pleijel obtained their result from the (so called heat trace) asymp-
totic expansion

∑

k≥0

e−λkt ∼ (4πt)−m/2
∑

i≥0

ait
i (t > 0)

for t ↓ 0 [17],[2]. The scalars ai are of the form
∫

M
uidV with ui : M →

R certain Riemannian invariants. For example, we have u0 = 1 – and so
a0 = vol(M, g) – and u1 = S/6 with S the scalar curvature. But for large
i the functions ui become rather obscure algebraic expressions in terms of
Riemann curvatures. The next beautiful result was obtained independently
by Chazarain [4] and Duistermaat–Guillemin [7].
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Theorem 3.44. For (M, g) a compact connected Riemannian manifold the
(so called wave trace) series

∑

k≥0

cos(
√

λkt)

defines a tempered distribution on R, which for t ≥ 0 is smooth outside the
set of the lengths of the closed geodesics on (M, g).

The set of the lengths of all closed geodesics on (M, g) is sometimes called
the length spectrum. Closed geodesics need not necessarily be simple, so if l
is contained in the length spectrum L then Nl is also contained in L.

For special compact connected Riemannian manifolds with a sufficiently
transitive group of isometries the spectrum can be compute explicitly and
tends to be highly degenerate. The most typical example is the round sphere
S
m with spectrum equal to {k(k +m− 1); k = 0, 1, 2, · · · } and multiplicities
mk = nk − nk−2 and nk = (k +m)(k +m − 1) · · · (k + 1)/m! the dimension
of the vector space of degree k homogeneous polynomials in m+1 variables.
In particular S2 has spectrum {k(k + 1); k = 0, 1, 2, · · · } with multiplicities
2k + 1, while S3 has spectrum {k(k + 2); k = 0, 1, 2, · · · } with multiplicities
(k + 1)2. However, for a general compact connected Riemannian manifold
both the spectrum and the length spectrum are transcendental concepts, with
no hope of explicit computation. Nevertheless, the above truly remarkable
theorem gives an intimate relation between the spectrum and the length
spectrum for any compact connected Riemannian manifold (M, g).

3.8 Historical remarks

The founders of the classical differential geometry of surfaces in R3 are Gas-
pard Monge (1746-1818), who introduced the principal curvatures k1, k2 of
such a surface, and more importantly Carl Friedrich Gauss (1777-1855),
whose main contribution was the insight that the product K = k1k2 of the
principal curvatures, named Gauss curvature, remains invariant under rigid
bending of the surface. Gauss was so excited by this result, that he named
it the Theorema Egregium, the splendid theorem. In the year 1827 Gauss
wrote his papers in Latin.

Bernard Riemann (1826-1866) was a student at Göttingen, and might
even have learned the Theorema Egregium from the master himself? On
June 10, 1854 he delivered his Habilitationsvortrag with the title ”Über die
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Hypothesen welche der Geometrie zu Grunde liegen”. Gauss had chosen this
topic out of three possible subjects proposed by Riemann. It seems that
Riemann prepared his lecture in just a couple of months. There was some
time pressure, because of the declining health of Gauss. Riemann studied
a space of arbitrary dimension m ≥ 2 as being given locally by coordinates
x1, · · · , xm with a metric

∑

gijdx
idxj withm(m+1)/2 arbitrary smooth func-

tions gij = gji but with the matrix gij positive definite. So one should view
the space intrinsically, and not embedded locally in R

n and performing calcu-
lations extrinsically in the ambient Euclidean space. In such a space length
of curves can be measured and so geodesics can be defined, and subsequently
Riemann introduced the sectional curvatures at each point by working in
geodesic normal coordinates. The lecture of Riemann exceeded all expecta-
tions of Gauss and greatly surprised him. Returning to the faculty meeting,
he spoke with the greatest praise and rare enthusiasm to Wilhelm Weber
(1804-1891) about the depth of the thoughts that Riemann had presented.

Riemann was appointed professor in Göttingen in 1857, and two years
later he succeeded Peter Gustav Lejeune Dirichlet (1805-1859) on the chair
of mathematics, formerly held by Gauss until 1855.

In 1858 the Italian mathematician Enrico Betti (1823-1892) and Francesco
Brioschi (1824-1897) visited Riemann in Göttingen. These contacts were re-
newed when Riemann visited Betti in Pisa from 1863 till 1865. At that time
Riemann suffered from tuberculosis and sought relief in the gentle mediter-
ranean climate. Brioschi with his student Eugenio Beltrami (1835-1900) and
more notably Betti with his students Luigi Bianchi (1856-1928) and Gregorio
Ricci-Curbasto (1853-1925) developed the ideas of Riemann on differential
geometry further.

The final ideas on parallel transport coming from a compatible connection
were developed by Tullio Levi-Civita (1873-1941), who was a student of Ricci.
Levi-Civita was appointed on the chair of Rational Mechanics in 1898 in
Padua until 1918, when he moved to Rome on the chair of Higher Analysis.
Einstein had an extensive correspondence with Levi-Civita. Regarding Levi-
Civita’s new work, Einstein wrote ”I admire the elegance of your method of
computation. It must be nice to ride through these fields upon the horse of
true mathematics, while the like of us have to make our way laboriously on
foot”. Being of Jewish descent Levi-Civita was deprived in 1938 due to the
racial laws from the fascist Italian government of his professorship and his
membership of all scientific societies. Isolated from the scientific community
he died in his apartment in Rome in 1941. Later on, when asked what he
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liked best about Italy, Einstein said ”spaghetti and Levi-Civita”.

70



References

[1] Michael Atiyah and Isadore Singer, Interview by Martin Raussen and
Christian Skau, European Mathematical Society Newsletter 53 (2004),
24-30.

[2] Marcel Berger, Le spectre des variétés Riemanniennes, Rev. Roum.
Math. Pures et Appl. 13:7 (1968), 915-931.

[3] Marcel Berger, A Panoramic View of Riemannian Geometry, Springer
Verlag, Berlin, 2003.

[4] Jacques Chazarain, Formule de Poisson pour les variétés Riemanniennes,
Invent. Math. 24 (1974), 65-82.
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