
A remark on the Dunkl differential-difference operators
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§1. Introduction

Let E be a Euclidean vector space of dimension n with inner product (·, ·). For α ∈ E

with (α, α) = 2 we write

(1.1) rα(λ) = λ − (α, λ)α, λ ∈ E

for the orthogonal reflection in the hyperplane perpendicular to α.

Definition 1.1. A normalized root system R in E is a finite set of non zero vectors

in E, normalized by (α, α) = 2 ∀α ∈ R, such that rα(β) ∈ R ∀α, β ∈ R.

Let R ⊂ E be a normalized root system. We write W = W (R) for the group generated

by the reflections rα, α ∈ R. Denote by C[E] the algebra of C-valued polynomial

functions on E. For w ∈ W , ξ ∈ E, α ∈ R introduce the operators

(1.2) w, ∂ξ, ∆α : C[E] −→ C[E]

by

(1.3) (wp)(λ) = p(w−1λ)

(1.4) (∂ξp)(λ) =
d

dt
{p(λ + tξ)}t=0

(1.5) (∆αp)(λ) =
p(λ) − p(rαλ)

(α, λ)
.

Remark 1.2. The operators ∆α, α ∈ R were studied by Bernstein, Gel’fand and

Gel’fand and are related to the Schubert cells and the cohomology of G/P [BGG].

They are the infinitesimal analogues of the Demazure operators [De 1,2].

Let R+ = {α ∈ R; (α, λ) > 0} for some fixed generic λ ∈ E be a positive subsystem

of R.
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Definition 1.3. Suppose for α ∈ R we have given kα ∈ C with kwα = kα ∀w ∈
W, ∀α ∈ R. For ξ ∈ E the operator

(1.6) Dξ = ∂ξ +
∑

α∈R+

kα(α, ξ)∆α : C[E] −→ C[E]

is called the Dunkl differential-difference operator.

Remark 1.4. It is easy to see that Dξ is independent of the choice of the positive

subsystem R+ ⊂ R. If we write qα = e2πikα then one can think of the operator Dξ

as a q-analogue (corresponding to the case kα → 0) of the directional derivative ∂ξ.

We also write Dξ = Dξ(k) to indicate the dependence on k ∈ K = {k = (kα)α∈R ∈
CR; kwα = kα ∀w ∈ W, ∀α ∈ R}.

Theorem 1.5 (Dunkl [Du]): We have DξDη = DηDξ ∀ξ, η ∈ E.

Let C[E∗] be the symmetric algebra on E. For π ∈ C[E∗] we write ∂π when we think

of π as a constant coefficient differential operator on E (rather than a polynomial

function on E∗). In view of Theorem 1.5 the constant coefficient differential operator

∂π has a well defined q-analogue

(1.8) Dπ : C[E] −→ C[E]

defined for a monomial π = ξd1

1 . . . ξdn
n by

(1.9) Dπ = Dπ(k) = Dd1

ξ1
...Ddn

ξn

and extended by linearity.

Theorem 1.6 (Dunkl [Du]): Suppose ξ1, . . . , ξn is an orthonormal basis for E. The

q-analogue of the Laplacian is given by

(1.7)
n

∑

j=1

D2
ξj

=
n

∑

j=1

∂2
ξj

+ 2
∑

α∈R+

kα

1

(α, ·){∂α − ∆α}.

In Section 2 we review the proofs of both theorems as given by Dunkl.

We write C[E]W and C[E∗]W for the space of W -invariants in C[E] and C[E∗] respec-

tively. We denote by A the associative algebra of endomorphisms of C[E] generated by

(multiplication by) (ξ, ·) and Dη for ξ, η ∈ E. Let AW = {D ∈ A; wD = Dw ∀w ∈ W}
be the subalgebra of W -invariant operators in A, and denote by

(1.10) Res(D) : C[E]W −→ C[E]W , D ∈ A
W
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the restriction of D to C[E]W . Clearly Res : A
W → End(C[E]W ) is a homomorphism

of algebras. Since wDξw
−1 = Dwξ ∀w ∈ W , ∀ξ ∈ E we have Dπ ∈ AW ∀π ∈ C[E∗]W .

Theorem 1.7. Suppose by the Chevalley theorem that C[E]W = C[p1, . . . , pn] with

p1, . . . , pn homogeneous of degrees d1 ≤ . . . ≤ dn. Then the set

(1.11) {Res(Dπ); π ∈ C[E∗]W }

is a commuting family of differential operators in the Weyl algebra C[k, p1, . . . , pn,
∂

∂p1
, . . . , ∂

∂pn
] containing the operator

(1.12) Res(
n

∑

j=1

D2
ξj

) =
n

∑

j=1

∂2
ξj

+ 2
∑

α∈R+

kα

1

(α, ·)∂α.

Remark 1.8. The proof of this theorem is a triviality. However it can be reformulated

as the complete integrability for the generalized non periodic Calogero-Moser system

(both on the quantum mechanical level of differential operators and on the classical

mechanical level of symbols). For root systems R of type A the complete integrability

of the Calogero-Moser system was first established by Moser by realizing the system as

a Lax pair [Mo]. The method of Moser was extended by Olshanetsky and Perelomov to

cover the root systems R of classical type [OP]. In the crystallographic case (α, β)2 ∈ Z

∀α, β ∈ R the above theorem has been obtained before by Opdam using transcendental

methods [HO, He1, Op 1,2, He 2].

Suppose S ⊂ R is a set of roots in R invariant under W . Let S+ = S ∩ R+ and put

pS(·) =
∏

α∈S+

(α, ·) ∈ C[E](1.13)

πS =
∏

α∈S+

α ∈ C[E∗].(1.14)

Clearly we have

(1.15) wpS = χ(w)pS , wπS = χ(w)πS ∀w ∈ W

for some one dimensional character χ = χS of W , and conversely every p ∈ C[E] with

wp = χ(w)p ∀w ∈ W is divisible in C[E] by pS . Although p−1
S DπS

(k) need not be

an endomorphism of C[E] it follows that p−1
S DπS

(k)(p) ∈ C[E]W ∀p ∈ C[E]W , and

hence

(1.16) G(1S, k) := Res(p−1
S DπS

(k)) ∈ End(C[E]W )
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is a well defined endomorphism of C[E]W . We also write

(1.17) G(−1S , k) := Res(DπS
(k − 1S) · pS) ∈ End(C[E]W )

where k − 1S ∈ K is the multiplicity function by (k − 1S)α = kα − 1 for α ∈ S and

(k − 1S)α = kα for α ∈ R\S.

Theorem 1.9. The operators (1.16) and (1.17) are differential operators in the Weyl

algebra C[k, p1, . . . , pn, ∂
∂p1

, . . . , ∂
∂pn

] and satisfy the shift relations

(1.18) G(1S , k)Res
(

Dπ(k)
)

= Res
(

Dπ(k + 1S)
)

G(1S , k)

(1.19) G(−1S , k)Res
(

Dπ(k)
)

= Res
(

Dπ(k − 1S)
)

G(−1S , k)

∀π ∈ C[E∗]W . Here (k ± 1S)α = kα ± 1 ∀α ∈ S and (k ± 1S)α = kα ∀α ∈ R\S.

The proofs of both Theorem 1.7 and 1.9 will be given in Section 3.

Remark 1.10. In the terminology of Opdam the operator (1.16) is a raising operator

and the operator (1.17) a lowering operator for the commuting family (1.11). Again

in the crystallographic case the above theorem was obtained by Opdam [Op 2]. Recall

Macdonald’s (infinitesimal) constant term conjecture, which says that for R(s) > 0

(1.20)

∫

E

∏

α∈R+

|(α, λ)|2sdγ(λ) =

n
∏

j=1

(sdj)!

s!
,

where dγ(λ) = (2π)−
n
2 e−

1
2
(λ,λ)dλ is the Gaussian measure on E [Ma].

The same arguments as given in [Op 3, Section 6] show that the evaluation of this

integral is equivalent with

(1.21) G(−1, k)(1) = |W | ·
n

∏

i=1

mi
∏

j=1

(dik − j),

where −1 = −1R and k = kα∀α ∈ R. In turn this latter formula is related to the

normalization of the “multivariable Bessel function associated with R” at ξ = 0. This

normalization problem has been analyzed by Opdam, and the desired formula (1.21)

can be obtained [Op 4]. After this one can proceed as in [Op 3, Section 7] to com-

pute the Bernstein-Sato polynomial of the discriminant without the crystallographic

restriction in accordance with a conjecture of Yano and Sekiguchi [YS].
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§2. The Dunkl differential-difference operators.

Using the bracket [·, ·] for the commutator of endomorphisms of C[E] we can write for

ξ, η ∈ E

(2.1) [Dξ, Dη] = I + II + III

with

I = [∂ξ, ∂η] = 0(2.2)

II =
∑

α∈R+

kα{(α, ξ)[∆α, ∂η] + (α, η)[∂ξ, ∆α]}(2.3)

III =
∑

α,β∈R+

kαkβ(α, ξ)(β, η)[∆α, ∆β].(2.4)

Lemma 2.1. For ξ ∈ E, α ∈ R we have

(2.5) [∂ξ, ∆α] =
(α, ξ)

(α, ·) {rα∂α − ∆α}.

Proof: Using the definition ∆α = 1
(α,·)

(1 − rα) we get

[∂ξ, ∆α] = [∂ξ,
1

(α, ·) ](1 − rα) +
1

(α, ·) [∂ξ, 1 − rα]

= − (α, ξ)

(α, ·)2 (1 − rα) +
1

(α, ·)rα(∂ξ − ∂rαξ)

= −(α, ξ)

(α, ·) ∆α +
(α, ξ)

(α, ·) rα∂α. Q.E.D

Using (2.5) the second term (2.3) can be rewritten as

(2.6) II =
∑

α∈R+

kα

(α, ξ)(α, η)

(α, ·) {rα∂α − ∆α}(−1 + 1) = 0.

The third term (2.4) can be written as

(2.7) III =
∑

α,β∈R+

kαkβ{(α, ξ)(β, η)− (α, η)(β, ξ)}∆α∆β

and for the proof of Theorem 1.5 it remains to verify the vanishing of this third term.

Proposition 2.2. Suppose B(·, ·) is a bilinear form on E such that

(2.8) B(rαλ, rαµ) = B(µ, λ) ∀λ, µ ∈ E, ∀α ∈ R ∩ span 〈λ, µ〉.
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If w ∈ W is a pure rotation (i.e. dim Im(w − Id ) = 2) then

(2.9)
∑

α,β∈R+,rαrβ=w

kαkβB(α, β)
1

(α, ·)(β, ·) = 0

and

(2.10)
∑

α,β∈R+,rαrβ=w

kαkβB(α, β)∆α∆β = 0.

Proof: Using the definition ∆α = 1
(α,·)

(1 − rα) the left hand side of (2.10) can be

written as a sum of the following three terms

(2.11) A =
∑

kαkβB(α, β)
1

(α, ·)(β, ·)

(2.12) B = −
∑

kαkβB(α, β)

{

1

(α, ·)(rαβ, ·)rα +
1

(α, ·)(β, ·)rβ

}

(2.13) C =
∑

kαkβB(α, β)
1

(α, ·)(rαβ, ·)rαrβ

with the summations over the same index set as in (2.9) and (2.10).

Let S = R∩ Im(w − Id ) be the normalized root system of the largest dihedral group

W (S) containing w. If w = rαrβ then for γ ∈ S we have rγwrγ = w−1 and hence

rrγαrrγβ = rβrα. We claim that rγA = A ∀γ ∈ S. Indeed we have

rγA =
∑

α,β∈R+,rαrβ=w

kαkβB(α, β)
1

(rγα, ·)(rγβ, ·)

=
∑

α,β∈rγR+,rβrα=w

kαkβB(rγα, rγβ)
1

(α, ·)(β, ·)

=
∑

α,β∈rγR+,rβrα=w

kαkβB(β, α)
1

(α, ·)(β, ·)

= A

since the summation in (2.9) is independent of the choice of R+. Let S+ = R+ ∩ S

and put pS =
∏

α∈S+

(α, ·). Then pS transforms under the group W (S) according to the

sign character and every polynomial in C[E] transforming under W (S) according to

the sign character is divisible in C[E] by pS . Now observe that pSA ∈ C[E] transforms
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under W (S) according to the sign character. Hence A ∈ C[E]. Since A is homogeneous

of degree minus two we have A = 0. This proves (2.9).

Since w = rαrβ = rrαβrα and B(α, β) = B(rαβ, rαα) = −B(rαβ, α) the vanishing

of the term (2.12) is clear, and for the term (2.13) we can write C = −Aw = 0.

Q.E.D.

Lemma 2.3. For ξ, η ∈ E fixed the bilinear form

(2.14) B(λ, µ) = (λ, ξ)(µ, η)− (λ, η)(µ, ξ)

on E satisfies condition (2.8).

Proof: Clearly B(µ, λ) = −B(λ, µ) is an alternating form. For λ ∈ E, λ 6= 0 we write

λ′ =
√

2|λ|−1λ and get

B(rλ′λ, rλ′µ) = B(−λ, µ − (λ′, µ)λ′) = B(−λ, µ) = B(µ, λ).

Hence for λ, µ ∈ E generic we get by continuity

B(rνλ, rνµ) = B(µ, λ) ∀ν ∈ span 〈λ, µ〉, (ν, ν) = 2. Q.E.D.

The proof of Theorem 1.5 now follows by regrouping the terms in (2.7) as a sum over

{α, β ∈ R+; rαrβ = w} where w ∈ W runs over the pure rotations in W and by

applying (2.10).

The proof of Theorem 1.6 is just an easy calculation.

n
∑

j=1

D2
ξj

=
n

∑

j=1

(∂ξj +
∑

α∈R+

kα(α, ξj)∆α)2

=
n

∑

j=1

{

∂2
ξj

+
∑

α∈R+

kα(α, ξj)(∂ξj
∆α + ∆α∂ξj

) +
∑

α,β∈R+

kαkβ(α, ξj)(β, ξj)∆α∆β

}

=

n
∑

j=1

∂2
ξj

+
∑

α∈R+

kα(∂α∆α + ∆α∂α) +
∑

α,β∈R+

kαkβ(α, β)∆α∆β .

The third term vanishes by Proposition 2.2 and because ∆2
α = 0. Using Lemma 2.1

we get
∂α∆α + ∆α∂α = [∂α, ∆α] + 2∆α∂α

=
(α, α)

(α, ·)
{

rα∂α − ∆α

}

+
2

(α, ·)(1 − rα)∂α

=
2

(α, ·)
{

∂α − ∆α

}

.
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§3. The Opdam shift operators.

Recall that D ∈ End(C[p1, . . . , pm]) is a differential operator of degree ≤ d if and only

if

(3.1) ad(p)d+1(D) = 0 ∀p ∈ C[p1, . . . , pn].

Hence the fact that the operators (1.11), (1.16) and (1.17) are differential operators

is clear from

(3.2) ad(p)(Dξ) = ad(p)(∂ξ) = −∂ξ(p)

(3.3) ad(p)2(Dξ) = 0

∀p ∈ C[E]W , ∀ξ ∈ E. Hence Theorem 1.7 is an immediate consequence of Theorem

1.5 and Theorem 1.6.

Theorem 3.1. For the q-analogue of the Laplacian we have

(3.4) Res(p−1
S ◦

{

n
∑

j=1

D2
ξj

(k)
}

◦ pS) = Res
(

n
∑

j=1

D2
ξj

(k + 1S)
)

.

Proof: First we observe that the left hand side of (3.4) is a well defined endomorphism

of C[E]W . We now use Theorem 1.6 and just calculate term by term. For the first

term we get

p−1
S ◦

n
∑

j=1

∂2
ξj

◦ pS =
n

∑

j=1

∂2
ξj

+ 2
∑

α∈S+

1

(α, ·)∂α + p−1
S (

n
∑

j=1

∂2
ξj

)(pS)

=

n
∑

j=1

∂2
ξj

+ 2
∑

α∈S+

1

(α, ·)∂α.

For the second term we get

p−1
S ◦

{

2
∑

α∈R+

kα

1

(α, ·)∂α

}

◦ pS = 2
∑

α∈R+

kα

1

(α, ·)∂α + p−1
S ·

(

2
∑

α∈R+

kα

1

(α, ·)∂α

)

(pS)

= 2
∑

α∈R+

kα

1

(α, ·)∂α + 2
∑

α∈R+,β∈S+

kα

(α, β)

(α, ·)(β, ·)

= 2
∑

α∈R+

kα

1

(α, ·)∂α + 2
∑

β∈S+

kβ

(β, β)

(β, ·)2

+ 2
∑

α∈R+,β∈S+

α 6=β

kα

(α, β)

(α, ·)(β, ·)

= 2
∑

α∈R+

kα

1

(α, ·)∂α + 2
∑

β∈S+

kβ

2

(β, ·)2
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by the same argument as in the proof of Proposition 2.2.

Finally for the third term we have

p−1
S ◦

{

2
∑

α∈R+

kα

1

(α, ·)∆α

}

◦ pS = 2
∑

α∈R+

kα

1

(α, ·)2 {1 − p−1
S ◦ rα ◦ pS}

= 2
∑

α∈R+

kα

1

(α, ·)2 {1 − χS(rα)rα}

= 2
∑

α∈S+

kα

1

(α, ·)2 {1 + rα} + 2
∑

α∈R+\S+

kα

1

(α, ·)∆α

= 2
∑

α∈S+

kα

2

(α, ·)2 − 2
∑

α∈S+

kα

1

(α, ·)∆α

+ 2
∑

α∈R+\S+

kα

1

(α, ·)∆α.

Taking all three terms together yields

p−1
S ◦

{

n
∑

j=1

D2
ξj

(k)
}

◦ pS =
n

∑

j=1

∂2
ξj

+ 2
∑

α∈R+

kα

1

(α, ·)∂α + 2
∑

α∈S+

1

(α, ·)∂α

+ 2
∑

α∈S+

kα

1

(α, ·)∆α − 2
∑

α∈R+\S+

kα

1

(α, ·)∆α. Q.E.D.

Corollary 3.2. We have the shift relations

G(1S, k)Res





n
∑

j=1

D2
ξj

(k)



 = Res





n
∑

j=1

D2
ξj

(k + 1S)



 G(1S, k)(3.5)

G(−1S , k)Res





n
∑

j=1

D2
ξj

(k)



 = Res





n
∑

j=1

D2
ξj

(k − 1S)



G(−1S , k).(3.6)

Proof: Indeed we have

Res
(

p−1
S DπS

(k)
)

Res
(

n
∑

j=1

D2
ξj

(k)
)

= Res
(

n
∑

j=1

p−1
S DπS

(k)D2
ξj

(k)
)

= Res
(

n
∑

j=1

p−1
S D2

ξj
(k)DπS

(k)
)

= Res
(

n
∑

j=1

p−1
S D2

ξj
(k)pS

)

Res
(

p−1
S DπS

(k)
)

= Res
(

n
∑

j=1

D2
ξj

(k + 1S)
)

Res
(

p−1
S DπS

(k)
)
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which proves (3.5). The relation (3.6) is proved similarly. Q.E.D.

Theorem 3.3. As endomorphisms of C[E] the operators

E =
1

2

n
∑

j=1

(ξj,·)
2(3.7)

H =

n
∑

j=1

(ξj,·)∂ξj
+ (

n

2
+

∑

α∈R+

kα)(3.8)

F = −1

2

n
∑

j=1

D2
ξj

(3.9)

satisfy the commutation relations of sl(2):

(3.10) [H, E] = 2E, [H, F ] = −2F, [E, F ] = H.

Proof: The Euler operator
n
∑

j=1
(ξj,·)∂ξj

acts as multiplication by d on the space of

homogeneous polynomials in C[E] of degree d. Hence the commutation relations

[H, E] = 2E, [H, F ] = −2F rephrase that E and F are homogeneous of degree plus

and minus two respectively.

Since [p, ∆α] = 0 ∀p ∈ C[E]W , ∀α ∈ R we get

(3.11) [E, Dξ] = [E, ∂ξ] = −(ξ, ·) ∀ξ ∈ E,

and therefore

[E, F ] = −1

2

n
∑

j=1

[E, D2
ξj

]

=
1

2

n
∑

j=1

{(ξj,·)Dξj
+ Dξj

(ξj,·)}

=

n
∑

j=1

(ξj,·)Dξj
+

1

2

n
∑

j=1

[Dξj
, (ξj,·)]

=
n

∑

j=1

(ξj,·)Dξj
+

n

2
+

1

2

n
∑

j=1

∑

α∈R+

kα(α, ξj)[∆α, (ξj,·)]

=

n
∑

j=1

(ξj,·)∂ξj
+

∑

α∈R+

kα(α, ·)∆α +
n

2
+

∑

α∈R+

kαrα

=

n
∑

j=1

(ξj,·)∂ξj
+ (

n

2
+

∑

α∈R+

kα).
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Here we have used that for ξ ∈ E

[∆α, (ξ, ·)] = − 1

(α, ·) [rα, (ξ, ·)]

= − 1

(α, ·){(rαξ, ·)− (ξ, ·)}rα

= (α, ξ)rα. Q.E.D.

Proposition 3.4. Using the inner product (·, ·) on E we have an isomorphism between

C[E] and C[E∗]. For p ∈ C[E] we write π ∈ C[E∗] for the corresponding element. For

p ∈ C[E] homogeneous of degree d we have

(3.12) Dπ = (−1)d 1

d!
ad(F )d(p).

Proof: Clearly ad(H)Dπ = −dDπ and by Theorem 1.5 we have ad(F )Dπ = 0.

Using (3.11) and induction on d (assuming π to be a monomial as in (1.9) with

d = d1 + · · ·+ dn) it is easy to see that

(−1)d 1

d!
ad(E)d(Dπ) = p

and hence

ad(E)d+1(Dπ) = 0.

By standard representation theory of sl(2) we conclude (3.12). Q.E.D.

Corollary 3.5. For π ∈ C[E∗]W we have

(3.13) Res
(

p−1
S ◦ Dπ(k) ◦ pS

)

= Res
(

Dπ(k + 1s)
)

.

Proof: This is easily derived from Theorem 3.1 and Proposition 3.4. Q.E.D.

The proof of Theorem 1.9 now goes along the same lines as the proof of Corollary 3.2.

Remark 3.6. The above type of arguments to use an sl(2) to reduce the computation

of higher order operators to those of the second order one go back to Harish-Chandra

[Ha].
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