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1 Introduction

Let N be a differentiable manifold of dimension n. Let M = T ∗N be the cotangent bundle of
N , and denote by σ the natural symplectic form on M . In local coordinates q = (q1, . . . qn)
on N and pi = ∂

∂qi

(viewed as function on M) we have σ =
∑

dpi∧dqi. For f ∈ C∞(M) the
hamiltonian vector field vf on M is defined by df(·) = −σ(vf , ·). For this sign convention
we have

[vf , vg] = v{f,g} (1.1)

with the Poisson bracket {f, g} of f, g ∈ C∞(M) defined by {f, g} = vf (g) = σ(vf , vg), or
in local coordinates

{f, g} =
∑

(

∂f

∂pi

∂g

∂qi
−

∂f

∂qi

∂g

∂pi

)

. (1.2)

Let us write P k(M) for the subspace of C∞(M) consisting of those functions which are
homogeneous of degree k (k ∈ N) in p. The subspace P (M) = ⊕P k(M) of C∞(M) is closed
under Poisson bracket. In fact

{·, ·} : P k(M) ⊗ P l(M) → P k+l−1(M) (1.3)

making P (M) = ⊕P k(M) into a graded Poisson algebra.
Let Dk(N) denote the space of smooth linear differential operators on N of order at

most k. The space D(N) = ∪Dk(N) of all differential operators on N becomes a filtered
associative algebra with respect to composition of differential operators, and the associated
commutator bracket [·, ·] satisfies

[·, ·] : Dk(N) ⊗ Dl(N) → Dk+l−1(N). (1.4)

Of course the Poisson algebra P (M) = ⊕P k(M) is just the associated graded of the filtered
associative algebra D(N) = ∪Dk(N) with

grk : Dk(N) → P k(M)

being the symbol map of order k.
Let g be a Riemannian metric on N . This gives rise to an isomorphism TN ∼= T ∗N ,

and therefore g can also be viewed as a quadratic form on T ∗N . So by abuse of notation
g ∈ P 2(M). Let L be the Laplace operator on N associated with g. This means that
L ∈ D2(N) with gr2(L) = g, and in addition L is self adjoint with respect to the Riemannian

1



volume element and L(1) = 0. If V is a potential function on N , then V ∈ P 0(M) via
pull back under the natural projection M → N . With g and V given as above consider the
hamiltonian function

h = 1

2
g + cV ∈ P 2(M) (1.5)

and the associated Schrödinger operator

H = 1

2
L + cV ∈ D2(N). (1.6)

Here c is a real parameter with deg(c) = 2 making indeed h = 1

2
g + cV homogeneous of

degree 2. From now on it is understood that elements of P (M) and D(N) are allowed to
depend polynomially on this parameter c as well. With these notations it is obvious that

gr2(H) = h. (1.7)

Definition 1.1 The Schrödinger operator H1 = H is called quantum completely integrable
if there exist differential operators Hi ∈ Ddi

(N) for i = 1, 2, . . . , n such that

[Hi,Hj ] = 0 ∀i, j (1.8)

and the Poisson commuting symbols hi := grdi
(Hi) ∈ P di(M) make the hamiltonian func-

tion h completely integrable (in the sense of classical mechanics).

So by the very definition a quantum completely integrable Schrödinger operator gives rise to
a completely integrable hamiltonian function. Our concern here is if a converse statement
holds.

Question 1.2 Is for any completely integrable hamiltonian function h = 1

2
g+cV ∈ P 2(M)

the associated Schrödinger operator H = 1

2
L+cV ∈ D2(N) quantum completely integrable?

The answer to this question ought to be yes, but I have no idea about a proof. On the other
hand too much optimism about the correspondence between classical and quantum mechan-
ics leads to inaccuracies, as can be learned for example from the theorem of Groenewold
and van Hove [GS].

Example 1.3 For the rotation of a free rigid body the length squared of the angular
momentum vector (which is a classical integral) lifts to the biinvariant Laplace operator on
SO(3, R) (which is the corresponding quantum integral). This fundamental observation of
Casimir [C] played an important role in the development of semisimple Lie theorie [FdV],[S].

Example 1.4 For the Toda system associated with root systems a partial answer to the
above question is known from the work of Goodman and Wallach [GW]. In the non periodic
case the answer is always yes. However in the periodic case a positive answer is only known
for the classical root systems and E6.
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Example 1.5 For the Calogero-Moser system associated with root systems the answer to
the above question is fully yes. The complete integrability for the classical system was
proved by Moser for type An by realizing the system via a Lax pair [M]. This method
was extended by Olshanetsky and Perelomov in the case of classical root systems [OP].
The quantum complete integrability was obtained by Opdam for all root systems using
analytic methods [O1]. After the work of Dunkl [D] the quantum complete integrability
could be proved in an elementary way [H],[HS],[O2]. The only proof known at the moment
of complete integrability of the classical system in case of exceptional root systems goes by
deducing it from quantum complete integrability! The problem of quantum integrability for
the Calogero-Moser system with doubly periodic potential was studied by Ochiai, Oshima
and Sekiguchi [OOS].

Example 1.6 The C. Neumann system and the geodesic flow on an ellipsoid have been
shown to be quantum completely integrable by Toth [T1], [T2]. The classical integrals are
all quadratic and can be lifted to second order commuting differential operators.

The purpose of this paper is to answer the above question for the case of the Kovalevsky
and Goryachev-Chaplygin tops.

Theorem 1.7 For the Kovalevsky top the biquadratic classical integral and for the
Goryachev-Chaplygin top the cubic classical integral can be lifted to quantum integrals.

The proof will be given in the next section. Making a natural guess for the quantum
integrals by analogy with the classical integrals it follows by straightforward algebra that
only quadratic correction terms are needed. After this note was written I learned that the
problem of quantum integrability of the Kovalevsky top had been studied before by Ramani,
Grammaticos and Dorizzi [RGD]. Their method is to remain in the Poisson algebra, and
work with the Moyal bracket instead of the Poisson bracket. Their final computation is
performed using computer algebra. Our computation (Proposition 2.5 and Theorem 2.6) is
done (by hand) directly in the universal envelopping algebra.

This work was done in the fall of 1995 while I enjoyed the pleasant atmosphere of the
Mittag Leffler Institute at Stockholm. I am also indebted to V. Guillemin and A. Weinstein
for useful discussions.

2 The rotation of a heavy top around a fixed point

Consider R
3 with standard orthonormal basis e1, e2, e3. Let E1, E2, E3 be the endomor-

phisms of R
3 given by Ei(ei) = 0, Ei(ei+1) = ei+2, Ei(ei+2) = −ei+1 with i an index in

Z/3Z. Then E1, E2, E3 is a basis of the Lie algebra so(3, R) with commutation relations
[Ei, Ei+1] = Ei+2. Let L1, L2, L3 be the left invariant vector fields on SO(3, R) defined by

Li(f)(x) =
d

dt
{f(x exp tEi)}t=0. (2.1)

Fix some unit vector e ∈ R
3, and define smooth functions Q1, Q2, Q3 on SO(3, R) by

Qi(x) = (xei, e). (2.2)
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Lemma 2.1 The subalgebra of D(SO(3, R)) generated by L1, L2, L3, Q1, Q2, Q3 is isomor-
phic to the universal enveloping algebra of so(3, R)⋉R

3, i.e. we have commutation relations

[Li, Li+1] = Li+2, [Li, Li+2] = −Li+1, [Qi, Qj ] = 0
[Li, Qi] = 0, [Li, Qi+1] = Qi+2, [Li, Qi+2] = −Qi+1.

(2.3)

Proof: This is a direct computation using (2.1) and (2.2). �

In the associated Poisson algebra P (T ∗SO(3, R)) we shall use small roman letters instead
of capitals. So the Poisson brackets of l1, l2, l3, q1, q2, q3 are given by

{li, li+1} = li+2, {li, li+2} = −li+1, {qi, qj} = 0
{li, qi} = 0, {li, qi+1} = qi+2, {li, qi+2} = −qi+1.

(2.4)

Now let h ∈ P (T ∗SO(3, R)) be the hamiltonian function defined by

h = 1

2
(I−1

1
l21 + I−1

2
l22 + I−1

3
l23) − (c1q1 + c2q2 + c3q3) (2.5)

for certain parameters I1, I2, I3 > 0 and c1, c2, c3 ∈ R.

Lemma 2.2 The Hamilton equation ḟ = {h, f} for f ∈ C[l1, l2, l3, q1, q2, q3] amounts to
the system

l̇1 = (I−1
3

− I−1
2

)l2l3 + (c2q3 − c3q2), q̇1 = I−1
3

l3q2 − I−1
2

l2q3

l̇2 = (I−1
1

− I−1
3

)l3l1 + (c3q1 − c1q3), q̇2 = I−1
1

l1q3 − I−1
3

l3q1

l̇3 = (I−1
2

− I−1
1

)l1l2 + (c1q2 − c2q1), q̇3 = I−1
2

l2q1 − I−1
1

l1q2

(2.6)

Proof: This is a direct computation. �

The system (2.6) are the Euler equations describing the rotation of a heavy rigid body
around a fixed point [A]. These equations are known to be completely integrable precisely
in the following cases [AKN], [DKN], [BRS], [Au].

Euler case: c1 = c2 = c3 = 0.
Lagrange case: I1 = I2, c1 = c2 = 0.
Kovalevsky case: I1 = I2 = 2I3, c3 = 0.
Goryachev-Chaplygin case: I1 = I2 = 4I3, c3 = 0.

In the last case an integral can only be found under the additional constraint q1l1 + q2l2 +
q3l3 = 0. The question of quantum integrability requires only a further analysis in the
last two cases. Without loss of generality we can take the hamiltonian function in the
Kovalevsky case of the form

4h = l21 + l22 + 2l23 − 4cq1 (2.7)

and in the Goryachev-Chaplygin case of the form

8h = l21 + l22 + 4l23 − 8cq1. (2.8)

The explicit form of the additional integrals is given in the following propositions.
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Proposition 2.3 If in the Kovalevsky case we put

k = (l1 + il2)
2 + 4c(q1 + iq2) (2.9)

then {h, k} = −il3k and therefore {h, k k} = 0.

Proposition 2.4 [K]. If in the Goryachev-Chaplygin case we put

g = (l21 + l22)l3 + 4cq3l1 (2.10)

then {h, g} = cl2(q1l1 + q2l2 + q3l3) and therefore {h, g} = 0 under the restriction q1l1 +
q2l2 + q3l3 = 0.

Both propositions follow from a direct computation using (2.4). For the corresponding
Schrödinger operator H we take in the Kovalevsky case

4H = L2
1 + L2

2 + 2L2
3 − 4cQ1 (2.11)

and in the Goryachev-Chaplygin case

8H = L2
1 + L2

2 + 4L2
3 − 8cQ1. (2.12)

If we introduce operators K and G in analogy with (2.9) and (2.10) respectively by

K = (L1 + iL2)
2 + 4c(Q1 + iQ2) (2.13)

G = (L2
1 + L2

2)L3 + 4cQ3L1 (2.14)

then the next proposition is obtained from a direct computation using (2.3).

Proposition 2.5 In the Kovalevsky case we have the commutation relations

[2H,K] = −i(L3K + KL3) (2.15)

[2H,K K + K K] = −16c(Q3L2 + L2Q3) (2.16)

and in the Goryachev-Chaplygin case we have the commutation relation

[2H,G] = 2cL2(Q1L1 + Q2L2 + Q3L3) − 4cQ1L3 + cQ3L1 − 2cQ2. (2.17)

Theorem 2.6 In the Kovalevsky case we have the commutation relation

[H,K K + K K − 8(L2
1 + L2

2)] = 0 (2.18)

and in the Goryachev-Chaplygin case we have

[H,G − 2cQ2 −
1

4
L3] = cL2(Q1L1 + Q2L2 + Q3L3). (2.19)

Proof: A straighforward calculation shows that in the Kovalevsky case

[2H,L2
1 + L2

2] = −2c(Q3L2 + L2Q3), (2.20)

and in the Goryachev-Chaplygin case

[8H,Q2] = −8Q1L3 + 2Q3L1 − 5Q2, [8H,L3] = 8cQ2. (2.21)

Combination of these relations with (2.16) and (2.17) yields the desired result. �

So both in the Kovalevsky and the Goryachev-Chaplygin case we have to add to our
initial guess a quadratic correction term in order to arrive at the correct quantum integral.
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