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Introduction

The Leech lattice is the unique 24 dimensional unimodular even lattice without roots. It was
discovered by Leech in 1965. In his paper from 1985 on the Leech lattice ([3]), Richard Borcherds
gave new more conceptual proofs then those known before of the existence and uniqueness of the
Leech lattice and of the fact that it has covering radius

√
2. He also gave a uniform proof of the

correctness of the “holy constructions” of the Leech lattice which are described in [6], Chapter
24. An important goal of this thesis is to present these proofs. They depend on the theory of
hyperbolic geometry and hyperbolic reflection groups. The first two chapters give an introduction
to these and contain all that will be needed.
We will furthermore elaborate on the deep holes of the Leech lattice in relation to the classification
of all 24 dimensional unimodular even lattices, the Niemeier lattices. In more detail, the thesis is
organized as follows.

In Chapter 1 three models for the hyperbolic space Hn are described together with some ele-
mentary properties of this space.

In Chapter 2 we describe hyperbolic reflection groups. We show that a discrete group W gen-
erated by reflections is in fact generated by the reflections in the hyperplanes that bound a convex
polyhedron D̃, a fundamental domain for the group W . Hence W has a Coxeter representation.
We then describe criteria to determine whether the polyhedron D̃ is bounded or has finite volume.

Chapter 3 deals with lattices. We describe the root lattices that will later play an important
role in the classification of Niemeier lattices. We also describe how a lattice determines a reflection
group. Finally, we describe the theory of gluing and define the covering radius and holes of a lattice.

In Chapter 4 we describe Vinberg’s algorithm. This is an algorithm to determine the fundamental
domain D̃ ⊂ Hn of a discrete reflection group W . We emphasize the case where the reflection
group W is the reflection group of an even hyperbolic lattice.

In Chapter 5 we turn to even unimodular lattices. First we describe what is known about the
classification of such lattices. Then we describe the relation between primitive norm zero vector
of a lattice L of type II8n+1,1 (so L is even unimodular with signature (8n+ 1, 1)) and lattices of
type II8n. After that, we treat the examples II9,1 and II17,1 applying the theory from chapters 2
and 4.
We then discuss the classification of the Niemeier lattices, presenting Boris Venkov’s proof of this
classification. We end the chapter with some results on Niemeier lattices that we will need in the
last chapter.

Finally, in Chapter 6 we discuss the Leech lattice. We present Borcherds’ proofs of the exis-
tence and uniqueness of the Leech lattice and the fact that it has covering radius

√
2. We end the

chapter with a section that discusses the deep holes of the Leech lattice.
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Chapter 1

Hyperbolic Space

In this chapter we describe some standard knowledge on hyperbolic geometry. It can all be found
in [5] and [16]. We will first describe three models for the hyperbolic space. The description of
these models is taken from [16]. All these models are differentiable manifolds with a Riemannian
metric. Each model is defined on a different subset of Rn,1 (n ≥ 2), i.e. Rn+1 with symmetric
bilinear form (x, y) = x1y1+ ...+xnyn−xn+1yn+1. This subset is called the domain of the model.
The first is the ball model (see [16] §4.5). Here the domain is

Bn = {(x1, ..., xn, 0) | x2
1 + ...+ x2

n < 1},

and the Riemannian metric is

ds2 = 4
dx2

1 + ...+ dx2
n

(1− x2
1 − ...− x2

n)
2
.

The associated volume form is

dV = 2n
dx1...dxn

(1− |x|2)n .

The geodesics are the circles orthogonal to the boundary sphere
∂Bn = Sn−1 = {(x1, ..., xn, 0) | x2

1 + ...+ x2
n = 1}, the points at “infinity”.

The second model is the upper half-space model (see [16] §4.6). Here the domain is

Un = {(x1, ..., xn, 0) | xn > 0},

and the Riemannian metric is

ds2 =
dx2

1 + ...+ dx2
n

x2
n

.

The associated volume form is

dV =
dx1...dxn

xn
n

.

The geodesics are half circles and half lines orthogonal to the boundary
Rn−1 = {x ∈ Rn,1 | xn = xn+1 = 0}. The set of points at infinity is ∂Un = Rn−1 ∪ {∞}.
The last model is the hyperboloid model (see [16] Chapter 3). Here the domain is

Hn = {(x1, ..., xn, xn+1) | x2
1 + ...+ x2

n − x2
n+1 = −1 and xn+1 > 0},

and the Riemannian metric is

ds2 = dx2
1 + ...+ dx2

n − dx2
n+1.

The associated volume form is

dV =
dx1...dxn

(1 + x2
1 + ...+ x2

n)
1
2

.

The geodesics are intersections of two-dimensional vector subspaces of Rn,1 with the hyperboloid.
If we identify each point in Hn with the (unique) one-dimensional vector subspace of Rn,1 that
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contains that point (interpret the hyperboloid model as lying in projective space) then it is clear
that we can identify the boundary points with those lines that lie in the boundary of the cone
V+ = {x ∈ Rn,1 | (x, x) < 0 and xn+1 > 0}.

To show that the three models are equivalent we have to describe isometries between them. The
isometry f : Hn → Bn is the central projection from the point (0, ..., 0,−1) (see [16] §4.5):

f : (x1, ..., xn+1) 7→ (
x1

1 + xn+1
, ...,

xn

1 + xn+1
, 0).

The isometry g : Bn → Un (see [16] §4.6) is given by:

g : x = (x1, ..., xn, 0) 7→
1

||x− en||2
(2x1, ..., 2xn−1, 1−

n∑

i=1

x2
i , 0), (with en the standard basis vector).

Here g = ρ ◦ σ, where σ is the reflection of Rn in the sphere S(en,
√
2) with center en and radius√

2 and ρ is the reflection of Rn in the boundary of Un. This isometry can be extended to the
boundary. The same formula can be used except for x = en, for this set g(en) = ∞. These three
models and the maps between them can also be found in [5] and [9]. The isometries do indeed
induce the different metrics as they are defined above (see for example section 7 in [5]).

From now on in this chapter we use Hn as a model for the hyperbolic space. The Lorentz group is
defined to be O(n, 1) = {A ∈ Gl(n+ 1,R) | (Ax,Ay) = (x, y) for all x, y ∈ Rn,1}. For A ∈ O(n, 1)
we have either AHn = Hn or AHn = −Hn. Hence O+(n, 1) = {A ∈ O(n, 1) | A(Hn) = Hn}
has index 2 in O(n, 1). Elements of O+(n, 1) are sometimes called orthochronous transformations.
The restriction of an element of O+(n, 1) to Hn is called a linear isometry of Hn. A Riemannian
isometry f : Hn → Hn of Hn is a diffeomorphism of Hn that preserves the Riemannian metric.
These two notions turn out to be equivalent (see [5] Theorem 10.2).
The group O+(n, 1) acts transitively on Hn. To show this consider two points x, y ∈ Hn. Then
the orthogonal reflection in the linear hyperplane perpendicular to x− y sends x to y and clearly
is an element of O+(n, 1). The connected group SO+(n, 1) = {A ∈ O+(n, 1) | det(A) = 1} acts
also transitively on Hn since if x, y ∈ Hn and z ∈ Hn is an arbitrary fixed point then there are
orthogonal reflections A,B ∈ O+(n, 1) for which Ax = z and Bz = y. Reflection matrices have
determinant −1 so BA ∈ SO+(n, 1) and this element sends x to y.

A linear subspace of Rn,1 is said to be hyperbolic (elliptic, parabolic) if the bilinear form in-
duced on it is nondegenerate and indefinite (positive, degenerate). We remark that the orthogonal
complement of a hyperbolic (elliptic, parabolic) subspace is an elliptic (hyperbolic,parabolic) sub-
space of complementary dimension (see [16] §3.1, note that in this book elliptic, hyperbolic and
parabolic subspaces are called space-like, light-like and time-like).

Definition 1. A hyperbolic m-plane of Hn is the nonempty intersection of Hn with a hyperbolic
subspace of Rn,1 of dimension m + 1. A hyperbolic (n − 1)-plane of Hn is called a hyperplane of
Hn. A hyperbolic 1-plane of Hn is called a line or geodesic of Hn.

Lemma 1. Let p, q ∈ Hn. Then (p, q) = − cosh(d(p, q)). (Where the distance d(p, q) is the length
of the geodesic from p to q.)

Proof. sketch (following page 83 of [5]): d(p, q) is invariant under isometries so p and q can be first
translated to a standard position. In fact, they can be translated to the plane spanned by en and
en+1 as follows: Define an to be the unit tangent vector at p in the direction of the geodesic from p
to q and define an+1 = p. By the Gram-Schmidt process the set of orthonormal vectors {an, an+1}
can be extended to an orthonormal basis {a1, ..., an, an+1} for Rn,1 (so:(ai, aj) = (ei, ej).) The
matrix A with columns a1, ..., an+1 is a linear isometry of Hn. Its inverse A−1 takes p to en+1

and the plane spanned by p and q to the plane P spanned by en and en+1. The intersection of
P with Hn is (one branch of) the standard hyperbola and is the unique geodesic passing through
A−1(p) and A−1(q) (see below). Now A−1(p) = (0, ..., 0, 1) and d(p, q) = d(A−1(p), A−1(q)). It
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can therefore be assumed that A−1(q) = (0, ..., 0, sinh(d(p, q)), cosh(d(p, q))). Hence:

(p, q) = (A−1(p), A−1(q))

= ((0, ..., 0, 1), (0, ..., 0, sinh(d(p, q)), cosh(d(p, q))))

= − cosh(d(p, q))

It follows from the proof above that the group of isometries acts transitively on point pairs
{p, q} in Hn with the same distance. Indeed, there is an isometry that sends {p, q} to {en+1, q̃}
with q̃ a point in the plane spanned by en and en+1 such that d(p, q) = d(en+1, q̃). With a rotation
that leaves en+1 fixed q̃ can be mapped to any another point in this plane at the same distance
from en+1. Reversing this argument we can now send these two points to two arbitrary points
p̂, q̂ in Hn with d(p, q) = d(p̂, q̂). Thus Hn is two-point homogeneous for the group O+(n, 1) of
isometries of Hn.

Geodesics

Let p, q ∈ Hn. Then the geodesic between p and q is indeed the intersection of the two-dimensional
vector subspace of Rn,1 containing p and q with Hn:
Since Hn is two-point homogeneous for its group of isometries O+(n, 1) we can always assume
that p = (0, ..., 0, pn, pn+1) and q = (0, ..., 0, qn, qn+1). Now let γ : [a, b] → Hn be a path from
p to q and suppose that γ lies not in the plane spanned by the standard basis vectors en and

en+1. Denote by λ the projection of γ onto the xn − xn+1 plane. Then L(γ) =
∫ b

a
||γ′(t)||γ(t)dt =∫ b

a

√
gγ(t)(γ′(t), γ′(t))dt >

∫ b

a

√
gλ(t)(λ′(t), λ′(t))dt = L(λ), since g = dx2

1 + ... + dx2
n − dx2

n+1 and
thus gγ(t)−λ(t)(γ

′(t)− λ′(t), γ′(t)− λ′(t)) ≥ 0 for all t ∈ [a, b]. Hence the geodesic between p and q
lies in the xn − xn+1 plane and is therefore equal to the intersection of this plane with Hn. It can
be shown that under the isometries f and g as defined above these geodesics are mapped to the
geodesics as they were defined in the other two models of the hyperbolic space.

For more about hyperbolic geometry we refer to [5] and [16].
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Chapter 2

Hyperbolic Reflection Groups

Let V = Rn,1 and let Hn be the hyperboloid model of the hyperbolic space. The negative norm
vectors in V consist of two connected components. Denote by V+ the connected component that
contains Hn = {x = (x1, ..., xn+1) ∈ V | x2 = −1 and xn+1 > 0} (so V+ is the interior of the
forward light cone). If x ∈ V has positive norm then the (linear) hyperplane perpendicular to x
gives a hyperplane of Hn and reflection in this hyperplane is an isometry of Hn. If the norm of
x ∈ V is negative then, after multiplication by an element of R×, x corresponds to a point in Hn.
If the norm of x 6= 0 is zero then x corresponds to a point at infinity.
Let α ∈ V be such that (α, α) > 0. Then the reflection rα ∈ O+(n, 1) in the hyperplane

Hα := {x ∈ V | (x, α) = 0} orthogonal to α is given by rα : x 7→ x − 2 (α,x)
(α,α)α for all x ∈ V .

Let W < O+(n, 1) be a discrete group generated by reflections. Because W is a discrete group the
set of mirrors {Hα}rα∈W is locally finite. They divide Hn into convex regions.

In general, if U is a linear hyperplane of V with nonzero intersection with V+ then we write
Ũ = U ∩Hn for the corresponding hyperbolic hyperplane. Denote by U+ and U− the two open
half-spaces in V that are bounded by U and let Ũ+ and Ũ− be the corresponding open half-spaces
in Hn bounded by Ũ . Let C̃ be a nonempty intersection of such half-spaces, that is

C̃ =
⋂

i∈I

Ũ−
i .

Then the closure of C̃, denoted by D̃, is a convex polyhedron if {Ũi}i∈I is locally finite. It is
possible that the hyperplanes Ũi accumulate towards some point in ∂Hn. We will always assume
that no Ũ−

i contains the intersection of the remaining half-spaces. In this case the half-spaces Ũ−
i

are uniquely determined by the polyhedron D̃. For more background on convex sets and polyhedra
see [1] and [2].

Now we return to the discrete reflection group W < O+(n, 1). The locally finite set of mir-
rors H̃α = {x ∈ V | (x, α) = 0} ∩Hn divides Hn into convex polyhedra. It is shown below that
W acts transitively on these polyhedra and each of them is a fundamental domain for the action
of W .
Pick an arbitrary convex polyhedron D̃, i.e. D̃ is the closure of a connected component C̃ ⊂
Hn \⋃rα∈W H̃α. Denote by D and C the connected components of V \⋃rα∈W Hα that contain

D̃ and C̃, respectively. So D is a convex cone and D̃ = D ∩Hn (see Figure 2.1).

We will first show that D̃ is a fundamental domain for the action of the group W ′ generated
by the reflections in the hyperplanes bounding D̃, i.e. W ′ =< rα | H̃α ∩ D̃ 6= ∅ >. After that we
will show that W ′ = W , thus W is generated by the reflections in the hyperplanes bounding D̃.

Lemma 2. Let p ∈ Hn. Then W ′p ∩ D̃ 6= ∅.

Proof. Let p+ ∈ C̃ and choose q ∈ W ′p for which |q − p+|2 ≤ |wq − p+|2 for all w ∈ W ′. Now
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D

Hn

V+

Figure 2.1: Sketch of cone D in V+.

suppose q /∈ D̃. Then there exists an αi such that q /∈ H̃−
αi

and thus (αi, q) > 0. So

(rαi
(q), p+) = (q − 2(αi, q)αi, p+)

= (q, p+)− 2(αi, q)(αi, p+)

> (q, p+),

since (αi, p+) < 0. Hence

|rαi
(q)− p+|2 = rαi

(q)2 − 2(rαi
(q), p+) + p2+

= q2 − 2(rαi
(q), p+) + p2+

< q2 − 2(q, p+) + p2+

= |q − p+|2.

This contradicts the fact that q was chosen such that |q− p+|2 ≤ |wq− p+|2 for all w ∈ W ′. Thus
q ∈ D̃ and W ′p ∩ D̃ 6= ∅.

So each W ′-orbit meets D̃ in at least one point. By Theorem 5.13 in [12] it now follows that it
meets each orbit in exactly one point. Hence D̃ is a fundamental domain for the action of W ′.

Lemma 3. Let rα ∈ W . Then there is a w ∈ W ′ such that rwα ∈ W ′.

Proof. Let p ∈ H̃α be a general point, i.e. p ∈ H̃α \ ⋃{β 6=α|rβ∈W} H̃β . It follows from Lemma 2

that there is a w ∈ W ′ such that wp ∈ D̃. Then (wp,wα) = (p, α) = 0. So wp ∈ H̃wα ∩ D̃. Thus
H̃wα is a hyperplane bounding D̃ and therefore rwα ∈ W ′.

Thus any generator rα ∈ W can be written as a product of reflections in W ′, in the notation
above rα = w−1rwαw with w, rwα ∈ W ′.

The results in the remainder of this chapter are all from [19] and [20], also see [18]. Let αi ∈ V, i ∈ I,

be vectors such that (αi, αi) = 1 and D̃ =
⋂

i∈I H̃
−
αi (where it is again assumed that no H̃−

αi
con-

tains the intersection of the other half-planes). The Gram matrix of the vector system {αi} will
be called the Gram matrix of the polyhedron D̃. It contains the following geometric information
(see [20] §1.1.3):

1. The hyperplanes H̃αi
and H̃αj

intersect if and only if |(αi, αj)| < 1 and in this case the angle
φij between them is determined by the formula

cos(φij) = −(αi, αj).

Since the set of hyperplanes {H̃αi
} is locally finite these angles are dihedral, say φij = π

mij
.

In particular, in the case that D̃ is a fundamental domain for the action of a discrete group W
generated by the reflections in the hyperplanes Hαi

bounding D̃ the group W has a Coxeter
representation < rαi

| (rαi
rαj

)mij = 1 >, where mii = 1 and mij = ∞ if H̃αi
and H̃αj

are
disjoint (in this case there is no relation between rαi

and rαj
).
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2. The hyperplanes H̃αi
and H̃αj

do not intersect if and only if |(αi, αj)| ≥ 1. Note that

(αi, αj) ≥ 1 is impossible since then H̃−
αi

⊂ H̃−
αj

or H̃−
αj

⊂ H̃−
αi

which contradicts the
assumption that no half space contains the intersection of the others. So (αi, αj) ≤ −1. If

(αi, αj) = −1 then H̃αi
and H̃αj

meet at infinity and we say that the hyperplanes are parallel.
Otherwise, they are ultraparallel and there is a unique geodesic from one to the other and
orthogonal to both. The length of this geodesic is the distance d(H̃αi

, H̃αj
) between the

hyperplanes and is determined by the formula

cosh(d(H̃αi
, H̃αj

)) = −(αi, αj).

The convex polyhedron D̃ =
⋂

i H̃
−
αi is nondegenerate if the hyperplanes H̃αi

have no common

point in Hn or ∂Hn and there is no hyperplane orthogonal to all the H̃αi
. Furthermore, D̃ is

called finite if it is the intersection of a finite number of half-spaces H̃+
αi
. Obviously every bounded

polyhedron is finite.
We will now describe the conditions to determine whether a polyhedron is bounded or has finite
volume. They can be found in [19] §1. A finite convex polyhedron D̃ ⊂ Hn is bounded if and only
if

D ⊂ V+ ∪ {0}.
This is clear since if D ⊂ V+ ∪ {0} then there exists a ball B ⊂ Hn with finite radius such that
D̃ ⊂ B.
Furthermore, a finite convex polyhedron D̃ ⊂ Hn has finite volume if and only if

D ⊂ V+.

This can easiest be seen in the upper half-space model. If D ⊂ V+ then the convex cone D can
contain rays in the boundary of V+. These rays correspond to vertices at infinity of D̃. Now let q
be a vertex at infinity of D̃. We can assume that q is the point ∞ in the upper-half space model.
Let R > 0 be such that the horizontal hyperplane at height R only intersects the hyperplanes
that pass through ∞. So the intersection of a horizontal hyperplane at height ≥ R with D̃ has a
constant volume µ in this plane. Then the volume of the part of D̃ with xn ≥ R is:

µ

∫ ∞

R

dxn

xn
n

=
µ

n+ 1
R−n+1 < ∞.

So a finite convex polyhedron D̃ with vertices at infinity indeed has finite volume. It is clear that
if D is not contained in V+ then the volume of D̃ will not be finite.

The above inclusions can be translated in conditions for the Gram matrix of D̃ =
⋂

i∈I H̃
−
αi .

Before stating this result some further notation has to be fixed. Let A be a symmetric matrix. It
will be called the direct sum of matrices A1, ..., Ak if by a permutation of its rows and the same
permutation of its columns it can be written in the form




A1 0
. . .

0 Ak




In this case we write A = A1 ⊕ ... ⊕ Ak. A matrix that is not a direct sum of two or more
nonempty matrices is indecomposable. Every symmetric matrix A can be represented uniquely as
a direct sum of indecomposable matrices. These matrices will be called the components of A. Now
define A+ to be the direct sum of all positive definite components, A0 to be the direct sum of all
degenerate nonnegative definite components and A− to be the direct sum of all components which
are not nonnegative definite.
Finally, for G = (gij)i,j∈I = ((αi, αj))i,j∈I the Gram matrix of a nondegenerate convex polyhedron

and S ⊂ I let GS := (gij)i,j∈S be the principal submatrix of G obtained by deleting the kth rows
and columns for k /∈ S and let

CS =

( ⋂

i∈S

Hαi

)⋂( ⋂

i∈I\S
H−

αi

)
⊂ D

13



be the corresponding facet of D. Clearly C∅ = C and CI = {0}.

Suppose now that G is an indecomposable symmetric matrix that satisfies

gii = 1 and gij ≤ 0 for i 6= j. (2.1)

Note that in the case that G is the Gram matrix of a nondegenerate finite convex polyhedron
D̃ ⊂ Hn this is equivalent to the assumption that no angle of D̃ exceeds π/2. The matrix G can
be either nonnegative definite or indeterminate. If G is positive definite then all the elements of
G−1 are nonnegative (see for example [7], Lemma 9.1). If G is nonnegative definite and degenerate
then by the Perron-Frobenius lemma ([12], Section 2.6) its kernel is one-dimensional and spanned
by a vector δ =

∑
i∈I kiαi with all ki > 0. Furthermore, if G is nonnegative definite then all its

proper principal submatrices are positive definite.
A matrix G = (gij) that satisfies condition (2.1) is called critical if it is not positive definite, yet all
its proper principal submatrices are positive definite. A critical matrix is always indecomposable.

Proposition 1. (Theorem 1 in [19]) Let D̃ =
⋂

i∈I H̃
−
αi ⊂ Hn be a nondegenerate finite convex

polyhedron with finite volume and with indecomposable Gram matrix G that satisfies condition 2.1.
Then

1. GS = G0
S is a principal submatrix of rank n− 1 of G ⇔ CS ∩Hn is a vertex at infinity of D̃.

2. GS = G+
S is a principal submatrix of rank m of G ⇔ CS ∩Hn is an ordinary face of D̃ of

codimension m.

Proof. (the proof here basically follows the proofs of Lemma 3 and Lemma 5 in [18])

1. ⇒: Suppose GS = G0
S , where I ⊃ S = {1, ..., l}. Let ki be the positive coefficients of the

linear dependence between the rows of the matrix GS . Suppose that δ = 0. Then for j > l
we have 0 = (δ, αj) =

∑l
i=1 kigij . Because ki > 0 and gij ≤ 0 for all i it then follows that

gij = 0 for all i and hence the Gram matrix G would be decomposable. So it follows that
δ 6= 0 and δ is an isotropic vector that generates the one dimensional orthogonal complement
of < αi | i ∈ S >. Now let j > l. Since (αj , αi) ≤ 0 for all i ∈ S, (αj , δ) ≤ 0. Suppose that
(αj , δ) = 0. Then (αj , αi) = 0 for all i ∈ S and thus αj is in the orthogonal complement of
U =< αi | i ∈ S >. The subspace U is an n-dimensional parabolic subspace orthogonal to
Rδ and hence αj = λδ for a λ ∈ R. This is impossible since α2

j = 1. So δ2 = 0, (αj , δ) < 0
for all j ∈ I \ S and (αi, δ) = 0 for all i ∈ S. Hence CS = Rδ is a ray at the boundary of V+

that corresponds to a vertex at infinity of D̃.
⇐: Suppose that the facet CS is a ray on the boundary of V+ corresponding to a vertex q at
infinity of D̃. The linear plane C⊥

S =< αi | i ∈ S > orthogonal to this ray is an n-dimensional
parabolic subspace of V . Thus the matrix GS is nonnegative and hence by Perron-Frobenius
has a 1-dimensional kernel. Now suppose that GS is decomposable, say GS = A1 ⊕A2 with
A1 = A+

1 . Suppose furthermore that S = {1, ..., k} and that α1, ..., αl (l < k) are the vectors
that participate in the formation of A1. These vectors span an elliptic subspace M1. Now let
x ∈ M1 be a nonzero vector that satisfies (αi, x) ≤ 0 for i = 1, . . . , l. Since x ∈ M1 we also
have (x, αi) = 0 for i = l+1, . . . , k. If f ∈ CS ∩ V + then for ǫ > 0 small enough f + ǫx ∈ D.
But also (f + ǫx)2 = ǫ2x2 > 0 so f + ǫx /∈ V + which contradicts the assumption that D̃ has
finite volume. So the matrix GS is indecomposable and it thus follows that GS is a principal
submatrix of rank n− 1 and GS = G0

S .

2. ⇒: Suppose GS = G+
S is a principal submatrix of rank m, say S = 1, ...,m. Then the

vectors α1, ..., αm form a basis of an m-dimensional elliptic subspace of Rn,1. The orthogonal
complement M⊥ of M =< αi | i ∈ S > is a hyperbolic subspace of codimension m and

M̃⊥ = M⊥ ∩ Hn is a hyperbolic plane of codimension m. The orthogonal projection of
x ∈ Rn,1 on M⊥ is

xM⊥ = x−
∑

i,j∈S

hij(x, αi)αj ,

14



where the hij ≥ 0 are the entries of G−1
S . Then for x ∈ D and k /∈ S we see that

(xM⊥ , αk) = (x, αi)−
∑

i,j∈S

hij(x, αi)(αj , αk) ≤ 0.

Since furthermore (xM⊥ , αk) = 0 for k ∈ S it then follows that xM⊥ ∈ D. Thus also if x ∈ D̃
then xM⊥ ∈ D̃. Hence the orthogonal projection of D̃ on M̃⊥ lies in D̃. Since it contains a

nonempty open subset of M̃⊥, M⊥ ∩ D̃ = CS ∩Hn is a face of codimension m of D̃.
⇐: Now suppose that CS ∩ Hn is an ordinary face of D̃ of codimension m and let M be
the linear plane that contains the facet CS . Since CS ∩ Hn is an ordinary face this is an
m−dimensional hyperbolic subspace. The vectors αi with i ∈ S generate the orthogonal
complement M⊥ of M that is thus an (n − m)-dimensional elliptic subspace. If GS is
not positive definite then there must be a linear dependence with nonnegative coefficients
between the rows of GS (GS cannot be indeterminate since the αi with i ∈ S span an elliptic
subspace). But if this was true there would also be a linear dependence between the αi with
i ∈ S. As this is not the case, it follows that GS = G+

S and GS is a principal submatrix of
rank m.

The polyhedron D̃ can be shown to be bounded or to have finite volume without completely
determining its combinatorial structure by verifying the following conditions (Proposition 1 in
[19]):

1. D̃ has finite volume if and only if for any critical principal submatrix GS of the Gram matrix
G

(a) if GS = G0
S , then there exists a subset T ⊂ I that contains S, GT = G0

T and rank
GT = n− 1.

(b) if GS = G−
S , then CS = {0}.

2. D̃ is bounded if and only if the Gram matrix G contains no degenerate nonnegative defi-
nite principal submatrices and any indeterminate critical principal submatrix of G satisfies
condition (b).

Proof. 1. ⇒: Suppose that D̃ has finite volume and let GS be a critical principal submatrix of
G. First suppose that GS = G0

S . The kernel of GS is spanned by a vector δ =
∑

i∈S kiαi

with ki > 0. This δ is an isotropic vector that corresponds to a vertex at infinity q of D̃.
Now let T = {i ∈ I | (αi, δ) = 0} so that q = CT ∩Hn. Then S ⊂ T and by Proposition 1,
GT = G0

T and rank GT = n− 1.
Now suppose that GS = G−

S . Since (by Perron-Frobenius) all principal submatrices of an
indecomposable semidefinite Gram matrix satisfying condition 2.1 are positive definite, GS

cannot be contained in a semidefinite principal submatrix. It thus follows that CS cannot be
any other facet of D then {0}.
⇐: Now assume that conditions (a) and (b) are satisfied and suppose that CS is an extremal
ray of the convex cone D that is not in V+. Then by Proposition 1 the matrix GS cannot
be positive definite. Hence GS contains a critical principal submatrix GT1

. Since CS ⊂ CT1
,

CT1
6= {0}. Thus by condition (b) GT1

is nonnegative and therefore semidefinite. Now
it follows from condition (a) that there exists a T2 ⊃ T1 such that GT2

= G0
T2

and rank
GT2

= n − 1. By Proposition 1, T2 = {i ∈ I | (αi, q) = 0} where q is a vertex at infinity.
Any face of D̃ that contains this vertex (and is not equal to this vertex) is an ordinary face
and thus corresponds to a positive definite principal submatrix. GT1

cannot be contained in
a positive definite principal submatrix so it follows that CT1

= CT2
. Because T1 ⊂ S we have

CS ⊂ CT1
and CS corresponds to the vertex q at infinity. It thus follows that D ⊂ V + ∪ {0}

and hence D̃ has finite volume.

2. ⇒: If D̃ is bounded GS = G0
S is impossible since by the proof of 1. above it would then follow

that D̃ has a vertex at infinity. If GS = G−
S the proof of 1. above shows that CS = {0}.

15



⇐: Now we assume that G contains no semidefinite critical principal submatrices and it then
follows immediately from the discussion of case 1. that D ⊂ V+ and hence D̃ is bounded.
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Chapter 3

Lattices

In this chapter we describe the root lattices that will later play an important role in the classification
of Niemeier lattices. We also explain how a lattice determines a reflection group. Finally, we
describe the theory of gluing and define the covering radius and holes of a lattice. Most of it can
be found in [6] chapters 1,2 and 4.

Definition 2. A lattice L in a real vector space V of finite dimension n is a subgroup of V such
that there exist an R-basis {v1, ..., vn} of V which is a Z-basis of L, i.e. L = Zv1 ⊕ ... ⊕ Zvn.
Equivalently: L is an additive subgroup that is discrete and V \L is compact. Furthermore, V (and
thus L) is equipped with a symmetric bilinear form (·, ·).

We write l2 = (l, l) for the norm of l ∈ L. An n-dimensional lattice Ln = Zv1 ⊕ ... ⊕ Zvn is
called integral if l2 ∈ Z for all l ∈ Ln, and even if l2 ∈ 2Z for all l ∈ Ln. We will say that a
lattice is positive definite, hyperbolic, etc. if the bilinear form (·, ·) has this signature. A Gram
matrix of a lattice is the Gram matrix of a basis for this lattice. The determinant of a lattice is
the determinant of such a Gram matrix, it is denoted by detL. A lattice is called unimodular if
the determinant is ±1.
The dual lattice of a lattice Ln is given by L∗

n = {x ∈ Rn | (x, l) ∈ Z for all l ∈ Ln}. A lattice L is
integral if and only if L ⊂ L∗. If G is the Gram matrix of L then L∗ has Gram matrix G−1 for the
dual basis and detL∗ = (detL)−1. For an integral lattice the group L∗/L of order detL is called
its dual quotient group. So an integral lattice L is unimodular if and only if L = L∗.
Take a basis {v1, ..., vn} of Ln and let A be the n× n matrix which has as rows the vectors vi. A
is called a generator matrix for the lattice Ln and Ln consists of all vectors

ξA,

with ξ ∈ Zn. The Gram matrix of Ln is G = AAt and detLn = (detA)2. Furthermore, (A−1)t is
a generator matrix for L∗

n. For any integral lattice we have:

L ⊂ L∗ ⊂ 1

detL
L.

(If l∗ ∈ L∗ then l∗ = ξ(A−1)t = ξ(A−1)tA−1A = (detL)−1ξadj(G)A = (detL)−1ηM , where
ξ, η ∈ Zn).
From now on all lattices will be integral.

3.1 Root lattices and reflection groups

Let L be a lattice. A root α ∈ L is an element such that reflection by its orthogonal hyperplane in

V is in Aut(L), i.e. rα : λ 7→ λ−2 (α,λ)
(α,α)α is an element of Aut(L). Thus α is a root if λ−2 (α,λ)

(α,α)α ∈ L

for all λ ∈ L. The root system R(L) of L is the set of all roots:

R = R(L) =

{
α ∈ L | 2 (α, λ)

(α, α)
∈ Z for all λ ∈ L

}

17



Thus for an integral lattice L the roots are the vectors of norm 1 and 2 in L, which are called the
short and long roots respectively. If L is even then there are no roots of norm 1 so the root system
of L in this case is R(L) = {α ∈ L | α2 = 2}.

Let L be an even lattice. The subgroup W (L) =< rα | α ∈ R > < Aut(L) is the reflection group
of L. The hyperplanes perpendicular to the roots of L divide the real vector space V = L ⊗ R
into regions. Choose one such a connected component C, the Weyl chamber. Define the positive
roots to be those roots with positive product with all vectors in C, i.e. R+ = {α ∈ R | (ξ, α) >
0 for all ξ ∈ C}. We will also write α > 0 to indicate that α is a positive root. Similarly, the
negative roots α < 0 are the set of roots R− = {α ∈ R | (ξ, α) < 0 for all ξ ∈ C}. The simple
roots are those roots that are perpendicular to the faces of C and that have product at most 0
with all elements of C. So α ∈ R− is simple if it is not of the form α = jβ+kγ, where j, k ≥ 1 and
β, γ ∈ R−. (Contrary to what is common, here the simple roots are negative. With this convention
a root is a simple root iff it has product at most 0 with all other simple roots and it is a simple
root iff it has product at most 0 with all elements of C.)
Denote by Q = Q(R) = ZR ⊂ L the root lattice with dual weight lattice P = P (R) = Q∗ = {λ ∈
V |(λ, α) ∈ Z for all α ∈ Q}(= {λ ∈ V |(λ, α) ∈ Z for all α ∈ R+}). Let P+ = {λ ∈ P |(λ, α) ∈
N for all α ∈ R+} be the cone of dominant weights.

To each lattice L (not necessarily positive definite) with a fixed Weyl chamber C we can at-
tach a Coxeter-Dynkin diagram which is determined by the Gram matrix of the simple roots. To
each simple root we associate a vertex, and two vertices corresponding to distinct simple roots
αi, αj are joined by −(αi, αj) lines. If L is even and positive definite then two vertices are always
joined by 0 or 1 lines, in this case we say that the diagram is simply laced. The only possible
irreducible simply laced diagrams are those of the types An (n ≥ 1), Dn (n ≥ 4), E6, E7 and E8

(for a proof see [12] section 2.7). So the diagram of an even and positive definite lattice is a union
of diagrams of these types. The diagrams are shown in Figure 3.1 below. Hence if L is a positive
definite even lattice then the root lattice Q = ZR(L) is an orthogonal sum of lattices isomorphic to
one of the lattices An, Dn, E6, E7 and E8. In the case of a hyperbolic lattice the Coxeter diagram
may contain multiple bonds.

An

Dn

E6

E7

E8

Figure 3.1: Irreducible simply laced root diagrams of finite type.

The Coxeter number h of an irreducible root system is the number of roots divided by the di-
mension. The Coxeter number of a component of a positive definite lattice L is defined as the
Coxeter number of the lattice generated by the roots of that component. In the following table
we list the above root lattices with their Coxeter number and the order of their dual quotient group.

For a positive definite lattice L with a chosen Weyl chamber C the Weyl vector ρ ∈ L ⊗ R
is the vector that has inner product −1 with all simple roots of C. It is given by ρ = 1

2

∑
α>0 α.

This ρ does indeed satisfy (ρ, αi) = −1 for all simple αi:
Let αi be a simple root. It is well known that in this case r−αi

(R+ \ {−αi}) = R+ \ {−αi} ([12]
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Table 3.1: Root lattices
Root system Coxeter number Determinant

An n+ 1 n+ 1
Dn 2n− 2 4
E6 12 3
E7 18 2
E8 30 1

Proposition 5.6). Hence

r−αi
(ρ) = r−αi


1

2

∑

β∈R+\{−αi}
β − 1

2
αi




=
1

2

∑

β∈R+\{−αi}
β +

1

2
αi

= ρ+ αi

= ρ+ (ρ,−αi)αi.

Clearly, the Weyl vector ρ is in the Weyl chamber C. If L is not positive definite there may or
may not be a Weyl vector, that is, a vector that has product −1 with all simple roots.

Assume from now on that L is a positive definite even lattice. For a component R of the Coxeter
diagram of L the orbit of roots of L under the Weyl group W (L) has a unique representative α0

that is in the Weyl chamber C. This root is called the highest root. If α1, ..., αj are simple roots of

R then −α0 =
∑j

i=1 kiαi, where the ki are positive integers called the weights of the roots αi and∑j
i=1 ki = h − 1. Equivalently, 0 =

∑j
i=0 kiαi, with k0 = 1 and

∑j
i=0 ki = h. The diagram ob-

tained by adding the highest root is the extended Coxeter diagram of L. It is the Coxeter diagram
of a semi-definite lattice L̃. We write R̃n for the extended Coxeter diagram corresponding to the
Coxeter diagram Rn. The extended diagrams for the diagrams in Figure 3.1 are shown below in
Figure 3.2 (see [12] section 4.7). The numbers next to the nodes are the coefficients ki. Any node
with coefficient 1 is called a special vertex, its removal would give back the diagram corresponding
to (a component of) the Coxeter diagram of the positive definite lattice.

Example 1. The lattice D+
n .

The root lattice of type Dn (n ≥ 4) is given by

Dn = {(x1, ..., xn) ∈ Zn | x1 + ...+ xn ∈ 2Z}.

The determinant of the Gram matrix of Dn is 4 for all n. Coset representatives for D∗
n/Dn are:

[0] = (0, 0, ..., 0), with norm 0,

[1] = (
1

2
,
1

2
, ...,

1

2
,
1

2
), with norm

n

4
,

[2] = (0, 0, ..., 1), with norm 1,

[3] = (
1

2
,
1

2
, ...,

1

2
,−1

2
), with norm

n

4
.

Let n ∈ 2N, ω := [1] and define the lattice D+
n = Dn ∪ (ω+Dn). D

+
n is a sublattice of the dual

lattice D∗
n of index 2, since 2ω ∈ Dn for n ∈ 2N. Also, since ω2 = n

4 , D
+
n is even iff n ∈ 8N. If

n ∈ 8N then D+
n is the unique even unimodular lattice (up to isomorphism) that contains Dn as

a sublattice of rank 2 (D+
n is isomorphic to Dn ∪ ([3] +Dn)). Furthermore, D+

8 = E8. However,
D+

16 ≇ 2E8 since the norm 2 vectors in D+
16 generate the index 2 sublattice D16. Indeed, D16 is

irreducible while 2E8 is reducible.
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1 1
Ã1

1 1 1 1 1 1

1

Ãn(n≥2)

2 2 2 2 2

1

1

1

1

D̃n(n≥4)

1 2 3 2 1

2

1

Ẽ6

1 2 3 4 3 2

2

1
Ẽ7

2 3 4 5 6 4 2

3

1
Ẽ8

Figure 3.2: Extended root diagrams labelled with the integers ki.
’

The construction of D+
n is an example of gluing lattices.

In general, starting with integral lattices L1, ..., Lk (not necessarily distinct) of total dimension
n one can construct an n-dimensional integral lattice L that has as a sublattice the direct sum
L1 ⊕ ...⊕Lk. A vector of L is of the form l = l1 + ...+ lk with li ∈ L∗

i (not necessarily in Li). Let
{ωn

i | n = 1, . . . , det(Li)} be a set of standard representatives for the cosets of Li in L∗
i , they are

called the glue vectors for Li. In this context the group L∗
i /Li is also called the glue group. The

glue vectors are usually chosen to be of minimal length in their coset. The lattice L is generated
by L1 ⊕ ...⊕ Lk and a set of vectors {gj} of the form

gj = gj1 + ...+ gjk, (3.1)

where gji ∈ {ωn
i } is one of the standard representatives of L∗

i /Li for all i. These vectors are also
called glue vectors. They must have integral product with each other and be closed under addition
modulo L1⊕ ...⊕Lk. The additive group formed by the glue vectors is called the glue code. It can
happen that for a glue vector gj only one of the gji in 3.1 is nonzero. In this case the component
Li has self-glue. The lattice D+

n is constructed by self-gluing Dn. Since the sublattice Q = ZR(L)
of an integral lattice L is a direct sum of root lattices, the root lattices are a particularly good
choice for the lattices Li. The classification of Niemeier lattices described in section 5.3 is a good
example of the use of gluing theory.

3.2 Covering radius and holes

Let L be a positive definite lattice and let V = L⊗R be the ambient Euclidean space. The covering
radius R of L is the smallest R > 0 such that the spheres of radius R centered at the points of L
will cover V . It is given by

R = sup
x∈V

inf
l∈L

√
(x− l)2.

For each point l ∈ L its Voronoi cell V (l) consists of those points in V that are at least as close to
l as to any other l′ ∈ L. Thus

V (l) = {x ∈ V | (x− l)2 ≤ (x− l′)2 for all l′ ∈ L}.
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The Voronoi cells are compact convex polytopes whose union is V . Their interiors are disjoint,
but they do have faces in common. All Voronoi cells of a lattice L are congruent and have volume
equal to

√
detL. We will sometimes call V (0) the Voronoi cell of L. For any irreducible root lattice

Q = ZR(L) the Voronoi cell is the union of the images of the fundamental simplex (or standard
alcove) A = {ξ ∈ Q ⊗ R | 0 ≤ (ξ, α) ≤ 1 for all α ∈ R+} under the (finite) Weyl group W (R(L))
(see [6], Chapter 21, Theorem 5).
The vertices of the Voronoi cells are called holes. The radius R(ξ) of a hole ξ is its distance from
L so it is given by

R(ξ)2 = inf{(l − ξ)2 | l ∈ L}.
The holes with maximum radius are called the deep holes, their radius is equal to the covering
radius of L. The other holes are called shallow holes. The vertices of a hole ξ of L are the elements
of the set

L(ξ) = {l ∈ L | (l − ξ)2 = R(ξ)},
i.e. the lattice points l such that ξ is a vertex of the Voronoi cell V (l).
The packing radius of L is defined to be the largest r > 0 such that balls with radius r centered at
the lattice points do not overlap. The covering radius is the circumradius of V (0), i,e. the radius
of the smallest circumscribed sphere. The packing radius is the inradius of V (0), i.e. the radius of
the largest inscribed sphere.
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Chapter 4

The Algorithm of Vinberg

In this chapter we describe the algorithm of Vinberg. This is an algorithm to determine a fun-
damental domain D̃ for a discrete group W < O+(n, 1) generated by reflections. The idea of the
algorithm is as follows: Pick a point c ∈ Hn. The set of mirrors Hc = {Hα | rα ∈ W, (α, c) = 0}
that contain c divide Hn into convex regions. Let D̃c be the closure of one of those components
that contain c. It is a fundamental domain for the subgroup Wc < W generated by the reflections
whose mirrors contain c. Now there is a unique fundamental domain D̃ of W that contains c and
is contained in D̃c. The polyhedron D̃ is bounded by the mirrors in Hc. The other mirrors that
bound D̃ are found by moving away from the point c inside D̃c while checking which mirrors one
meets. That is, the mirrors are enumerated by increasing distance from c.
The precise formulation of the algorithm is as follows: Pick a point c ∈ Hn. Let Rc = {α ∈ V =
Rn,1 | α2 > 0, (c, α) ≤ 0 and rα ∈ W}. Form a sequence α1, α2, . . . ∈ Rc according to the following
rules:

1. Pick α1, ..., αk ∈ Rc such that

D̃c =
k⋂

i=1

H̃−
αi .

2. for l > k pick αl ∈ Rc that satisfies

(αl, αi) ≤ 0 for all i < l,

and such as to minimize the distance d(c, H̃αl
) from the point c to the hyperplane H̃αl

.

Then
D̃ =

⋂

i

H̃−
αi

is a fundamental domain for W (see [19], §3).
Now suppose that Γ is a discrete subgroup of motions of Hn with W ⊳Γ the subgroup generated by
reflections that has fundamental domain D̃. Denote by Sym(D̃) the symmetry group of D̃. Then
the group Γ decomposes into a semidirect product

Γ = W ⋊H,

where H ⊂ Sym(D̃).

Below we will give a formulation of Vinberg’s algorithm for the case that W corresponds to an
even lattice and also give a proof for this case. This is also the formulation of Vinberg’s algorithm
we will use later.

In general, to obtain a hyperbolic reflection group from a lattice start with a hyperbolic lat-
tice L ⊂ V = Rn,1, n ≥ 1. The automorphism group of L is the discrete subgroup Aut(L) = {g ∈
O(V ) | g(L) = L} < GL(V ). In the case that L is an integral lattice Aut(L) = GL(n+1,Z)∩O(V ).
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As before V+ = {λ ∈ Rn,1 | λ2 < 0 and xn+1 > 0} and the hyperboloid model is used for the hy-
perbolic space Hn. Denote the mirror of a root α ∈ R(L) by Hα = {ξ ∈ V | (ξ, α) = 0}. Choose a
connected component C̃ = C ∩Hn ⊂ Hn \⋃α∈R H̃α, also called the Weyl chamber. As before, we

denote by D̃ and D the closure of C̃ resp. C. Define W ′(L) =< rα | α simple root >. This is the
same situation as in Chapter 2 so again W ′ = W , D̃ is a fundamental domain for the action of W
on Hn and W has a Coxeter representation.

Now let L be an even lattice. Then a fundamental domain D̃ and its simple roots for the ac-
tion of W = W (L) on Hn can be found by Vinberg’s algorithm as follows:
Choose a controlling vector c ∈ P+(= P ∩ D̃). Define for α ∈ R− the height of α with respect
to c by ht(α) = −(c, α) ∈ N, it can be interpreted as a measure for the distance between H̃α

and c. Let Wc ⊳ W be the subgroup generated by the reflections whose mirrors contain c, i.e.
Wc =< rα|α ∈ R− and ht(α) = 0 >. This is a finitely generated group. In particular if c2 < 0
then R ∩ c⊥ is of finite type and if c2 = 0 then R ∩ c⊥ is of finite or affine type. Let D̃c be
the closure of the connected component of Hn \ ⋃{α|rα∈Wc} H̃α that contains c (possibly in the

closure). There is a unique fundamental domain D̃ of W that is contained in D̃c and its simple
roots can be found as follows:

1. A positive root with ht(α) = 0 is a simple root of D̃ if and only if it is a simple root of D̃c.

2. For α < 0 with ht(α) ≥ 1: α is a simple root if and only if (α, β) ≤ 0 for all simple β < 0

with ht(β) ≤ ht(α)
2 .

Proof. (this proof follows the one in [10])

1. Clear

2. Since (α, β) ≤ 0 holds for all simple roots α, β it is clear that the implication ⇒ holds.
Conversely, it is also true that α is a simple root if (α, β) ≤ 0 for all simple roots β. We need

to prove that it suffices to only check this condition for all simple β such that ht(β) ≤ ht(α)
2 .

So let α < 0 be a root with ht(α) ≥ 1 that satisfies the condition that (α, β) ≤ 0 for all simple

β < 0 with ht(β) ≤ ht(α)
2 and suppose that α is not a simple root. So H̃α does not bound D̃

and there exists a simple root γ such that (α, γ) � 0 and thus (α, γ) ≥ 1. Since (α, β) ≤ 0

for all simple β < 0 with ht(β) ≤ ht(α)
2 it follows that ht(γ) > ht(α)

2 . Since furthermore
rγ(α) ∈ R− and thus ht(rγ(α)) = ht(α) − (α, γ)ht(γ) ∈ N it follows that (γ, α) = 1. Then
(α, rγ(α)) = (α, α− γ) = (α,−rα(γ)) = (α, γ) = 1. So also (α, rγ(α)) = 1.
On the other hand, since α is not a simple root it can be written as a linear combination
α =

∑m
i=1 niαi, where m ≥ 2, ni ≥ 1 and the αi are simple roots. Now suppose γ 6= αi for

all i ∈ {1, ...,m}. Then (α, γ) =
∑

ni(αi, γ) ≤ 0 since (αi, γ) ≤ 0 for all simple roots αi and
ni ≥ 1. Thus γ = αi for an i ∈ {1, ...,m}, after possible renumeration we can suppose that
γ = α1. Then

ht(α) = n1ht(γ) +

m∑

i=2

niht(αi) > n1
ht(α)

2
+

m∑

i=1

niht(αi).

Thus n1 = 1 and ht(αi) < ht(α)
2 for all i ≥ 2 since otherwise the term on the right would

exceed ht(α). Since α satisfies the condition in 2. above it then follows that (α, αi) ≤ 0 for
all i ≥ 2. Hence (α, rγ(α)) = (α, α − γ) =

∑
i≥2 ni(α, αi) ≤ 0. This is a contradiction and

thus α has to be a simple root.

Now the group of orthochronous automorphisms of L, Aut+(L) = Aut(L) ∩O+(n, 1), is given by

Aut+(L) = W ⋊ Sym(D̃),

where the symmetry group of the fundamental domain D̃, Sym(D̃), is the same as the symmetry
group of the Coxeter diagram of L determined by the simple roots of D̃.
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Note that if a finite set of simple roots {α1, . . . , αk} determined by Vinberg’s algorithm is such

that the volume of D1 =
⋂k

i=1 H̃
−
αi is finite then this set consists of all simple roots and hence D1

is a fundamental domain of W . Indeed, suppose that αk+1 is a simple root that is not equal to one

of the αi, i ≤ k and set D2 =
⋂k+1

i=1 H̃−
αi . Then the Gram matrix of D1 is a principal submatrix of

the Gram matrix of D2. So any principal submatrix of D1 that corresponds to a vertex (including
those at infinity) is also a principal submatrix of D2 corresponding to the same vertex. Hence
all vertices of D1 are also vertices of D2. Since D1 has finite volume this can only be the case if
D1 = D2 which is impossible.
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Chapter 5

Even Unimodular Lattices

This chapter deals with even unimodular lattices. We say that a lattice is of type IIp,q if it is an
even unimodular lattice with signature (p, q). If q is zero we write IIp. First we describe what is
known about the classification of such lattices. Then we describe the relation between primitive
norm zero vectors of a lattice L of type II8n+1,1 and lattices of type II8n. After that, we treat
the examples II9,1 and II17,1 applying the theory of the chapters 2 and 4. We then turn to the
classification of the Niemeier lattices, presenting Boris Venkov’s proof of this classification. We
end this chapter with some results on Niemeier lattices that we will need in the last chapter.

A modular form of weight 2k is a series

f(z) =

∞∑

n=0

anq
n =

∞∑

n=0

ane
2πinz, (with q = e2πiz)

which converges for |q| < 1 (and hence for Im(z) > 0) and which satisfies the identity

f(−1/z) = z2kf(z).

A modular form is called a cusp form if it furthermore satisfies a0 = 0. Note that if f1 and f2 are
modular forms of weight 2k1 and 2k2 then f1f2 is a modular form of weight 2k1 + 2k2. Chapter
VII of [17] provides a good introduction into modular forms.

From now on assume that L is an even unimodular lattice. For a positive definite lattice L
the theta series of L is

θL(z) =
∑

λ∈L

qλ
2/2 =

∞∑

m=0

Nm · qm/2,

where q = e2πiz and Nm is the number of lattice vectors λ ∈ L that satisfy λ2 = m.
The following theorem is a result of Hecke ([17], Chapter VII, Theorem 8).

Theorem 1. If L is a lattice of type IIn then

1. n is divisible by 8,

2. θL is a modular form of weight n/2.

The algebra of modular forms coincides with C[E2, E3] where the Eisenstein series Ek are
modular forms of weight 2k given by

Ek(z) = 1 + (−1)k
4k

Bk

∞∑

m=1

σ2k−1(m)qm,

with σk(m) =
∑

d|m dk and the Bernoulli numbers Bk are defined by

x

ex − 1
= 1− x

2
+

∞∑

k=1

(−1)k+1Bkx
2k

(2k)!
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In particular

E2(z) = 1 + 240

∞∑

m=1

σ3(m)qm, and

E3(z) = 1− 504

∞∑

m=1

σ5(m)qm.

Let L be a lattice of type IIn with n = 8m. Since θL(0) = 1 it follows from Theorem 1 that
θL − E2m is a cusp form of weight 2m. Using this the theta series for n = 8, 16 and 24 can be
determined. Following example 6.6 in [17] we get:

1. if n = 8 then θL = E2 since the only cusp form of weight 2m = 4 is zero. The number of
roots of L is 240,

2. if n = 16 then θL = E2
2 = E4 since the only cusp form of weight 2m = 8 is again zero. The

the number of roots of L is 480.

3. if n = 24 then θL is a modular form of weight 12. The space of modular forms of this weight
is two dimensional. A basis is formed by the functions:

E6(z) = 1 +
65520

691

∞∑

m=1

σ11(m)qm = 1 +
65520

691
(q + 2049q2 + 177148q3 + 4196353q4 + . . .), and

∆(z) = q

∞∏

m=1

(1− qm)24 =

∞∑

m=1

τ(m)qm = q − 24q2 + 252q3 − 1472q4 + . . . ,

where τ is called Ramanujan’s function. We have θL = E6 + c∆ = 1 +N2q
2 + . . ., with N2

the number of roots of L. It follows that c = N2 − 65520
691 and thus

θL = E6 + (N2 −
65520

691
)∆. (5.1)

Because the number of roots of an irreducible root system is equal to nh, where h is the Coxeter
number of the root system, we can determine from Table 3.1 that the only possible root sys-
tem for a lattice of type II8 is E8. Furthermore, for a lattice of type II16 the only possible root
systems are 2E8 and D16. It thus follows that up to isomorphism there is exactly one even uni-
modular lattice of type II8, namely E8, and two even unimodular lattices of type II16, 2E8 and D+

16.

The Minkowski-Siegel mass formula provides another check that these enumerations are correct.
It is given by

∑

L

1

|Aut(L)| =
B2k

8k

4k−1∏

j=1

Bj

4j
,

where n = 8k and the sum is over the isomorphism classes of lattices of type IIn. In [6] (Chapter
16) the correctness of the classification of the lattices of type II24, the Niemeier lattices, is verified
using this formula. It also follows from the mass formula that the number of isomorphism classes
of lattices of type IIn increases very rapidly as n increases. Indeed, for n = 32 the right hand side
of the mass formula is already greater than 4 ·107. Since |Aut(L)| ≥ 2 for all L it then follows that
there are at least 8 · 107 isomorphism classes of lattices of type II32. Refining this argument, King
[14] later showed that there are at least 116 · 107 isomorphism classes of such lattices. Further-
more, he shows that among these there are more than 1 · 107 without roots. Kervaire has shown
in [13] that there are exactly 132 indecomposable even unimodular 32-dimensional lattices with a
complete root system (i.e. a root system R such that Q = ZR is a subgroup of finite index in the
corresponding lattice). Among these, several lattices happen to have the same root system. There
occur 119 different root systems. A complete classification of the lattices of type IIn for n ≥ 32
seems hopeless.

Contrary to positive or negative definite integral even unimodular lattices, the indefinite lattices
of this type are classified for all dimensions. There only exists a lattice of type IIp,q with p, q ≥ 1
if p− q ∈ 8Z and in this case it is unique (see [17], Chapter V).
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5.1 Norm zero vectors in hyperbolic lattices

In this section we describe the relation between norm zero vectors in hyperbolic lattices and
extended Coxeter diagrams in the Coxeter diagram of L. We follow the discussion on this in [3].
Let n ∈ 8N and L of type IIn+1,1. Let U be the lattice of type II1,1 with basis {x, y} and symmetric
bilinear form (·, ·) that satisfy: x2 = y2 = 0 and (x, y) = −1. A vector x ∈ L is primitive if for all
k > 1, x

k /∈ L.

Lemma 4. If x ∈ L is a primitive norm zero vector then there is a vector y ∈ L with y2 = 0 and
(x, y) = −1.

Proof. Let x ∈ L be a primitive norm zero vector. Since L is unimodular, we have L = L∗ and
thus there is an y ∈ L with (x, y) = −1. If y2 = 0 then y already satisfies the requirements in the
Lemma. Now suppose y2 6= 0, say y2 = k ∈ 2Z. Then (y + k

2x)
2 = y2 + 2k

2 (x, y) = k − k = 0 and

(y + k
2x, x) = (x, y) = −1. So y + k

2x is an element of L that satisfies the requirements.

Thus a primitive norm zero vector x ∈ L is contained in a rank 2 sublattice U . Since N and
U are both unimodular, N ⊕ U is also unimodular and has signature (25, 1). Hence L = N ⊕ U
and the orthogonal complement N of U is a lattice of type IIn. It follows that there are bijective
correspondences between the sets:

1. n-dimensional even unimodular lattices (up to isomorphism),

2. sublattices of L isomorphic to U (up to the action of Aut(L)),

3. primitive norm zero vectors in L (up to the action of Aut(L)).

Instead of the basis {x, y} of U with symmetric bilinear form (·, ·) that satisfies: x2 = y2 = 0 and
(x, y) = −1 we will also use the basis (x1, x2) for R1,1, where x1 = 1

2x − y and x2 = 1
2x + y. So

x2
1 = 1, x2

2 = −1, and (x1, x2) = 0. Note that this is not a lattice basis for U .

If N is a lattice of type IIn that corresponds to a norm zero vector x ∈ L then x⊥/〈x〉 ∼= N
with 〈x〉 the one-dimensional singular lattice generated by x. Also, x⊥ ∼= N ⊕ 0 where we write 0
for the one-dimensional singular lattice. If N has roots then the Coxeter diagram of N ⊕ 0 is the
Coxeter diagram of N with all irreducible components R replaced by the extended diagrams R̃.
Now assume that N has roots and let L = N ⊕ U with coordinates (ν,m, n) (with respect to the
basis {x, y} of U) where ν ∈ N,m, n ∈ Z and (ν,m, n)2 = ν2 − 2mn. Then z = (0, 0, 1) is a
primitive norm zero vector that corresponds to the n-dimensional even unimodular lattice N . The
roots in z⊥ ∼= N ⊕ 0 are the vectors of the form (α, 0, n) with α ∈ R(N) and n ∈ Z. Suppose that
R(N) =

∑
i Ri with the Ri irreducible components of R(N). Let {αj

i | j = 1, . . . , rk Ri} be a set
of simple roots for the components Ri and let α0

i be the corresponding highest roots. As a set of
simple roots for z⊥ we can pick the vectors

f j
i = (αj

i , 0, 0), for j ≥ 1, and

f0
i = (α0

i , 0, 1).

So the set of vectors {f j
i | j = 0, . . . , rk Ri} form the extended Coxeter diagram R̃i and furthermore∑

j kjf
j
i = z, where the kj are the weights of the vertices of R̃i. If we apply Vinberg’s algorithm

with z as a controlling vector we find a unique fundamental domain D̃ of L that contains z and
such that all the vectors f j

i that form the extended Coxeter diagrams R̃i are simple roots of D̃.
On the other hand, suppose that D̃ is a fundamental domain of L and that R̃ is a connected
extended Coxeter diagram in the Coxeter diagram of D̃. Then there is a primitive norm zero
vector x in L that is in D̃ and such that (x, αi) = 0 for all simple roots αi of R̃:
Indeed, set x =

∑
i kiαi with αi the simple roots of R̃ and the ki their weights. Then x2 = 0 and

(x, αi) = 0 for all αi. Furthermore, if α is a simple root of D̃ then (x, α) ≤ 0 since all αi have
inner product at most zero with α.
It follows that there also is a bijective correspondence between the sets:

1. maximal disjoint sets of extended Coxeter diagrams in the Coxeter diagram of D̃ such that
no two diagrams in the set are joined to each other, and

2. primitive norm zero vectors of D̃ that have at least one root perpendicular to them.
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5.2 The lattices II9,1 and II17,1

Consider Rn+1,1 with quadratic form x2 =
∑n+1

i=1 x2
i −x2

n+2. Denote by {ǫi}n+2
i=1 the standard basis

of Rn+1,1. Consider IIn+1,1 with n ∈ 8N. Let r = ( 12 , ...,
1
2 ) ∈ Rn+1,1. Then x ∈ Rn+1,1 is an

element of IIn+1,1 if:

1. x · r ∈ Z, i.e.
∑n+1

i=1 xi − xn+2 ∈ 2Z, and

2. all xi ∈ Z or all xi − 1
2 ∈ Z.

Write R ≡ R(IIn+1,1). The group of orthochronous automorphisms of IIn+1,1 (i.e. the group of
automorphisms that do not interchange the positive and negative time cones) is the semidirect
product of the group of reflections W of IIn+1,1 with the symmetry group of the Weyl chamber D̃

determined by W . The polyhedron D̃ can be determined by applying Vinberg’s algorithm. Choose
the controlling vector c = (0, ..., 0, 2) ∈ Rn+1,1. Then c2 = −4 and c ∈ P = {λ ∈ Rn+1,1 | (λ, α) ∈
Z for all α ∈ R} since −(c, x) = 2xn+2 ∈ Z for all x ∈ IIn+1,1. Now

R ∩ c⊥ =

{
α =

n+2∑

i=1

aiǫi ∈ R

∣∣∣∣∣ an+2 = 0

}

=

{
α ∈ Rn+1,1

∣∣∣∣∣ an+2 = 0, ai ∈ Z for all i,
∑

i

ai ∈ 2Z and
∑

i

a2i = 2

}

= Dn+1.

Use for Dn+1 the basis:

ei = ǫi − ǫi+1, for i = 1, ..., n,

en+1 = ǫn + ǫn+1.

So here we have chosen the controlling vector c that corresponds with the sublattice Dn+1 of
IIn+1,1. There are however many more possibilities for the controlling vector. Another ’good’

choice would be the norm zero vector (0, ..., 0, 1,−1) that corresponds to the sublattice nẼ8. If it
exists, the Weyl vector ρ is another possible controlling vector. In this case all the simple roots
have height 1 (and all roots of height 1 are simple). For n = 8, 16 or 24 there in fact exists a Weyl
vector ρn+1 given by:

ρ9 = (0, 1, . . . , 8, 38),

ρ17 = (0, 1, . . . , 16, 46),

ρ25 = (0, 1, . . . , 24, 70).

This is shown in Chapter 27 of [6]. There it is also remarked that for n = 32, 40, ... there exists no
vector in Rn+1,1 having constant inner product with all simple roots of the lattice of type IIn+1,1.

Example 2. II9,1
Now assume n = 8. As above we pick the controlling vector c = (0, . . . , 0, 2) ∈ R9,1. So R∩c⊥ = D9

and we use the basis {e1, . . . , e9} as described above. Let α =
∑

i aiǫi be a root of height 1, i.e.
−(c, α) = 2a10 = 1. Thus a10 = 1

2 . This vector is accepted as a simple root by Vinberg’s algorithm
if it satisfies:

ai − ai+1 ≤ 0, for i = 1, ..., 8

a8 + a9 ≤ 0

Since α is a root it also satisfies α2 =
∑9

i=1 a
2
i − 1

4 = 2. Furthermore, since a10 = 1
2 , ai +

1
2 ∈ Z

for all i. Then the only possibility is that all ai ∈ { 1
2 ,− 1

2}. It follows from the criteria above that
if ai = ± 1

2 for all i then

ai =
1

2
⇒ ai+1 =

1

2
for i = 1, ..., 8,

ai+1 = −1

2
⇒ ai = −1

2
for i = 1, ..., 8.
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From a8 + a9 ≤ 0 it then follows that a1, ..., a8 are equal to − 1
2 and from α · r ∈ Z it follows that

a9 = 1
2 . So there is just one vector e10 of height 1 that satisfies the criteria in Vinberg’s algorithm,

namely

e10 = −1

2

8∑

i=1

ǫi +
1

2
ǫ9 +

1

2
ǫ10.

The vectors ei are a basis for Rn+1,1. The dual basis is:

fi = ǫ1 + ...+ ǫi − iǫ10, for i = 1, ..., 7

f8 =
1

2

8∑

i=1

ǫi −
1

2
ǫ9 −

9

2
ǫ10

f9 =
1

2

9∑

i=1

ǫi −
7

2
ǫ10

f10 = −2ǫ10

Suppose that α is a root of height greater than one. Since the fi form a basis α can be written
as α =

∑
i bifi. If α is a root that satisfies the criteria of Vinberg’s algorithm then (α, ei) ≤ 0

for i = 1, ..., 10. From this it follows that all bi ≤ 0. Since also f2
i ≤ 0 for all i and thus also

(fi, fj) ≤ 0 for all i, j then

α2 =
∑

i

∑

j

bibj(fi, fj) ≤ 0.

So there can be no root that satisfies the criteria, the sequence of simple roots determined by
Vinberg’s algorithm breaks off at the 10th root.
The Coxeter diagram corresponding to the simple roots e1, ..., e10 is the diagram E10 in Figure 5.1.

e1 e2 e3 e4 e5 e6 e7

e9

e8 e10

Figure 5.1: E10.

The diagram E10 contains the elliptic subdiagram A9 and det(E10) = −1 (calculation using Lemma
5.1 in [20]: det(E10) = det(A3) det(E7)− 4 cos2(π3 ) det(A2) det(E6) = 4× 2− 4× 1

4 × 3× 3 = −1),
so the signature of the Gram matrix of E10 is (9, 1) and it is the diagram of a Coxeter polyhedron
D̃ ⊂ H9. Removing the leftmost node in the diagram gives the parabolic subdiagram Ẽ8, removing
any other node gives elliptic subdiagrams. So D̃ has one vertex at infinity corresponding with E8.
The diagram has no symmetries so the group of orthochronous automorphisms of II9,1 is the
reflection group determined by E10, W (E10).

Example 3. II17,1
Now suppose n = 16. Let c = (0, . . . , 0, 2) ∈ R17,1 be the controlling vector and {e1, . . . , e17} the
above described basis for D17 = R∩c⊥. Suppose that α =

∑
i aiǫi is a root of height 1 that satisfies

the criteria of Vinberg’s algorithm. Then ht(α) = 2a18 = 1 ⇒ a18 = 1
2 and thus

∑17
i=1 a

2
i = 2 1

4 .

Because a18 = 1
2 and α is in II17,1 all ai − 1

2 ∈ Z. But then
∑17

i=1 a
2
i ≥ 4 1

4 so there can be no root
of height 1.
Suppose now that α is a root of height 2. Then a18 = 1 and thus ai ∈ Z for all i. Furthermore,
α2 =

∑17
i+1 ai − 1 = 2 implies that

∑17
i+1 ai = 3 and thus the only possibility is that three of the ai

(i = 1, ..., 17) are ±1 and the others are zero. Vinberg’s algorithm imposes the following conditions
on the ai:

ai − ai+1 ≤ 0 for i = 1, ..., 16

a16 + a17 ≤ 0
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and thus for ai ∈ {−1, 0, 1}:

ai = 1 ⇒ ai+1 = 1 for i = 1, ..., 16

ai = −1 ⇒ ai−1 = −1 for i = 2, ..., 17.

The first property together with a16 + a17 ≤ 0 implies that ai 6= 1 for all i. The second property
implies that the only possible root is

e18 = −ǫ1 − ǫ2 − ǫ3 − ǫ18

Continuing with Vinberg’s algorithm we now consider roots α of height 3. Then a18 = 3
2 and

α2 =
∑17

i=1 a
2
i − 9

4 = 2 so
∑17

i=1 a
2
i = 4 1

4 . Since a18 = 3
2 all ai − 1

2 ∈ Z and it follows that the only
possibility is that all ai are ± 1

2 . From the criteria imposed by Vinberg’s algorithm it then follows
that there is just one root of height 3 accepted, namely

e19 = −1

2

17∑

i=1

ǫi +
3

2
ǫ18.

The Coxeter diagram determined by the simple roots e1, ..., e19 is shown in Figure 5.2.

e1 e2 e3

e18

e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e16

e17 e19

Figure 5.2: Coxeter diagram of II17,1.

This is in fact the Coxeter diagram of the lattice II17,1 which we will now prove by showing that
the sequence of simple roots determined by Vinberg’s algorithm breaks off at e19. Suppose that
there is one more simple root α with ht(α) ≥ 4. Then α is an element of the convex polyhedral
cone D = {λ ∈ V = R17,1 | (λ, ei) ≤ 0 for all i = 1, ..., 19}. A ray R<0λ ∈ D is an extremal ray if
µ, ν rays in D such that R<0λ = µ + ν implies µ, ν = R<0λ. By the Krein-Milman theorem (for
convex cones [15] appendix 2, also see [1]) D is the convex hull of its extremal rays. In the case of
n = 8 the extremal rays are the R<0fi. But for n = 16 the αi are not linearly independent so we
can not simply take the dual basis.
Let U be a 19 dimensional real vector space with basis {αi}19i=1 and equipped with bilinear form
given by (αi, αj) = (ei, ej). This bilinear form has signature (17, 1, 1). Let {λi}19i=1 be the dual
basis of U∗. Define D′ = {λ ∈ U∗ | (λ, αi) ≤ 0 for all i = 1, ...19} = {∑i kiλi | ki ≤ 0}, where
(λ, αi) denotes the natural pairing of U∗ and U . D′ has 19 extremal rays given by R<0λi.

The one-dimensional kernel of the bilinear form on U is spanned by δ =
∑19

i=1 kiαi, where the ki are
the numbers next to the corresponding node i in Figure 5.3 (δ2 = 0 since

∑
j∈{k|(αk,αi)=−1} kj = 2ki

and δ 6= 0).

−2 −4 −6

−3

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

3

4 2

Figure 5.3: Coxeter diagram of II17,1 labelled with the coefficients ki.

Write L = kerU (·, ·) = Rδ. Now V ∼= U \ L and (U \ L)∗ ∼= L⊥ since U \ L is equipped with
a nondegenerate bilinear form. So K = D′ ∩ L⊥. Thus the extremal rays of K are either ex-
tremal rays of D′ that are contained in L⊥ (i.e. perpendicular to δ) or they are the intersection
of a 2-dimensional face of D′ with L⊥. The only extremal ray of D′ perpendicular to δ is R<0λ9

since k9 = 0. The 2-dimensional faces are given by R≤0λi + R≤0λj . Now, if for some t, s ∈ R<0,
(tλi + sλj , δ) = tki + skj = 0 then ki and kj both have to be nonzero and they can’t have the
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same sign. So L⊥ has a one-dimensional intersection with the 2-dimensional faces R≤0λi +R≤0λj

such that node i is to the left of the middle node 9 and node j is to the right of node 9. Now the
diagram obtained by deleting two such nodes is either positive definite of rank 17 or nonnegative
definite and degenerate of rank 18. It follows from Proposition 1 that they correspond to (possibly
infinitely distant) vertices of D̃ and hence that the extremal rays of D are all inside of the closure
of V+. Since D is the convex hull of these extremal rays any element of D is in the closure of
V+ and thus cannot be a root. Hence there is no more root that satisfies the criteria of Vinberg’s
algorithm.
We can also determine directly from the diagram that it corresponds to a reflection group of
H17,1 with a fundamental domain D̃ of finite volume. Write G for the Gram matrix that cor-
responds to the diagram above, which we denote by S. Then det(G) = det(E10) det(Ẽ8) −
4 cos2(π3 ) det(Ẽ8) det(E8) = 0 but S is not parabolic. Furthermore, S contains the elliptic subdia-
gram 2E8 +A1 of rank 17. Thus the signature of G is (17, 1, 1) and S is the diagram of a Coxeter
polyhedron D̃ ⊂ H17. Removing the middle node gives the parabolic subdiagram 2Ẽ8 of rank 16,
so this subdiagram corresponds to a vertex q at infinity. Removing the leftmost and the rightmost
node also gives a parabolic subdiagram of rank 16, namely D̃16. So this subdiagram also corre-
sponds to a vertex at infinity. All the other vertices are obtained by removing one node left of the
middle vertex and one node right of the middle vertex, the subdiagrams that are obtained are all
elliptic. So D̃ ⊂ Hn is a polyhedron with finite volume and two vertices at infinity. Topologically,
D̃ is a pyramid with vertex at q, constructed on the direct product of two 9-simplexes.

The only symmetry of the diagram is a reflection through the middle. So Sym(D̃) = Z2 and
the group of orthochronous automorphisms of II17,1 is the semidirect product of W (S) =< rei |
i = 1, ..., 19 > with Z2.

5.3 Niemeier lattices

In 1935 Witt found more than 10 of the 24-dimensional even unimodular lattices, now called
Niemeier lattices. In 1965 Leech found such a lattice without roots, now called the Leech lattice.
The list of 24-dimensional even unimodular lattices was completed by Niemeier in 1967. It turned
out that there exist twenty-four Niemeier lattices. Niemeier’s proof was later simplified by Boris
Venkov ([6], Chapter 18). His proof consists of two parts. First, using modular forms, he deter-
mines a list of possible root systems for a Niemeier lattice. These are the twenty-four root systems
listed in Table 5.1. Then by a case by case verification it is shown that for each root system there
exists a unique even unimodular lattice. We will discuss this proof in this section.

First of all, the list of possible root systems is determined by showing that a Niemeier lattice
N has to satisfy:

1. R(N) = ∅ or rank R(N) = 24,

2. All irreducible components of R(N) have the same Coxeter number h,

3. |R(N)| = 24h.

To show this the next proposition is crucial. It is proved using the theory of modular forms,
see [6], chapter 18.

Proposition 2 (Venkov 1980). If N is a Niemeier lattice and x ∈ R24 then

∑

α∈R(N)

(α, x)2 =
1

12
(x, x)|R(N)| (5.2)

Corollary 1. If N is a Niemeier lattice then either R(N) = ∅ or rank R(N)=24.

Proof. Suppose that rank R(N) < 24. Then there is a nonzero vector y ∈ R24 that is orthogonal
to all α ∈ R(N). If we now set x = y in 5.2 then it follows that 0 = 1

12 (y, y)|R(N)|. So |R(N)| = 0,
i.e. R(N) = ∅.
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Table 5.1: Niemeier lattices listed by their root systems, h is the Coxeter number and V is the
number of Leech lattice points around the corresponding deep hole (see section 6.5).

Root system h V Root system h V

D24 46 25 2A9 +D6 10 27
D16 + E8 30 26 4D6 10 28

3E8 30 27 3A8 9 27
A24 25 25 2A7 + 2D5 8 28
2D12 22 26 4A6 7 28

A17 + E7 18 26 4A5 +D4 6 29
D10 + 2E7 18 27 6D4 6 30
A15 +D9 16 26 6A4 5 30

3D8 14 27 8A3 4 32
2A12 13 26 12A2 3 36

A11 +D7 + E6 12 27 24A1 2 48
4E6 12 28 ∅ 0 -

Corollary 2. If N is a Niemeier lattice then all irreducible components of R(N) have the same
Coxeter number h and |R(N)| = 24h.

Proof. If we set x = β ∈ R(N) in equation 5.2 then it follows that

∑

α∈R(N)

(α, β)2 =
1

6
|R(N)|. (5.3)

Denote by Rβ the irreducible component of R(N) that contains β. Then if α /∈ Rβ clearly
(α, β) = 0. So only α ∈ Rβ contribute to the sum on the left side of the equation above. Since Rβ

is a simply laced root system for α, α′ ∈ Rβ we have (α, α′) ∈ {0,±1,±2} and (α, α′) = ±2 if and
only if α′ = ±α. Let γ(Rβ) = ♯{α ∈ Rβ | (α, β) = 1}. Then it follows that

∑

α∈R(N)

(α, β)2 = 2× 22 + 2γ(Rβ). (5.4)

The Coxeter number h has the following property: If R is a simply laced root system then the
number of elements of R not orthogonal to a fixed α ∈ R is equal to 4h− 6 ([4], chapter VI, prop.
32). Hence 2 + 2γ(Rβ) = 4h(Rβ) − 6 and thus γ(Rβ) = 2h(Rβ) − 4. So combining this with 5.3
and 5.4 we get

2× 22 + 2(2h(Rβ)− 4) =
1

6
|R(N)|.

Hence |R(N)| = 24h(Rβ) and since β ∈ R(N) is chosen arbitrarily both claims in the corollary
now follow.

Proposition 3. The root system of a Niemeier lattice is one of those in Table 5.1.

Proof. Suppose R := R(N) 6= ∅. Then R is isometric to an orthogonal sum of root lattices of the
types Ai, Dj and Ek. Say

R =
24∑

i=1

piAi +
24∑

j=4

qjDj +
8∑

k=6

rkEk.

Since all components of R have the same Coxeter number and h(An) = n + 1, h(Dn) = 2n −
2, h(E6) = 12, h(E7) = 18 and h(E8) = 30 it follows that R is of type pAi + qDj + rEk. By
Corollary 1, rank R = 24 and thus pi+ qj + rk = 24. So we have the following possibilities for R:

1. R = pAi: Then it follows from pi = 24 that the possibilities are:
A24, 2A12, 3A8, 4A6, 6A4, 8A3, 12A2 and 24A1.

2. R = qDj : Then it follows from qj = 24 that the possibilities are:
D24, 2D12, 3D8, 4D6 and 6D4.
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3. R = rEk: Then it follows from rk = 24 that the possibilities are: 4E6 and 3E8.

4. R = pAi + qDj (p, q 6= 0): From h(Dj) = 2j − 2 = h(Ai) = i + 1 it follows that i = 2j − 3.
Hence p(2j − 3) + qj = 24 with j ≥ 4 and this equation has the following solutions:
(j, p, q) = (9, 1, 1), (6, 2, 1), (5, 2, 2) and (4, 4, 1).
So in this case the possibilities for R are: A15 +D9, 2A9 +D6, 2A7 + 2D5 and 4A5 +D4.

5. R = pAi + qDj + rEk with r 6= 0 and q and p not both zero:

(a) If k = 6 then h = 12 and thus j = 7 and i = 11 (if p, q 6= 0). So 11p + 7q + 6r = 24.
Now r can be one, two or three and it easily follows that there is only a solution for
r = 1, namely (p, q) = (1, 1). So this gives R = A11 +D7 + E6.

(b) If k = 7 then h = 18 and thus j = 10 and i = 17 (if p, q 6= 0). There are two solutions
for 17p+ 10q + 7r = 24, namely (p, q, r) = (1, 0, 1) or (p, q, r) = (0, 1, 2). Hence we get
the following two possibilities for R: A17 + E7 and D10 + 2E7.

(c) If k = 8 then h = 30 and thus j = 16 and i = 29 (if p, q 6= 0). Now i = 29 is not
possible, so p = 0 and 16q + 8r = 24. This yields as only solution R = D16 + E8.

We see that the possibilities that are found are indeed exactly those listed in Table 5.1.

The next step is to determine the existence and uniqueness of a lattice of type II24 for all the
root systems in Table 5.1. We postpone the proof of the existence and uniqueness of the lattice
with empty root system, the Leech lattice, to Chapter 6.
Let Q = ZR be a root lattice generated by one of the nonempty root systems in Table 5.1. If
R = 3E8 then Q is unimodular and we are finished. In the other cases Q is not unimodular so we
then need to determine a glue code and show that it is unique. Recall that for a lattice L the glue
group is L∗/L. So for R =

∑
i niRi (with the Ri irreducible) the glue vectors are elements of the

group

T (R) = P (R)/Q(R) =
⊕

i

(P (Ri)/Q(Ri))
ni .

Hence the glue code is an additive subgroup A < T (R). As coset representatives for T (Ri) we
pick the wn

i ∈ P (Ri) that satisfy (wn
i , α) ∈ {0, 1} for all α > 0 in Ri. It is well known that these

vectors form a complete set of coset representatives, they correspond to the special vertices of R̃i.
Furthermore, for gji ∈ T (Ri), let l(g

j
i ) be the norm of the corresponding coset representative wn

i .

Finally for a glue vector gj = (gj1, ...g
j
k) ∈ T (R) (with k the number of irreducible components of

R) the function l is extended to be:

l(gj) =

k∑

i=1

l(gji ).

Since the glue code must give a unimodular lattice, A has to satisfy |A|2 = |T (R)|. Furthermore,
since the lattice must be even and with root lattice R all g ∈ A \ {0} must have the norm l(g)
equal to an even integer that is > 2. We call a subgroup A that satisfies these two conditions even
and self-dual.
If Ri is an irreducible root system then the group G(Ri) := Aut(Ri)/W (Ri) acts transitively on
T (Ri). This group G(Ri) is the symmetry group of the Coxeter diagram of Ri. For R = niRi the
corresponding symmetry group of the Coxeter diagram of R acting on T (R) is the wreath product
G(Ri)

ni ⋊ Sni
. For R =

∑
i niRi it is

G(R) =
∏

i

(G(Ri)
ni ⋊ Sni

) .

Clearly, the norm l(g) corresponding to g ∈ A is invariant under the action of G(R). Hence the
set of even and self-dual subgroups A < T (R) is G(R)-invariant. The Niemeier lattice constructed
from the glue code A is the lattice N =< R,A > generated by the root system R and the
glue code A. Conversely, given a Niemeier lattice N with root system R a glue code for this
lattice is A = N/Q(R(N)) < P (R(N))/Q(R(N)). It follows that there is a natural one-to-one
correspondence between Niemeier lattices with nonempty root system isomorphic to R (up to
isomorphism) and even self-dual subgroups A < T (R) (up to the action of G(R)).

35



Example 4. Let R = 4E6. We have T (E6) = Z/3Z = {0,±1} and G(E6) = Z/2Z = {1, σ}
with σ(±1) = ∓1. Furthermore, l(0) = 0 and l(±1) = 4/3. It follows that T (R) = (Z/3Z)4 and
G(R) = (Z/2Z)4 ⋊S4. So a Niemeier lattice with root system 4E6 corresponds to an even selfdual
subgroup A < {x = (x1, x2, x3, x4) | xi = 0,±1} of order 9. The only elements that are even
with norm > 2 have three coordinates equal to 1 or −1 and the other one equal to 0. We can
assume that x = (1, 1, 1, 0) ∈ A. This is an element of order 3 so we need to add more elements
to get a subgroup of order 9. Because the sum of two elements has to be even and with norm
> 2 it follows that the only elements that can be added are of the form y = (y1, y2, y3, y4) with
{y1, y2, y3} = {0, 1,−1} and y4 = ±1. Any element of this form can be changed into any other
element of this form by an element of G(R) that leaves x invariant. So without loss of generality
we can assume that y = (0,−1, 1, 1) ∈ A. Now A =< x, y > is an even self-dual subgroup of order
9 and this group is unique op to action of G(R). The glue code A is in fact equal to the tetracode
(see for example [6], Chapter 3).

For most of the possible root systems the proof of the existence and uniqueness of a Niemeier
lattice with this root system comes down to an easy verification like the one in the example above.
Particularly easy cases are the ones R = D24 and R = E8 + D16 for which the corresponding
Niemeier lattices are isomorphic to D+

24 respectively E8 ⊕D+
16.

The cases R = 24A1 and R = 12A2 are not that easy. They depend on the existence and uniqueness
of the (extended) binary and ternary Golay codes.

Example 5. Let R = 24A1. We have T (A1) = Z/2Z = {0, 1}, G(A1) = 1 , l(0) = 0 and l(1) = 1/2.
So T (R) = (Z/2Z)24 and G(R) = S24. Furthermore, for x ∈ T (R) we have l(x) = 1

2wt(x). Here
wt(x) is the (Hamming) weight of the codeword x that is defined to be the number of nonzero
coordinates of x. It follows that any x in an even self-dual subgroup A < T (R) must satisfy
wt(x) ≥ 8. So an even self-dual subgroup A < T (R) corresponds to a binary self-dual code with
minimum distance 8. The unique such code is the (extended) binary Golay code, see [11] Chapter
10 for a proof of the existence and uniqueness of this code.

Example 6. Let R = 12A2. We have T (A2) = Z/3Z = {0,±1}, G(A2) = Z/2Z = {1, σ} with
σ(±1) = ∓1, l(0) = 0 and l(±1) = 2/3. So T (R) = (Z/3Z)12 and G(R) = (Z/2Z)12 ⋊ S12.
Furthermore, for x ∈ T (R), l(x) = 2

3wt(x). It follows that any glue vector x in an even self-dual
subgroup A < T (R) must satisfy wt(x) ≥ 6. So an even self-dual subgroup A < T (R) corresponds
to a self-dual code in F12

3 with minimum distance 6. The (extended) ternary Golay code is the
unique such code, again see [11] Chapter 10.

As noted in the beginning of this chapter, another way to prove the correctness of the clas-
sification of the Niemeier lattices is by using the Minkowski-Siegel mass formula ([6], Chapter
16). Yet another proof can be given using the list of deep holes of the Leech lattice as deter-
mined in [6] Chapter 23. As we will see in the next chapter, the Leech lattice corresponds to
the Coxeter diagram of the unique lattice of type II25,1 and deep holes of the Leech lattice corre-
spond to subdiagrams of this Coxeter diagram that are unions of the extended Coxeter diagrams
Ãn(n ≥ 1), D̃n(n ≥ 4), Ẽ6, Ẽ7, and Ẽ8. But as seen in section 5.1 these subdiagrams correspond
exactly to the Niemeier lattices with roots. Indeed, the diagrams found in the enumeration of the
deep holes of the Leech lattice correspond exactly to the root systems of the Niemeier lattices with
roots. The determination of the deep holes is done by extensive computations so this provides by
no means a more straightforward proof of the classification. However, in the cases R = 24A1 and
R = 12A2 a corresponding deep hole can be constructed quite easily as is shown at the end of the
next chapter.

We end this section with some results on Niemeier lattices we need later. They are all taken
from [3] section 2.

Lemma 5. Let R be a simply laced irreducible root system and ρ = 1
2

∑
α>0 α its Weyl vector.

Then ρ2 = 1
12nh(h+ 1), where h is the Coxeter number of R and n its rank.

Proof. Let αi be a simple root. Then ρ(αi) = −1 and it thus follows that ρ = −∑i ωi where the
ωi are the fundamental weights, i.e. the dual basis for the basis of simple roots. So if ρ =

∑
i ciαi
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(where ci < 0) then ρ2 = (
∑

i ciαi,−
∑

i ωi) = −∑i ci. The Weyl vectors ρR for the simply laced
irreducible root systems are:

ρAn
= −1

2
(nα1 + 2(n− 1)α2 + . . .+ i(n− i+ 1)αi + . . .+ nαn) ,

ρDn
= −

(
(n− 1)α1 + (2n− 3)α2 + . . .+ (in− i(i+ 1)

2
)αi + . . .+

n(n− 1)

4
(αn−1 + αn)

)
,

ρE6
= − (8α1 + 11α2 + 15α3 + 21α4 + 15α5 + 8α6) ,

ρE7
= −1

2
(34α1 + 49α2 + 66α3 + 96α4 + 75α5 + 52α6 + 27α7) ,

ρE8
= − (46α1 + 68α2 + 91α3 + 135α4 + 110α5 + 84α6 + 57α7 + 29α8) ,

see for example [4] (note that we have a different sign convention). Furthermore, the Coxeter
numbers are h(An) = n+ 1, h(Dn) = 2n− 2, h(E6) = 12, h(E7) = 18, and h(E8) = 30. Now

ρ2An
=

1

2

n∑

i=1

i(n− i+ 1) =
1

2

[
n

n∑

i=1

i−
n∑

i=1

i(i− 1)

]

=
1

2

[
n
n(n+ 1)

2
− 1

3
n(n2 − 1)

]
=

1

12
n(n+ 1)(n+ 2),

ρ2Dn
=

n−2∑

i=1

(
in− i(i+ 1)

2

)
+

n(n− 1)

2
= n

n−2∑

i=1

i− 1

2

n−1∑

i=1

i(i− 1) +
n(n− 1)

2

= n
(n− 2)(n− 2 + 1)

2
− 1

2
· 1
3
(n− 1)((n− 1)2 − 1) +

n(n− 1)

2

=
1

3
n3 − 1

2
n2 +

1

6
n =

1

12
n(2n− 2)(2n− 1)

ρ2E6
= 8 + 11 + 15 + 21 + 15 + 8 = 78 =

1

12
· 6 · 12 · 13,

ρ2E7
=

1

2
(34 + 49 + 66 + 96 + 75 + 52 + 27) =

399

2
=

1

12
· 7 · 18 · 19,

ρ2E8
= 46 + 68 + 91 + 135 + 110 + 84 + 57 + 29 = 620 =

1

12
· 8 · 30 · 31,

where we have used the easily verifiable identities
∑n

i=1 i =
1
2n(n+1) and

∑n
i=1 i(i−1) = 1

3n(n
2−1).

We see that the Weyl vectors do indeed satisfy ρ2 = 1
12nh(h+ 1).

Note that this formula for the norm of the Weyl vector was not discovered by just calculating
ρ2 like in the proof above. It can be proved using the strange formula of Freudenthal and de Vries
that was proven by them in [8].

Lemma 6 (Venkov 1980). Let N be a Niemeier lattice with roots and ρ its Weyl vector. Then
ρ2 = 2h(h+ 1)

Proof. By Corollary 1 rank R(N) = 24, say R(N) =
∑k

i=1 Ri where the Ri are irreducible root

systems and
∑k

i=1 ni = 24 with ni = rank Ri. Also, by Corollary 2 all irreducible components of
R(N) have the same Coxeter number h = 1

24 |R(N)|. Furthermore, for all irreducible components
Ri of R(N) with Weyl vector ρRi

it follows from Lemma 5 that ρ2Ri
= 1

12nih(h + 1). So ρ2 =∑k
i=1 ρ

2
Ri

=
∑k

i=1
1
12nih(h+ 1) = 2h(h+ 1).

Lemma 7. If N is a Niemeier lattice and ν ∈ N then
∑

α∈R(N)

(ν, α)2 = 2hν2.

Proof. By Proposition 2 and Corollary 2 we have:

∑

α∈R(N)

(ν, α)2 =
1

12
ν2|R(N)|

= 2hν2.
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Lemma 8. If ρ is the Weyl vector of a Niemeier lattice N then ρ lies in N .

Proof. We will show that if ν ∈ N then (ρ, ν) ∈ Z. Because N is unimodular it then follows that
ρ ∈ N . So let ν ∈ N . Then

(2ρ, ν)2 = (
∑

α>0

α, ν)2

= (
∑

α>0

(α, ν))2

≡
∑

α>0

(α, ν)2 mod 2

= ν2h by Lemma 7

≡ 0 mod 2 since N is even.

So (2ρ, ν)2 is an even integer. Since (2ρ, ν) =
∑

α>0(α, ν) ∈ Z it follows that (2ρ, ν) ∈ 2Z and
hence (ρ, ν) ∈ Z.

Lemma 9. Let N be a Niemeier lattice with roots. Denote by Q = ZR(N) the root lattice of N
and by P the corresponding dual weight lattice. For all λ ∈ P we have

(ρ
h
− λ

)2
≥ 2

(
1 +

1

h

)
,

and the λ for which equality holds form a complete set of representatives for the glue group P/Q.

Proof. Since ρ2 = 2h(h+ 1), for all λ ∈ P we have:

(ρ
h
− λ

)2
− 2

(
1 +

1

h

)
=

(ρ
h
− λ

)2
−
(ρ
h

)2

= λ2 − 2

h
(ρ, λ)

=
1

h

(
∑

α>0

(λ, α)2 −
∑

α>0

(λ, α)

)
by Lemma 7

=
1

h

∑

α>0

(λ, α) [(λ, α)− 1] ≥ 0 since (λ, α) ∈ Z for all α > 0.

All terms in the above sum are in fact ≥ 0 so there is an equality if and only if (λ, α) ∈ {0, 1}
for all α > 0. It is well known that the λ ∈ P for which this holds form a complete set of coset
representatives for P/Q.

The lemma implies that the covering radius of P , and hence also ofN , is at least
√
2(1 + 1/h). It

is not necessarily equal to this. For example, the covering radius ofN = 3E8 is
√
3 >

√
2(1 + 1/30).

So the covering radius of a Niemeier lattice with roots is always greater than
√
2. Later on we will

see that the covering radius of the Leech lattice is exactly
√
2.
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Chapter 6

The Leech Lattice

The Leech lattice is the unique Niemeier lattice without roots. It was discovered by Leech in 1965.
Soon after this discovery, Leech conjectured that the lattice had covering radius

√
2 because there

were several known holes of this radius. He failed to find a proof. Parker later noticed that the
known holes all seemed to correspond to a Niemeier lattice. Inspired by this, Conway, Parker and
Sloane found all the holes of this radius ([6], Chapter 23). There turned out to be 23 classes of
deep holes corresponding in a natural way with the 23 Niemeier lattices with roots. Using the fact
that the covering radius of the Leech lattice is

√
2 Conway later proved that the lattice of type

II25,1 has a Weyl vector and that its Coxeter diagram can be identified with the Leech lattice ([6],
Chapter 27).
Most of the proofs of these results involved long calculations and case by case verifications. In his
paper from 1985 on the Leech lattice ([3]), Richard Borcherds gave new more conceptual proofs of
the existence and uniqueness of the Leech lattice and of the fact that it has covering radius

√
2.

He also gave a uniform proof of the correctness of the “holy constructions” of the Leech lattice
which are described in [6], Chapter 24. In this chapter we present these proofs.
We will first give the proof of the existence and uniqueness of the Leech lattice and then turn to
the covering radius and the deep holes of the Leech lattice. Although this seems like the most
natural order one must note that the proof we give in section 6.2 of the uniqueness of the Leech
lattice does depend on the fact that the Leech lattice has covering radius

√
2. This will be proved

in section 6.4 without using any results from section 6.2.

6.1 The existence of the Leech lattice

Here we prove the existence of a Niemeier lattice with no roots following section 4 in [3]. The
existence is proved by showing that given any Niemeier lattice with roots we can construct another
Niemeier lattice with half as many roots.
Let N be a Niemeier lattice with Weyl vector ρ = 1

2

∑
α>0 α and Coxeter number h. Let L = N⊕U

be the lattice of type II25,1 with coordinates (ν,m, n), where ν ∈ N , m,m ∈ Z and (ν,m, n)2 =
ν2−2mn. Let z = (0, 0, 1). Then z is the primitive norm zero vector corresponding to the Niemeier
lattice N . The roots in z⊥, that is the elements in the set {α ∈ R(L) | (α, z) = 0}, form the affine
root system associated with N .
Let z′ = (ρ, h, h+1). It follows from Lemma 7 that z′ ∈ N . Furthermore, by Lemma 5 it has norm
0. Hence z′ is also a primitive norm zero vector in II25,1 and therefore corresponds to a Niemeier
lattice, say N ′. Note that z and z′ are in the same connected component of the set of non zero
norm zero vectors since ((1− t)z + tz′)2 = 2(1− t)t(z, z′) = −2h(1− t)t < 0 for t ∈ (0, 1). We will
show that the Niemeier lattice N ′ has at most half as many roots as N .

Lemma 10. If α ∈ R(L) is in z′⊥ and (z, α) ≤ 0 then (z, α) ≤ −2.

Proof. Let α = (ν,m, n) ∈ R(L) be a root perpendicular to z′ and suppose that (z, α) = −m = 0.
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Then α has to be of the form (ν, 0, n) with ν ∈ R(N). Thus

(α, z′) = ((ν, 0, n), (ρ, h, h+ 1))

= (ν, ρ)− nh = 0.

But for ν ∈ R(N) we have 1 ≤ |(ν, ρ)| ≤ h− 1 and thus (ν, ρ) = nh is not possible.
Suppose now that (z, α) = −1. Then α is of the form (ν, 1, n) with α2 = ν2−2n = 2. Furthermore,

(α, z′) = ((ν, 1, n), (ρ, h, h+ 1))

= (ν, ρ)− (h+ 1)− nh = 0,

and thus

(ρ
h
− ν
)2

=
ρ2

h2
− 2

h
(ρ, ν) + ν2

=
2h(h+ 1)

h2
− 2

h
(h+ 1 + nh) + 2n+ 2

= 2.

This is in contradiction with Lemma 9 so it follows that (α, z) ≤ −2.

Lemma 11. The Coxeter number h′ of the Niemeier lattice N ′ is at most 1
2h.

Proof. If h′ = 0 then the inequality holds so we can assume h′ 6= 0. So N ′ is a Niemeier lattice
with roots. The roots α ∈ R(L) that are in z′⊥ form the affine root system associated with R(N ′).
Let R′ be an irreducible component of this root system and pick a set of simple roots α0, α1, . . . , αr

for R′ with (αi, z) ≤ 0. Here r is the rank of the irreducible component of R(N ′) corresponding to
R′. Denote by ki the weights of the roots αi. Then

∑r
i=0 kiαi = z′ and

∑r
i=0 ki = h′. By Lemma

10, (z, αi) ≤ −2 for i = 0, . . . r and thus

(z′, z) = (

r∑

i=0

kiαi, c) ≤ −2h′.

Since also
(z′, z) = ((ρ, h, h+ 1), (0, 0, 1)) = −h,

it follows that h′ ≤ 1
2h.

Theorem 2. There exists a Niemeier lattice with no roots.

Proof. Start with an arbitrary Niemeier lattice N with Coxeter number h 6= 0 . By Lemma 11
we can find a Niemeier lattice N ′ with Coxeter number ≤ 1

2h. By repeating this process we will
eventually find a Niemeier lattice with Coxeter number equal to zero and hence with no roots.

In fact, there are no roots in z′⊥ and this gives a direct construction of a Niemeier lattice with
no roots after one step. The proof of this will be given in Section 6.5.

6.2 The uniqueness of the Leech lattice

Again denote by Λ a Niemeier lattice without roots. We will show that Λ is unique following the
proof in section 6 of [3]. let L = Λ ⊕ U be the lattice of type II25,1 with the same coordinates

as before and let D̃ be the fundamental domain of L that contains the controlling vector z =
(0, 0, 1) ∈ L. Denote by V+ the open cone of vectors with negative norm that contains z in its
closure. In the proof of the next theorem we use the fact that the covering radius of Λ is

√
2. This

will be proved later.

Theorem 3. The simple roots of the fundamental domain D̃ of L are just the simple roots αλ =
(λ, 1, 1

2λ
2 − 1) of height one with respect to z.
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Proof. Obviously there can be no roots of height zero since Λ has no roots. By Vinberg’s algorithm
it then follows that all roots αλ = (λ, 1, 1

2λ
2 − 1) of height one are simple roots. Now suppose that

these are not all roots and let α = (µ,m, 1
2m (µ2 − 1)) be a simple root of height m ≥ 2. Because

α is a simple root, it satisfies (α, αλ) ≤ 0 for all simple roots αλ = (λ, 1, 1
2λ

2 − 1) of height one.

Also, since Λ has covering radius
√
2 there is a vector λ ∈ Λ such that (λ− µ/m)2 ≤ 2. But then

(α, αλ) = (µ, λ)−m(
1

2
λ2 − 1)− 1

2m
(µ2 − 2)

= m+
1

m
+ (µ, λ)− m

2
λ2 − 1

2m
µ2

= m+
1

m
− m

2

(
λ− µ

m

)2

≥ m+
1

m
−m =

1

m
> 0,

which is a contradiction with (α, αλ) ≤ 0.

Corollary 3. The Leech lattice is the unique (up to isomorphism) Niemeier lattice with no roots.

Proof. A Niemeier lattice Λ without roots corresponds (up to isomorphism) to a primitive norm
zero vector w in L (up to the action of Aut(L)) with no roots perpendicular to it. So it suffices to
show that any two such vectors are conjugate under Aut(L). Hence if the fundamental domain D̃
of W <Aut(L) contains only one such vector then the claim follows. So suppose that w ∈ L ∩ D̃
is a primitive norm zero vector with no roots perpendicular to it. Then by Theorem 4 w has inner
product −1 with all simple roots of D̃. Since these roots span L it follows that the vector w is
unique.

6.3 Theorem of Conway

In this section Λ will denote a Niemeier lattice without roots. Note that in this and the next
section we will not assume that such a lattice is unique up to isomorphism since the prove of this
depends on the fact that the covering radius of such a lattice is

√
2. The purpose of this and the

next section is to prove that the covering radius is indeed
√
2.

Let Nm = ♯{λ ∈ Λ | λ2 = m}, the number of vectors in Λ with norm equal to m. Two vectors
λ, µ ∈ Λ are called equivalent if λ − µ = 2ν for some ν ∈ Λ. That is, we consider Λ/2Λ. Clearly,
the number of equivalence classes is |Λ/2Λ| = 224. We call a vector λ ∈ Λ short if λ2 ≤ 8. It turns
out that every element of Λ is equivalent to a short vector. Since λ and −λ are equivalent, nonzero
short vectors in an equivalence class always occur in pairs.

Theorem 4 (Conway). Each equivalence class contains a short vector. The equivalence classes
that contain more than a single pair of short vectors are precisely those that contain vectors of
norm 8, and these classes all contain exactly 24 mutually orthogonal pairs of vectors of that norm.

Proof. Let λ, µ ∈ Λ be equivalent short vectors that do not form a pair, i.e. λ 6= ±µ. By replacing
µ with −µ if necessary we can assume that (λ, µ) ≥ 0. Since λ, µ are equivalent there is a ν ∈ Λ
such that λ− µ = 2ν. Hence (λ− µ)2 = 4ν2 ≥ 16. Now (λ− µ)2 = λ2 + µ2 − 2(λ, µ) and we know
that λ2 ≤ 8, µ2 ≤ 8 and (λ, µ) ≥ 0. Together this implies that λ2 = µ2 = 8 and (λ, µ) = 0. So
two short vectors λ 6= µ that are equivalent but do not form a pair are always orthogonal and of
norm 8. It thus follows that an equivalence class with more than one pair of short vectors at most
contains 24 pairs of short vectors that furthermore necessarily have norm 8. Hence the number of
equivalence classes that contain short vectors is at least

N0 +
N4

2
+

N6

2
+

N8

48
.

By calculating the coefficients Nm of the theta series of Λ it can be shown that this sum is in fact
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equal to 224. Indeed, since Λ has no roots we can set N2 = 0 in equation (5.1). So

θΛ(z) = E6 −
65520

691
∆

= 1 +
65520

691
(2073q2 + 176896q3 + 4197825q4 + . . .)

= 1 + 196560q2 + 16773120q3 + 398034000q4 + . . . ,

and thus

N0 +
N4

2
+

N6

2
+

N8

48
= 1 +

196560

2
+

16773120

2
+

398034000

48
= 16777216 = 224.

Hence each equivalence class contains a short vector. This can be either the norm 0 vector, or an
opposite pair of vectors of norm 4 or 6, or a collection of 24 mutually orthogonal pairs of vectors
of norm 8.

Corollary 4. The distance between any two vertices of a hole of the Leech lattice Λ is at most
2
√
2.

Proof. (following the proof in [10]). Suppose that vi and vj are two vertices of a hole c such that
(vi− vj)

2 ≥ 10. By Theorem 4 the equivalence class of vi− vj contains a short vector µ ∈ Λ. Then
vi − vj − µ = 2ν for a ν ∈ Λ and thus

(vi − vj − 2ν)2 = µ2 ≤ 8.

Hence the distance between the vectors v′i := vi − ν and v′j := vj + ν in Λ is at most 2
√
2 and they

have the same midpoint (v′i + v′j)/2 = (vi + vj)/2 as vi and vj . It then easily follows that either v′i
or v′j is closer to c then vi and vj are (also see Figure 6.1):

Suppose that (
v′i − v′j

2
, c−

v′i + v′j
2

)
≥ 0. (6.1)

Figure 6.1:

vi vj

v′

i

v′

j

c

Then

(vi − c)2 =

(
vi − vj

2

)2

+

(
c− vi + vj

2

)2

, by Pythagoras

>

(
v′i − v′j

2

)2

+

(
c−

v′i + v′j
2

)2

, since (vi − vj)
2 > (v′i − v′j)

2

≥ (v′i − c)2, by 6.1.

As before, denote by Λ a Niemeier lattice without roots and let L = Λ⊕U be the lattice of type
II25,1. Also, let z = (0, 0, 1) and let D̃ be the fundamental domain of the reflection group W (L)
that contains z. As seen in Theorem 3, the simple roots are the roots αλ = (λ, 1, 1

2λ
2 − 1) with
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λ ∈ Λ (this does depend on the fact that the covering radius of Λ is
√
2, which we will prove in

the next section without assuming that all simple roots have height 1). We can therefore identify
the simple roots of L with the vectors of Λ and thus the Coxeter diagram of L is indexed by the
vectors of Λ. The Gram matrix G = (gλµ) of the simple roots αλ, λ ∈ Λ is given by

gλµ = (αλ, αµ)

= (λ, µ)− (
1

2
µ2 − 1)− (

1

2
λ2 − 1)

= 2− 1

2
(λ− µ)2.

Two points λ, µ of Λ are joined by 0, 1, 2, . . . edges if the norm of their difference is 4, 6, 8, . . .. By
Corollary 4, vertices λ, µ ∈ Λ(c) of a hole c always satisfy (λ − µ)2 ≤ 8. Thus the corresponding
nodes in the hole diagram are always joined by 0, 1, or 2 edges.
Now embed Λ ⊗ R in R25 by identifying Λ ⊗ R with the hyperplane H = {(x1, . . . , x25) ∈ R25 |
x25 = 0} in R25.Suppose that R(c) ≤

√
2 and let c′ be the point on the line perpendicular to

H that goes through c that has distance
√
2 from all vertices of the hole (see Figure 6.3). So if

R(c) =
√
2 then c = c′. If R(c) >

√
2 we define c′ = c. If the radius of a hole c is ≤

√
2 then for

λ, µ ∈ Λ:
(λ− µ)2 = 4− 2(λ− c′, µ− c′),

so two nodes λ, µ of the hole diagram are joined by 0, 1 or 2 edges if (λ− c′, µ− c′) = 0,−1 or −2
respectively (see Figure 6.2).

λ µ λ µ
λ µ

λ

c′ µ

λ

c′ µ λ c′ µ

√
8

√
2

√
2

√
4

√
2

√
2

√
6

√
2

√
2

Figure 6.2: Conditions for two vertices λ, µ of a hole c of radius≤
√
2 to be joined by 0, 1 or 2

edges in the hole diagram.

c

c′

µ1 µ2

µ3µ4

H

√
2

√
2

Figure 6.3: Construction of the point c′.

6.4 Covering radius

In this section we prove that the covering radius of a Niemeier lattice Λ with no roots is
√
2. This

was first proved by Conway et al ([6], Chapter 23) by explicit calculation, the proof below is due
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to Borcherds [3]. As before, let L = Λ⊕ U be the lattice of type II25,1. Also, let z = (0, 0, 1) and

let D̃ be the fundamental domain of the reflection group W (L) that contains z.

Proposition 4. Any connected extended Coxeter subdiagram of Λ is contained in a subdiagram
of Λ which is a disjoint union of extended Coxeter diagrams of total rank 24 (so this subdiagram
has a total of 24 + l nodes, where l is the number of connected extended Coxeter diagrams in the
disjoint union).

Proof. Let X be an extended Coxeter diagram in Λ. Suppose that v0, v1, . . . , vr ∈ Λ are the nodes
of this diagram and let αi = (vi, 1,

1
2v

2
i −1) be the corresponding simple roots of L. They determine

a primitive norm zero vector w =
∑r

i=0 kiαi (with ki the “weights” of the extended diagram) that

is contained in D̃. Hence w corresponds to a Niemeier lattice N with roots. By Corollary 1 R(N)
has rank 24 and by Corollary 2 all its irreducible components have the same Coxeter number

h =

r∑

i=0

ki = −(z, w).

This last equality holds because w =
∑r

i=0 kiαi and (z, αi) = −1 for all αi.
Hence R ∩ w⊥ is an affine root system of rank 24. The proposition will follow if we show that all
simple roots of this root system have height 1 with respect to z and thus correspond to vectors
of the Leech lattice. So suppose that β0, β1, . . . , βs are the simple roots of another connected
component of the Coxeter diagram of w⊥ with weights k′i so that

∑s
i=0 k

′
iβi = w. Then

−h = (z, w) =
s∑

i=0

k′i(z, βi).

Since this component has the same Coxeter number h as X, also
∑s

i=0 k
′
i = h. Furthermore,

because Λ has no roots it follows immediately that there are no simple roots βi with (z, βi) = 0.
So we have (z, βi) ≤ −1 and thus the above formula implies that (z, βi) = −1 for all βi. Hence all
simple roots in R ∩ w⊥ have height 1.

When changing from the hyperboloid model of hyperbolic space to the upper half-space model
the rational lines of primitive norm zero vectors in L are mapped bijectively to the points of
Λ ⊗ Q ∪∞ as follows: Let x be a norm zero vector of L representing a rational line in L ⊗ Q. If
x = (0, 0, 1) then x is mapped to ∞ in Λ⊗Q ∪∞. Otherwise, x = (λ,m, λ2/2m) with m 6= 0 and
x is mapped to λ/m in Λ⊗Q ∪∞.

Lemma 12. The reflection in the simple root αλ = (λ, 1, 1
2λ

2 − 1) of D̃ acts on Λ ⊗ Q ∪ ∞ as

inversion in the sphere of radius
√
2 with center λ.

Proof. Let ξ be a point of Λ⊗Q that corresponds to the rational line in L⊗Q generated by the
norm zero vector x = (ξ, 1, 1

2ξ
2). Let αλ = (λ, 1, 1

2λ
2 − 1) be a simple root. Then

(x, αλ) = (ξ, λ)− (
1

2
λ2 − 1)− 1

2
ξ2

= 1− 1

2
(ξ − λ)2,

and thus (x, αλ) = 0 ⇔ (ξ − λ)2 = 2.

Theorem 5. The covering radius of Λ is
√
2.

Proof. Let c ∈ Λ ⊗ Q be a hole of Λ. Denote by R(c) the radius of this hole given by R(c)2 =
inf{(λ − c)2 | λ ∈ Λ}. By Corollary 4 we know that the distance between any two vertices of c is
at most 2

√
2. So the nodes of the hole diagram of c are joined by 0, 1 or 2 edges. Now there are

the following two possibilities:
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• The hole diagram contains no extended diagram:
In this case the hole diagram contains no double bonds because if it did it would contain
the extended diagram Ã1. So the diagram is simply laced and it follows that it can contain
only simply laced elliptic diagrams, i.e. the diagrams in Figure 1. Indeed, otherwise one
could delete nodes from the diagram until in the next step such an elliptic diagram would be
obtained and thus there would be an extended diagram contained in the hole diagram. We
now show that a hole whose diagram contains only elliptic diagrams has radius R <

√
2:

A simply laced elliptic diagram corresponds to a root system in which all the roots have
the same length (see [4]). Suppose that the rank of the diagram is n. Let {µi}ni=1 be the
set of vertices of the hole c. Furthermore, let {αi}ni=1 be a set of fundamental roots in Rn

corresponding to the diagram. They all have the same length and they have the same mutual
distances as the µi. Hence the set of vectors {αi | i = 1, . . . , n} is isometric to the set of
vectors {µi−c′ | i = 1, . . . , n}. Furthermore, since the origin in Rn is not a linear combination
of the αi it follows that c′ cannot be a linear combination of the µi. So it follows that c′ is
not in the hyperplane that contains the µi and thus by definition of c′ we have R <

√
2.

• The hole diagram of c contains an extended diagram:
Let {vi} be the set of vertices corresponding to this diagram. By Proposition 4 this diagram
is contained in a disjoint union of extended diagrams of total rank 24. Let {αi} be the set
of simple roots that correspond to the vertices {vi} (i.e. αi = (vi, 1,

1
2v

2
i − 1)). Furthermore,

let {v′i} be a set of vertices of one of the other extended diagrams of the hole c with a
corresponding set of simple roots {α′

i}. Let w ∈ D̃ be the norm zero vector corresponding
to this set of extended diagrams, i.e. w =

∑
i kiαi =

∑
k′iα

′
i with ki, k

′
i the weights of

the extended diagrams formed by the simple roots αi, α
′
i. Then w = (

∑
i kivi, h, . . .) =

(
∑

i k
′
iv

′
i, h, . . .). So the norm zero vector w corresponds to the vector c̃ = 1

h

∑
kivi =

1
h

∑
k′iv

′
i ∈ Λ⊗Q. The diagrams then form the vertices of a hole c̃ of radius

√
2 whose center

is the center of any of the components of this set of vertices. Suppose that ĉ is another hole
with the vertices {vi} among its vertices. Since c̃ is the center of this set of vertices this is
only possible if ĉ = c̃ + v with v ∈ Λ ⊗ Q a vector perpendicular to all the vi. Then the
radius of this hole is R(ĉ) = (ĉ − vi)

2 = R(c̃) + v2 + 2(c, v). Since the extended diagrams
that form the hole diagram of c̃ have total rank 24 there is a vector v′i among its vertices
that is not perpendicular to v. But then (ĉ − v′i)

2 = R(c̃) + v2 + 2(c, v) − (v′i, c) and we see
that the distance of ĉ to either v′i or −v′i is smaller than its distance to the vertices vi. So ĉ
is not a hole with the vertices vi among its vertices. It follows that any hole which has the
{vi} among its vertices must be equal to c̃. So in particular c = c̃ has radius

√
2.

It follows that Λ has covering radius
√
2.

6.5 Deep holes

Again denote by Λ the Leech lattice, which we now know to be the unique Niemeier lattice with-
out roots. In this section we give a proof that the construction in section 6.1 gives the Leech
lattice after one step. We also describe the “holy constructions” of the Leech lattice as described
in [6], Chapter 24 and give Borcherds proof that these constructions work. We elaborate on the
deep holes, especially those corresponding to the Niemeier lattices with root system 24A1 and 12A2.

It follows from Lemma 12 that in the upper half-space model U25 = {(x, y) | x ∈ Λ⊗ R, y ∈ R≥0}
the fundamental domain D̃ of L =II25,1 is given by

D̃ = {(x, y) ∈ U25 | (x− λ)2 + y2 ≥ 2 for all λ ∈ Λ} ∪ {∞}.

Furthermore, Aut+(L) = W (L)⋊ Sym(D̃) with Sym(D̃) equal to the group of diagram automor-
phisms of Λ. So Sym(D̃) = T (Λ)⋊Aut(Λ) with T (Λ) ∼= Λ the translation group of Λ. This group
T (Λ) ⋊ Aut(Λ) is called Co∞ or ·∞. Aut(Λ) is also called Co0 or ·0, it is the double cover of
Conway’s simple group Co1 = ·1 of order 22139547211 · 13 · 23.
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The statement in the Proposition below was first proved by Conway et al ([6], Chapter 23) by
explicit calculation of all the deep holes of the Leech lattice. The proof below is due to Borcherds
([3] Corollary 7.2).

Proposition 5. The Niemeier lattices with roots are in natural bijection with the orbits of deep
holes of Λ under ·∞. The vertices of a deep hole form the extended Coxeter diagram of the
corresponding Niemeier lattice.

Proof. As discussed in section 5.1, the Niemeier lattices correspond to orbits of primitive norm
zero vectors in L. By Lemma 12, the point ξ ∈ Λ⊗Q corresponds to a norm zero vector z of D̃ if
and only if (ξ−λ)2 ≥ 2 for all λ ∈ Λ. If this is the case then ξ is a deep hole and its vertices are the
λ ∈ Λ at distance

√
2 from ξ. These vertices λ correspond to the simple roots (λ, 1, 1

2λ
2 − 1) of D̃

in z⊥. So Niemeier lattices with roots correspond to the orbits of primitive norm zero vectors other
than (0, 0, 1) and thus to deep holes ξ of L. The vertices of this deep hole ξ form the extended
Coxeter diagram of the corresponding Niemeier lattice.

So up to the action of ·∞ there are 23 types of deep holes in the Leech lattice each corresponding
to a different Niemeier lattice with roots. There are 284 types of shallow holes (up to the action of
·∞), for a classification see [6] Chapter 25. A shallow hole has 25 vertices and the corresponding
hole diagram is a union of elliptic Coxeter diagrams. The radius of a shallow hole is

√
2− 1/ρ2

with ρ the Weyl vector of the hole diagram.

λ3 λ4c4 λ5c5 λ6c6λ2 c3λ1 c2c1

D̃

Figure 6.4: Fundamental domain D̃ of L = Λ⊕U in upper half-space model. With λi ∈ Λ, c2 and
c4 deep holes and c1, c3, c5 and c6 shallow holes.

We can now show that the construction described in Section 6.1 indeed always gives the Leech
lattice after one step:

Theorem 6. Let N be a Niemeier lattice with roots and with Weyl vector ρ = 1
2

∑
α>0 α and

Coxeter number h. Let L = N ⊕ U be the lattice of type II25,1 with coordinates (ν,m, n), where
ν ∈ N , m,m ∈ Z and (ν,m, n)2 = ν2 − 2mn. Then (ρ, h, h+1) is a primitive norm zero vector in
L that corresponds to the Leech lattice Λ.

Proof. Let V = N ⊗R and let A = {ξ ∈ V | −1 ≤ (ξ, α) ≤ 0 for all α < 0} be the standard alcove.
The sphere S

(
ρ/h, 1/(

√
2h)
)
with center ρ/h and radius 1/(

√
2h) is the inscribed sphere of this

simplex:
Indeed, if α < 0 is a simple root then (ρ/h, α) = −1/h. Furthermore, if θ < 0 is a highest root
then (ρ/h, θ) = (h− 1)/h and hence −1+ (ρ/h, θ) = −1/h. So ρ/h has distance 1/(

√
2h) from the

planes Hα with α < 0 a simple root and Hθ,−1 = {ξ ∈ V | (ξ, θ) = −1} with θ < 0 a highest root
bounding C. In particular, it follows that ρ/h lies on the middle plane of any two of the (possibly
affine) hyperplanes bounding C.
Now change to coordinates (λ,m, n) ∈ Λ⊕ U = L with (λ,m, n)2 = λ2 − 2mn, so the point at ∞
in the upper half-space model corresponds to the Leech lattice Λ. Let ξ ∈ D̃ be a deep hole of Λ
that corresponds to the Niemeier lattice N . The vertices of the deep hole ξ are those λ ∈ Λ with
(λ − ξ)2 = 2. They correspond to simple roots αλ = (λ, 1, 1

2λ
2 − 1) of L and form the extended

Coxeter diagram of N . By Lemma 12 the reflections corresponding to these simple roots act on
Λ⊗Q ∪∞ as inversion in the sphere S(λ,

√
2) with center λ and radius

√
2. The geodesic γ from
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ξ to ∞ is the intersection of the middle planes of these spheres (that contain ξ).
Now change back coordinates by moving ξ to the point at∞. Then the geodesic γ is the intersection
of the middle planes of the hyperplanes corresponding to the simple and highest roots of N . By
the above discussion we can conclude that this geodesic goes from ∞ to the point ρ/h ∈ N ⊗ Q.
Hence the Leech lattice corresponds to the primitive norm zero vector (ρ, h, h+ 1) ∈ N ⊕ U .

Lemma 13. Let c be the center of a deep hole that corresponds to a Niemeier lattice N with roots
and with Coxeter number h. Then c ∈ 1

hΛ.

Proof. Let R̃j be an irreducible component of the extended root system R̃(N). If {α0, . . . , αr}
is a set of simple roots corresponding to the extended diagram of R̃j then there are positive
integers k0, . . . , kr such that

∑r
i=0 kiαi = 0 and

∑r
i=0 ki = h(Rj) = h. Now let v0, . . . , vr be the

corresponding vertices of the deep hole with center c whose vertices form the extended Coxeter
diagram of N . Then

∑r
i=0 ki(vi − c) = 0. So the center of the hole is

c =
r∑

i=0

kivi

/
r∑

i=0

ki =
1

h

r∑

i=0

kivi .

Since the vi ∈ Λ and the ki are positive integers,
∑

kivi ∈ Λ and thus hc ∈ Λ.

The “holy constructions”

The so called “holy constructions” of the Leech lattice are described by Conway and Sloane in
[6] Chapter 24. They give a construction for the Leech lattice from each of the Niemeier lattices
with roots and remark: “The fact that this construction always gives the Leech lattice still quite
astonishes us, and we have only been able to give a case-by-case verification, as follows... We would
like to see a more uniform proof.” Such a proof was found by Borcherds ([3]). Below we will follow
his proof while explaining things in more detail.
Let N be a Niemeier lattice with Coxeter number h 6= 0. Suppose R(N) =

∑k
i=1 Ri, where the Ri

are irreducible components of rank ri of R(N). Let {αj
i | j = 0, . . . , ri} be a set of simple roots of

Ri together with the highest root, so that the αj
i form the extended diagram of Ri. Let ρ be the

Weyl vector of N and define the glue vectors gi to be the vectors gi = νi − ρ/h where νi ∈ N such
that g2i = 2(1 + 1/h). By Lemma 9 the vectors νi are the lattice vectors closest to ρ/h and they
form a complete set of coset representatives of N/Q, where Q is the root lattice ZR(N). One of
these νi is the zero vector, say ν0 = 0. So g0 = −ρ/h.
Then the “holy construction” is as follows:
The Niemeier lattice N is the set of all integer combinations

∑
mj

iα
j
i +

∑
nigi with

∑
ni = 0, (6.2)

while the set of all integer combinations
∑

mj
iα

j
i +

∑
nigi with

∑
mj

i +
∑

ni = 0 (6.3)

is a copy of the Leech lattice.
We call two sets isometric if they are isomorphic as metric spaces after identifying pairs of points
whose distance apart is 0. So for example N is isometric to N ⊕ 0.

Lemma 14. Let z be a primitive norm zero vector in D̃ that corresponds to the Niemeier lattice
N . The set of vectors αj

i and gi is isometric to the simple roots of D̃ of height 0 and 1 with respect
to z.

Proof. Use coordinates (ν,m, n) ∈ N ⊕U = L with z = (0, 0, 1) so that z is the point at infinity in
the upper half-space model. If we now apply Vinberg’s algorithm with z as controlling vector then
the roots of height 0 are the roots in z⊥. This is the affine root system of N , so a set of simple
roots of height 0 is given by roots

f j
i = (αj

i , 0, 0),for j ≥ 1, and

f0
i = (α0

i , 0, 1).
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Then z =
∑

j kjf
j
i for all i, where the kj are positive integers (the “weights” of the roots).

If x = (ν,m, n) is a simple root of height 1 then x has to satisfy:

(x, f j
i ) ≤ 0, for all f j

i , and (6.4)

(x, z) = −1. (6.5)

We have z =
∑

j kjf
j
i for all i and (x, f j

i ) ∈ Z since L is an even lattice. It then follows from the
equations 6.4 and 6.5 above that for each i

(x, f j
i ) = −1, for one j with kj = 1,

(x, f j
i ) = 0, for all other j.

The only roots that satisfy these criteria are:

hi = (νi, 1,
1

2
ν2i − 1).

The set consisting of the vectors f j
i and hi is easily seen to be isometric to the set of vectors αj

i

and gi.

Lemma 15. The vectors f j
i and hi generate L.

Proof. Let Γ =
∑

mj
if

j
i +

∑
nihi be the lattice generated by the vectors f j

i and hi. Since the

simple roots αj
i generate Q = ZR(N) and the vectors νi ∈ N are a complete set of representatives

of N/Q we have Γ = N ⊕ A with A ⊂ U . Since furthermore z = (0, 0, 1) and h0 = (0, 1,−1) are
elements of Γ we see that in fact Γ = N ⊕ U = L.

We can now give a proof that the holy constructions indeed all give the Leech lattice.

Proof. (Holy constructions)
The first claim immediately follows from the fact that the roots αj

i generate the root lattice
Q = ZR(N) of N and the vectors νi form a complete set of coset representatives for N/Q.
Now suppose that w is a primitive norm zero vector that corresponds to the Leech lattice Λ. Then,
by Theorem 3, (w, f j

i ) = (w, hi) = −1 for all f j
i and hi. In fact, it is easily calculated that for

w = (ρ, h, h+1) we have (w, f j
i ) = (w, hi) = −1 for all f j

i and hi. Hence with Lemma 15 it follows

that w⊥ = Λ⊕ 0 is equal to
∑

mj
if

j
i +

∑
nihi with

∑
mj

i +
∑

nl = 0. So
∑

mj
iα

j
i +

∑
nigi with∑

mj
i +

∑
ni = 0 is isometric to Λ⊕ 0. Since it is contained in the positive definite space N ⊗Q

it follows that it is isomorphic to Λ.

The holy construction is equivalent to the (ρ, h, h+1)⊥ construction so this also gives another
proof that this construction works. The following Lemma is a remark in Chapter 24 of [6].

Lemma 16. Let N be a Niemeier lattice with roots and h its Coxeter number. Then [Λ : Λ∩N ] =
[N : Λ ∩N ] = h.

Proof. Denote by {αj
i | j = 0, . . . , r} a set of simple roots of a component Ri of R(N) together with

the highest root of this component, so that the αj
i form the extended diagram of Ri. Then there

are positive integers kj such that
∑r

j=0 kjα
j
i = 0 and

∑r
j=0 kj = h. So the equality in equation

6.3 can be replaced by
∑

mj
i +

∑
nw ≡ 0 (modulo h). It then follows that Λ ∩N is the set of all

integer combinations

∑
mj

iα
j
i +

∑
nwgw with

∑
mj

i ≡ 0 (modulo h) and
∑

nw = 0.

From this it immediately follows that [N : Λ ∩N ] = h. Since N and Λ are both unimodular then
also [Λ : Λ ∩N ] = h.
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Suppose that c is the center of a deep hole that corresponds to a Niemeier lattice N with
Coxeter number h. Set

Λ′ = {λ ∈ Λ | (λ, c) ∈ Z},
and let Γ =< Λ′, c > be the lattice generated by Λ′ and c. Then [Λ : Λ′] = [Γ,Λ′] and hence Γ is
a unimodular lattice. It also follows from its construction that Γ is an even lattice, so we see that
Γ is also a Niemeier lattice. Furthermore, R(Γ) contains the elements c and c − vi where the vi
are the vertices of the deep hole. Hence R(Γ) = R(N) and thus Γ ∼= N . It follows from the above
Lemma that [Λ : Λ′] = [Γ : Λ′] = h. Hence kc /∈ Λ for 1 < k < h.

Example 7. Suppose that N is a Niemeier lattice with root system R(N) = 24A1 and let c be a
deep hole corresponding to N . Since h = 2 we have µ := 2c ∈ Λ. Then µ2 = 8.
In fact, starting with a norm 8 vector in Λ we can construct a deep hole that corresponds to
a Niemeier lattice with root system 24A1. Let µ be such a vector of norm 8 and consider the
equivalence relation µ ∼ ν ⇔ µ − ν ∈ 2Λ. Then by Theorem 4 the equivalence class [µ] ∈ Λ/2Λ
contains besides ±µ 23 other pairs ν,−ν of norm 8 vectors. These pairs are mutually orthogonal.
Now the vertices of a deep hole with center 1

2µ are 0, µ and the pairs 1
2 (µ + ν), 1

2 (µ − ν), where
±ν ∈ [µ] are norm 8 vectors. Indeed, since ±ν ∈ [µ] we have 1

2 (µ ± ν) ∈ Λ and ( 12µ − ( 12 (µ ±
ν)))2 = (± 1

2ν)
2 = 2 so all these vectors indeed have distance 2 from the vector 1

2µ. Furthermore,
( 12 (µ + ν) − 1

2 (µ − ν))2 = ν2 = 8. So the nodes corresponding to the vectors 1
2 (µ ± ν) are joined

by two edges. Also, if ν1 6= ±ν2 and both are norm 8 vectors in [µ] not equal to ±µ then ν1, ν2 are
orthogonal and thus ( 12 (µ± ν1)− 1

2 (µ± ν2))
2 = 1

2µ
2 = 4. So the nodes corresponding to 1

2 (µ± ν1)
are not joined to the nodes corresponding to 1

2 (µ ± ν2). Hence we have constructed a deep hole

with hole diagram 24Ã1 and have thus proven the existence of a Niemeier lattice with root system
24A1.
Since the group Co0 = ·0 = Aut(Λ) acts transitively on vectors of norm 8 ([6], Chapter 10,
Theorem 27) it also follows that there can only be one Niemeier lattice with root system 24A1 (up
to isomorphism).

Example 8. Suppose that N is a Niemeier lattice with root system R(N) = 12A2 and let c be a
deep hole corresponding to N . Since the Coxeter number h = 3 in this case we have µ := 3c ∈ Λ.
Then µ2 = 18. We can divide the vectors with norm 18 in Λ into two types. They are either the
sum of two vectors in Λ of norm 6 or the sum of one vector of norm 4 and one vector of norm 8.
The vector 0 ∈ Λ is one of the vertices of this deep hole. Suppose that µ1, µ2 ∈ Λ are the two
vertices of this hole that together with 0 correspond to a subdiagram Ã2 of the hole diagram 12Ã2.
Then

µ2
1 = µ2

2 = 6, and

c =
1

h

r∑

i=0

kivi =
1

3
(µ1 + µ2).

So it follows that µ = µ1 + µ2 is a sum of two vectors of norm 6 and the case that is the sum
of a norm 4 and a norm 8 vector does not occur here. The Conway group Co0 acts transitively
on vectors of this type ([6], Chapter 10, Theorem 29) and it thus follows that up to isomorphism
there can be at most one Niemeier lattice with root system 12A2.
As before, we can now prove the existence of a Niemeier lattice with root system 12A2. Let
µ1, µ2 ∈ Λ be two norm 6 vectors with (µ1, µ2) = 3. So µ = µ1 + µ2 is a vector of norm 18. Set
c := 1

3µ so c2 = 2 and 2c /∈ Λ since otherwise also the norm 2 vector c = 3c − 2c would be an
element of Λ. Now set

Λ′ = {λ ∈ Λ | (λ, c) ∈ Z},
and define Γ =< Λ′, c > to be the lattice generated by Λ′ and c. Then [Λ : Λ′] = [Γ : Λ′] = 3
and together with the definition of Λ′ this implies that Γ is an even unimodular lattice in R24.
Furthermore, as Λ′ = Λ ∩ Γ it follows that Γ has to be the Niemeier lattice with R(Γ) = 12A2

because this is the only root system listed in Table 5.1 with h = 3.

In general, suppose that λ ∈ Λ is a primitive vector of norm 2 · h2 with h ∈ N. Then we can
construct a Niemeier lattice with Coxeter number equal to h as follows:
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Let
Λ′ = {µ ∈ Λ | (µ, λ/h) ∈ Z},

and let Γ =< Λ′, λ/h > be the lattice generated by Λ′ and λ/h. This is a Niemeier lattice with
Coxeter number equal to h. If there is only one root system in Table 5.1 with this Coxeter number
then this would show the existence of a Niemeier lattice with this root system. Note that in the
approach we have taken here the proof of existence and uniqueness becomes harder as the Coxeter
number h increases contrary to Venkov’s proof where it is the other way around.

The uniqueness of a Niemeier lattice with a given root system in this approach depends on the
transitivity of the Conway group Co0 on vectors of Λ of a certain type. However, the proof of, for
example, Theorem 29 in [6] Chapter 10 depends on a construction of the Leech lattice that uses
the binary Golay code. So the proof of the uniqueness of the Niemeier lattices with root system
24A1 and 12A2 still depends on the existence and uniqueness of this code. It remains to be seen if
one can construct a proof of the uniqueness of these lattices that completely avoids the use of the
Golay codes.
The (ρ, h, h + 1)⊥ construction of the Leech lattice Λ from an arbitrary Niemeier lattice N with
roots gives a geodesic from the primitive norm zero vector in D̃ corresponding to N to the prim-
itive norm zero vector in D̃ corresponding to Λ. Another approach for proving the existence of a
Niemeier lattice would be to find such a geodesic from the primitive norm zero vector correspond-
ing to a Niemeier lattice whose existence is easy to prove (like 3E8) to the primitive norm zero
vector corresponding to one for which it is harder (for example the one with root system 24A1).
We did not obtain any results in this direction.
Of course it would even be better to find a uniform proof of the uniqueness and existence of a
Niemeier lattice with given root system for all the root systems in Table 5.1. That is, for root
systems of rank 24 whose irreducible components all have the same Coxeter number.
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