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The Hauptfigur of Felix Klein is a picture related to the fundantal domain of the Haupt-
kongruenzgruppe of level 7 and can be found in [K1]. It désesia particular genus 4 curve
with a simple automorphism group of order 168. This work ofiklarose as a continuation
of his earlier study on the level 5 case [K2], which has beeemdy reprinted with a fine
introduction and comments by Peter Slodowy.

The symmetry group of the associated regular tesselatitimeddisc is the Schwarz triangle
group (2,3,7). Itis arithmetic as shown by Fricke and KlétK] and Takeuchi [T]. It might
be instructive for understanding the heart of our paper tspat some moment and consider
the case of complex dimension 1 as in the picture, beforemgawn to the higher dimension
case that we deal with.
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Abstract

Consider a complex projective space with its Fubini-Studytrin. We study certain
one parameter deformations of this metric on the complewfar arrangement finite
union of hyperplanes) whose Levi-Civita connection is ohRIutype. Interesting exam-
ples are obtained from the arrangements defined by finite leomngflection groups. We
determine a parameter interval for which the metric is llyoal Fubini-Study type, flat,
or complex-hyperbolic. We find a finite subset of this intéfest which we get a com-
plete orbifold or at least a Zariski open subset thereof vemdnalyze these cases in some
detail (e.g., we determine their orbifold fundamental grou

In this set-up, the principal results of Deligne-Mostow be Lauricella hypergeo-
metric differential equation and work of Barthel-HirzebnaHofer on arrangements in
a projective plane appear as special cases. Along the wayrageige in a geometric
manner all the pairs of complex reflection groups with isqoh@r discriminants, thus
providing a uniform approach to work of Orlik-Solomon.

In memory of Peter Slodowy (1948-2002)

Introduction

This article wants to be the child of two publications whielwghe light of day in almost the
same year. One of them is the book by Barthel-HirzebrucfeH@ 987) [1], which, among
other things, investigates Galois coveringsPfthat ramify in a specified manner over a
given configuration of lines and characterizes the ones fachva universal such cover is

a complex ball (and thus mal® appear as a—perhaps compactified—ball quotient). The
other is a long paper by Deligne and Mostow (1986) [12] whiompletes Picard’s work
on the Lauricella functions and which leads to a ball quatsructure onP™ relative to

a hyperplane configuration of typé,,.1. Our reason for claiming such a descendence is
that we develop a higher dimensional generalization of tleekvioy Hirzebruch et al. in
such a manner that it contains the cited work of Deligne-Mosis a special case. In other
words, this paper’s subject matter is projective arranggmehich can be understood as
discriminants of geometric orbifold structures. Our auto yields new, and we believe,



interesting, examples of ball quotients (which was theinabgoal) and offers at the same
time a novel perspective on the material of the two parenésap

It starts out quite simply with the data of a finite dimensioo@mplex inner product
spaceV in which is given ahyperplane arrangementhat is, a finite collection of (lin-
ear) hyperplanes. We writé° for the complement of the union of these hyperplanes and
P(V°) c P(V) for its projectivization. The inner product determines alfffi-Study) met-
riconP(V) and the idea is to deform continuously (in a rather specificmag) the restriction
of this metric toP(V°) as to obtain a complex hyperbolic metric, i.e., a metric thakes
P(V°) locally isometric to a complex ball. We do this in two stages.

We first attempt to produce a one-parameter deformafigrt > 0 of the standard trans-
lation invariant connectioR’° on (the tangent bundle) 6f restricted tol/° as a flat torsion
free connectioron VV°. For the reflection hyperplane arrangement of a finite Coxgtaup
such a deformation is given by Dunkl’s construction and wedrimitate this. Although this
is not always possible—the existence of such a deformatiposes strong conditions on the
arrangement—plenty of examples do exist. For instance,ishalways possible for the re-
flection hyperplane arrangement of a complex reflection gr&esides, it is a property that
is inherited by the arrangement that is naturally defined given intersection of members
of the arrangement.

The inner product defines a translation invariant metridonlts restrictionh® to V°
is obviously flat forV® and the next step is to show that we can defdfhras a nonzero
flat hermitian formh! which is flat for V! (so thatV* becomes a Riemannian connection
as long ash! is nondegenerate). This is done in such a manner that scaléiplaation in
V acts locally like homothety and as a consequef¢®,°) inherits fromV° a connection
(no longer flat in general) with a compatible nontrivial héfam form g*. Fort = 0 this
gives us the Fubini-Study metric. We only allégvto move in an interval for whicly® stays
positive definite. This still makes it possible fbf to become degenerate or of hyperbolic
signature as long as for evepye V°, the restriction ofi? to a hyperplane supplementary
and perpendicular t@},(Cp) is positive definite. 1f7,,(Cp) is the kernel ofh* (we refer to
this situation as th@arabolic case), theny® is a flat metric, whereas wheit is negative
onT,(Cp) (the hyperboliccase),g’ is locally the metric of a complex ball. It is necessary
to impose additional conditions of a simple geometric reainrorder to have a neat global
picture, that is, to hav®(1/°) of finite volume and realizable as a quotient of a dense open
subset of a flat space resp. a ball by a discrete group of is@®etVe call these th&chwarz
conditions because they are reminiscent of the ones found by H.A. Sehwiich ensure
that the Gauss hypergeometric function is algebraic.

Deligne and Mostow gave a modular interpretation of thelirdpzotients. Some of them
are in fact Shimura varieties and indeed, particular cages already studied by Shimura and
Casselman (who was then Shimura’s student) in the sixtiles.nBtural question is whether
such an interpretation also exists for the ball quotiett®duced here. We know this to be
the case for some of them, but we do not address this issue jréisent paper.

We now briefly review the contents of the separate sectiorthisfpaper. In the first
section we develop a bit of the general theory of affine stimest on complex manifolds,
where we pay special attention to a simple kind of deger@rati such a structure along a
normal crossing divisor. Although it is for us the occasioriritroduce some terminology



and notation, the reader is perhaps well-advised to skistaition during a first reading and
use it for consultation only.

Section two focuses on a notion which is central to this papat of a Dunkl system. We
prove various hereditary properties and we give a numbertarhples. We show in particular
that the Lauricella functions fit in this setting. In facttire last subsection we classify all the
Dunkl systems whose underlying arrangement is a Coxetangement and show that the
Lauricella examples exhaust the cases of tdp&or the other Coxeter arrangements of rank
at least three the Dunkl system has automatically the syngro&the corresponding Coxeter
group, except for those of typ®, for which we essentially reproduce the Lauricella series.

The next section discusses the existence of a nontriviahitian form which is flat rel-
ative to the Dunkl connection. We prove among other things slich a form always exists
in the case of a complex reflection arrangement and in theidellar case and we determine
when this form is positive definite, parabolic or hyperbolic

Section four is devoted to the Schwarz conditions. We shawwhen these conditions
are satisfied, the holonomy cover extends as a ramified caegram open subset of of
codimension at least two, that the developing map extentfstoamified cover, and that the
latter extension becomes a local isomorphism if we passet@tiotient by a finite group?
(which acts as a complex reflection groupénbut lifts to the ramified cover). This might
explain why we find it reasonable to impose such a conditimenRhis point onward we
assume such conditions satisfied and concentrate on tla¢iits that really matter to us.

Section five deals with the elliptic and the parabolic ca3é elliptic case can be char-
acterized as having finite holonomy. It is in fact treatedio somewhat different situations:
at first we deal with a situation where we find titG\V) is the metric completion of
P(G\V°) and acquires the structure of an elliptic orbifold. What emkhis interesting is
that this is not the natur&¥-orbifold structure thaP(G\ V') has a priori: it is the structure of
the quotient of a projective space by the holonomy groups halso a complex reflection
group, but usually differs frond:. Still the two reflection groups are related by the fact that
their discriminants satisfy a simple inclusion relatione WWove that all pairs of complex
reflection groups with isomorphic discriminants are pragtlin this fashion. The other ellip-
tic case we discuss is when the metric completio®?@\V°) differs fromP(G\V) but is
gotten from the latter by means of an explicit blowup follal® an explicit blowdown. We
have to deal with such a situation, because it is one whichheeunter when we treat the hy-
perbolic case. The parabolic case presents little troutddsadealt with in a straightforward
manner.

Our main interest however concerns the hyperbolic sitnadiod that is saved for last.
We first treat the case where we get a compact hyperbolicatdbibecause it is relatively
easy and takes less than half a page. The general case isdalibate, because the metric
completion ofP(G\V*°) (which should be a ball quotient of finite volume) may diffesrh
P(G\V). Deligne and Mostow used at this point geometric invaridebty for effective
divisors onP!, but in the present situation this tool is not available toansl we use an
argument based on Stein factorization instead. As it iseradiifficult to briefly summarize
the contents of our main theorem, we merely refer to 6.2 fostiatement. It suffices to say
here that it produces new examples of discrete complex bgfiegroups of cofinite volume.
We also discuss the implications for the allied algebra ebauorphic forms. We close this
section with a presentation for the holonomy group, whichl$® valid for elliptic and the



parabolic cases.

The final section tabulates the elliptic, parabolic and hlypkc examples of finite volume
with the property that the associated arrangement is treafiofte reflection group of rank at
least three (without requiring it to have the symmetry ot tp@up). In the hyperbolic case
we mention whether the holonomy group is cocompact.

This work has its origin in the thesis by the first author [7{te University of Nijmegen
(1994) written under the supervision of the second authtthoAigh that project went quite
far in carrying out the program described above, the reswdte never formally published,
in part, because both felt that it should be completed firhis Temained the state of affairs
until around 2001, when the idea emerged that work of thd #nithor [16] might be relevant
here. After we had joined forces in 2002, the program was niyt completed as originally
envisaged, but we were even able to go well beyond that, dimoduthe adoption of a more
general point of view and a change in perspective.

We dedicate this paper to the memory of our good friend anéaglie Peter Slodowy.
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Terminological index and list of notation

The terminological index is alphabetical, but the list ofatmn is by order of introduction.

Terminological index

admissiblenermitian form: Definition 1.16

affine quotientRemark1.8

affine structure Subsection 1.1

apex curvature Subsection 3.2

arrangement complemersubsection 2.1

Artin group Subsection 3.5

Borel-Serre extensiorSubsection 6.4
co-exponentSubsection 3.4

cone manifold Subsection 3.2

Coxeter matrix Subsection 3.5

degenerate hyperbolic fornsubsection 3.7

developing mapDefinition 1.2

dilatation field Definition 1.3

discriminantof a complex reflection group: Subsection 3.4
Dunkl, connection of- type,~ form, ~ system: Definition 2.8
elliptic structure Definition 1.16



Euler field Corollary 2.2

exponenbf a complex reflection group: Subsection 3.4

fractional divisor. Remark 6.6

germ SeeSome notational conventions

Hecke algebraSubsection 3.5

holonomy groupTerminological convention 1.1

hyperbolic exponenfTheorem-definition 3.2

hyperbolic structureDefinition 1.16

indexof a hermitian form: Lemma 3.22

infinitesimally simple degeneration of an affine structumng a divisor Definition 1.9
irreducible arrangement, stratum of an, component of ar-: Subsection 2.1
Lauricellaconnection~ function: Proposition-definition 2.6

longitudinal Dunkl connection: Definition 2.18

mildly singularfunction, ~ differential: discussion preceding Lemma 3.10
monodromy groupTerminological convention 1.1

normal linearization of a hypersurfac®efinition 1.6

nullity: Lemma 3.22

parabolic structure Definition 1.16

projective quotientRemark 1.8

pure degeneratianDefinition 1.5

pure quotient Remark 1.8

reflection representatiorSubsection 3.5

residueof a connection: Subsection 1.2

semisimple holonomground a stratum: paragraph preceding Corollary 2.20
simple degeneratioof an affine structure along a divisor: Definition 1.5
Schwarzcondition,~ rotation group~ symmetry groups in codimension one: Definition 4.2
specialsubball,~ subspace: Subsection 6.2

splitting of an arrangement: Subsection 2.1

stratumof an arrangement: Subsection 2.1

topological Stein factorizatiarparagraph preceding Lemma 5.11
transversalDunkl connection: Definition 2.18

List of notation

Affys Subsection 1.1: the local system of locally affine-linearctions on an affine manifold.
Aff(M) Subsection 1.1: the space of global sectiona fify;.
T" Subsection 1.1: the holonomy group.
A Subsection 1.1: the affine space which receives the dewgjopap.
Resp (V) Subsection 1.2: Residue of a connection aléhg
vp,w Lemma 1.4: normal bundle dd in W.
D, 0 Remark 1.8: the affine quotient &i,,.
D, » Remark 1.8: the projective quotient b¥,.
Wp,» Remark 1.8: the pure quotient of,.
V° Subsection 2.1: the complement of an arrangement.in
L(H) Subsection 2.1: the intersection lattice of the arrangeérien
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Subsection 2.1: the membersfcontainingL.

Subsection 2.1: the intersections of the membef¥ of H, with L.
Subsection 2.1: the irreducible membersCéfH).

Lemma 2.1.

Subsection 2.2: a linear from which defines the hyperpldne
Subsection 2.2: the logarithmic form defined by the hypempld.
Subsection 2.2: the translation invariant connection oaffine space.
Corollary 2.2: the Euler vector field on a vector spate

Subsection 2.4: the orthogonal projection in an inner pcbdpace with kernel..
Lemma 2.13.

paragraph preceding Corollary 2.15.

paragraph preceding Corollary 2.15.

paragraph preceding Corollary 2.15: the set of exponefits which V* is flat.
Discussion preceding Lemma 2.16.

Lemma 2.16.

Lemma 2.16.

Subsection 2.5: blowup df in L.

Subsection 2.5.

Subsection 3.1: the hermitian form defined by the inner prbdu
Theorem-definition 3.2: the hyperbolic exponent.

Lemma 3.4.

Subsection 3.4: th&h degree of a reflection group.

Subsection 3.4: th&h exponent of a reflection group.

Subsection 3.4: th&h codegree of a reflection group.

. Subsection 3.4: théth co-exponent of a reflection group.

Subsection 3.5: the Artin group attached to the Coxeterimadr.
Subsection 3.5: the universal Hecke algebra.

Subsection 3.5: a domain associated to a Hecke algebra.
Subsection 3.5: the Hecke algebra ofer

Subsection 3.5: the monodromy representatioh(O}/ ).
Subsection 3.5: the reflection representatiof(of\/ ).
Subsection 3.6.

Subsection 3.6: a complex number of norm one attached to
paragraph preceding Lemma 3.22: a hyperplarig"of.
paragraph preceding Lemma 3.22: a quadratic formgn
Definition 4.2: numerator resp. denominatorlof k..
Definition 4.2: Schwarz rotation group.



G Definition 4.2: Schwarz symmetry group.
V¥ Subsection 4.2: locus of finite holonomy ¥
eve Theorem 4.5: a factor of an extension of the developing map.
L~ Subsection 5.3.
£° Subsection 5.3.
L+ Subsection 5.3 and Discussion 6.8.
B~ Theorem 6.2.
VT Discussion 5.8.
V'~ Discussion 5.8.
E(L) Discussion 5.8.
D(L) Discussion 5.8.
S Discussion 5.8: the sphere of rays.
Discussion 5.8.
Discussion 5.8 and Discussion 6.8.
&t (as a subscript) paragraph preceding Lemma 5.11: formafiarStein quotient.
B Subsection 6.4: the Borel-Serre extensioiBof

B* Discussion 6.8.

Some notational conventions.

If C* acts on a varietyX, then we often writé®(X') for the orbit space of the subspaceXof
whereC* acts with finite isotropy groups. This notation is of coursggested by the case
whenC* acts by scalar multiplication on a complex vector spicdor P(V) is then the
associated projective space. This example also shows tratequivariantmag : X — Y
may or may not induce a morphighif) : P(X) — P(Y).

If X is a space with subspacdsandY’, then thegermof Y at A is the filter of neighbor-
hoods ofA in X restricted toY’; we denote it byy 4. Informally, Y4 may be thought of as
an unspecified neighborhood dfintersected witly". For instance, anap germyy — 7 is
givenby apaifU, f : UNY — Z), whereU is some neighborhood of, and another such
pair (U’, f' : U'NY — Z) defines the same map-germfifand f/’ coincide onU”" N'Y for
some neighborhood” of AinUNU’.
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1 Affine structures with logarithmic singularities

We first recall a few basic properties regarding the notioaroéffine structure.

16
16
17
19
20
24
27

31

35
36
40
41
45
49

50
50
51

53
53
54
56

60

62
62
62
63
65
66
70
71

72



1.1 Affine structures

Let be given a connected complex manifdlfiof complex dimensiom. An affine structure
on M is an atlas (of complex-analytic charts) for which the tiamiss maps are complex
affine-linear and which is maximal for that property. Givertis an atlas, then the complex
valued functions that are locally complex-affine linear maip a local systemff,, of C-
vector spaces in the structure shélf;. This local system is of rank + 1 and contains the
constant$,,. The quotientAff,, /C,, is a local system whose underlying vector bundle
is the complex cotangent bundle 81, hence is given by a flat connectidn : Q —
Qur ® Qpr. This connection is torsion free, for it sends closed formsymmetric tensors.
(This is indeed equivalent to the more conventional definitvhich says that the associated
connection on the tangent bundle is symmetric: for any paioeal vector fieldsX,Y on
M,wehaveVxY — Vy X = [X,Y].)

Conversely, any flat, torsion free connectionon the complex cotangent bundle bf
defines an affine structure: the subsh&#f,; C O,,; of holomorphic functions whose total
differential is flat forV is then a local system of rank+ 1 containing the constants and the
atlas in question consists of the charts whose componeritsAiff ;.

Terminological convention 1.1 With regard to a flat, torsion free connecti®non the com-
plex cotangent bundle of a connected complex manifdldve reserve the terrmonodromy
group as the monodromy of that connection on the cotangent burfdle owhereas the
holonomy grougshall be the monodromy group of the local syst&ffi,,.

So the holonomy group is an extension of the monodromy groug droup of transla-
tions. In this situation one defines a developing map asvalldf I" denotes the holonomy
group, letM — M be an associateld-covering. It is unique up to isomorphism and it has
the property that the pull-back offf;; to this covering is generated by its sections. Then
the space of affine-linear functions 8, Aff(M) := H°(M, Aff ), is al-invariant vector
space of holomorphic functions avl. This vector space contains the constant functions and
the quotientAﬁ(M)/(C can be identified with the space of flat holomorphic diffeia@aton
M:; it has the same dimension As. The setd of linear formsAff(]W) — C which are the

identity onC is an affinel"-invariant hyperplane imﬁ(ﬁ)*.

Definition 1.2 The developing maf the affine structure is the evaluation mapping:
M — A which assigns t@ the linear formev; : f € Aff(M) — f(Z) € C.

Notice that this map iF-equivariant and a local affine isomorphism. In fact, it detiees
a natural affine atlas ol whose charts take values ihand whose transition maps lielh

Definition 1.3 We call a nowhere zero holomorphic vector figldon M a dilatation field
with factor A € C when for every local vector field on M, Vx (E) = AX.

Let us have a closer look at this property. Xfis flat, then the torsion freeness yields:
[E,X] = Ve(X) — Vx(E) = —AX. In other words, Lie derivation with respect 1
acts on flat vector fields simply as multiplication by\. Hence it acts on flat differentials as
multiplication by\. SoF acts onAff, with eigenvalue$ (on C) andX (on Aff; /Cyy).



Suppose first thak # 0. Then thef € Affy, for which E(f) = Af make up a flat
supplement ofC,; in Aff;. This singles out a fixed poir? € A of I" so that the affine-
linear structure is in fact a linear structure and the depialp map takes the lift ofs on M
to A times the Euler vector field oA relative toO. This implies that locally the leaf space
of the foliation defined by~ is identified with an open set of the projective spacéAfO)
(which is naturally identified with the projective space bétspace of flat vector fields on
JT/f). Hence this leaf space acquires a complex projectivetstrelc

Suppose now that = 0. ThenC need not be a direct summandft ;. All we can say
is thatE is a flat vector field so that its lift ta/ maps a constant nonzero vector field4n
So locally the leaf space of the foliation defined Byhas an affine-linear structure defined
by an atlas which takes values in the quotientdoby the translation group generated by a
constant vector field.

1.2 Logarithmic degeneration

In this subsectiomV is a complex manifold with a given affine structtweon the complement
W — D of a hypersurfac®. Atfirst, D is smooth connected, later we alldwto have normal
crossings.

We recall that if we are given a holomorphic vector bunidien W, then a flat connection
V onV with a logarithmic pole alon® is a mapy — Quw (log D) ® V satisfying the usual
properties of a flat connection. Then the residue fap(log D) — Op induces induces
anOp-endomorphisnResp (V) of V ® Op, called theresidue of the connectioft is well-
known that the conjugacy class of this endomorphism is esistlongD. In particular,
VY ® Op decomposes according to the generalized eigen spadas pfV). This becomes
clear if we choose gt € D a chart(t, u1, . .., u,) such thatD, is given byt = 0: thenR :=
5, Ur = 50, ..., Uy := 52 is aset of commuting vector fields, covariant derivatiorwit
respect to these fields preserygs(and sinceV is flat, the resulting endomorphisms 3§
pairwise commute) an® induces inV, ® Op , the residue endomorphism. In particular,
the kernel ofR is preserved by/;. The action ofU; on this kernel restricted t®,, only
depends on the restriction bf to D,,. This shows tha¥’ induces on the kernel of the residue
endomorphism a flat connection. (A similar argument showsttie projectivization of the
subbundle o ® O associated to an eigen valueRds , (V) comes with a projectively flat
connection.)

Lemma 1.4 Suppose that the affine structiveon W — D extends td2y, with a genuine
logarithmic pole. Letting/p - stand for the normal bundle @b in W, then:

(i) the residue o ony respects the natural exact sequence
0—>1/B/W—>QW®OD—>QD—>O
and induces the zero map §p,

(ii) the connection induces i an affine structure,
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(iii) the connection has a logarithmic pole &y (log D) as well, its residue on this sheaf
respects the exact sequence

0—Qp — Qw(ogD)® Op — Op — 0.
and is zero o). The scalar operator ir0p is one less than the one HE/W.

Proof. By assumptionyV defines a maflyy — Qw (log D) ® Qu . SinceV is torsion free,
this extension then takes values in

(QW(log D)® QW) N (QW ® Qw (log D)) C Qw (log D) @ Qw (log D).

If ¢ be a local equation ab, then this intersection is spannedty dt ® dt andQy @ Q.
Hence the residue &F on 2y mapsQy ® Op to the span ofit, that is, tov}, ;.. So (i)
follows. It is also clear tha¥ drops to maglp — Qp ® Qp and so (ii) follows as well.
Finally, let R be a local vector field wittR(¢) = ¢. ThenV y induces the residue map and so
V r(dt) is of the formedt + tw for some constant € C and somev € Qyy. It follows that
Vet tdt) = (c— 1)t~ 1dt + w € Qw (log D). This proves assertion (iii) . O
The converse is not true: if the affine structure extendsadtiyarithmic pole té2yy (log D),

then it need not have that property @f,. The advantage of this logarithmic extension (over
Qw) is that has better stability properties with respect tavihg up.

Definition 1.5 Let D be a smooth connected hypersurface in an analytic marifald/ie
say that an affine structure 6#ff — D hassimple degeneration alond of logarithmic ex-
ponenth € C if at anyp € D there exist a local equationfor D, in W,, a morphism
Fy : W, — T to an affine spacg, such that

(A=0) (Fo,t): W, — Ty x Cis alocalisomorphism and there exists an affine-lineartfanc
u : To — C such thatFy(p) # 0 and the developing map neais affine equivalent
to (Fp,logt.(uFp)),

(A # 0) there exists a morphisth; : W, — T to a linear spac&7, such that(Fy, ¢, F) :
W, — Ty x C x T is a local isomorphism and the developing map nesr affine
equivalent to Fy, t =t~ F}).

If in the last caseX # 0), Tp = 0, we say that the degeneratiorpisre

Before we analyze the structural implications of this propé is useful to have the
following notion at our disposal.

Definition 1.6 If D is a smooth analytic hypersurface in an analytic manifdid then a
normal linearizationof D is a vector field ori¥p which is tangent to the fibers of some
retractionWp — D and has a simple zero & with residuel. If we are also given an affine
structureV onWp — D, then we say that the normal linearizatiorfl& if the vector field is
an infinitesimal affine-linear transformation.
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It is clear that this retraction is then unique. Note thatsaigector field generates(&* -
action onlWp with D as fixed point set which preserves each fiber of the retraciibuas the
germWp gets identified with the germ d? in its normal bundle (in other words, an analytic
version of the tubular neighborhood theorem holds); thjdairs the chosen terminology. If
it is flat with respect to a given affine structure, then@ieaction lifts to the holonomy cover
as a one-parameter group of affine-linear transformations.

Remarks 1.7 (The case\ = 0) Let us begin with noting tha¥ extends td2y (log D) with
a logarithmic singularity alon@: We get

V(

iy (d g ) | duFy) e

Ffa)=0
t t UF() UF() t), V( Oa) ’

whereq is any translation invariant differential afy. We also see that the residue endomor-
phism ofQy (log D) ® Op preserves)p and is either trivial ¢ is constant) or has image
a rank one subbundle 6ip (v nonconstant). An element ép ,, that is the restriction of
an element oDy, which is affine-linear outsid® is in fact the composite of the local
isomorphismFy|D,, and an affine-linear function df,. SoD has a natural affine structure
andF; determines a retraction &V, — D, whose restriction té¥,, — D,, is affine. Notice
thatt% is a flat vector field which is tangent to the fibers of this affiegaction. It is easy
to see that both this vector field and the retraction are daabgindependent of our choice
of coordinates). Hence they are globally defined and determiflat normal linearization of
D c W. The total space of the normal bundle deprived from its zeotien comes with an
affine structure. The holonomy respects that structurezéndre holonomy group a¥’p — D

is a central extension of the holonomy group of the affinecstme of D. Notice also that if
we lett — 0 in a fixed sector (on whiclog ¢ is continuous), then the projectivization of the
developing map tends to a singleton.

Remarks 1.8 (The case\ # 0) The affine structure is given in terms of our chart by

V(@):)\@Q@ﬂ, V(al):)\(ﬂ@)al—i—al@ﬂ), V(Oéo):()
t t t t t

(hereay resp.a; is a translation invariant form ofy resp.77) and so has a logarithmic
singularity onQyy (log D). The residue endomorphism is semisimple with eigen values
and ), respectf)p , C Qw,(log D) ® Op, and acts on the quotient with eigenvalke
The eigen space decomposition(df, is integrable in the sense that it underlies the decom-
position defined by the local isomorphisthy, F1)|D,, : D, — Ty x T3. In particular, this
decomposition ofD,, is natural; we denote thi®, = D, x D, , where the factors are
understood as quotients bk, (the leaf spaces of foliations).

For the same reason as in the case- 0, D, o has a natural affine structure; we call
it therefore theaffine quotientof D,,. The elements oOp , that are quotients of affine
functions that have ordex at D,, factor through#1|D,,. So D, , has a natural projective
structure; we call it therefore th@rojective quotienbf D,,. So this makes,, look like the
exceptional divisor of the blowup of a copy 6f, ( in some smooth space whose dimension
is that of .
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Although the triple(Fy, t, F1) is not unique, there is not a great deal of choice: for any
other systen{F}, ', ), (F§,t'=*,#'=*F]) must be obtained froriFy, t=*,¢~*F}) by an
affine-linear transformation. Ik is not a negative integer, thdry is clearly the composite
of Fy and an affine-linear isomorphisiy — T;). This means that the foliation defined by
Fy naturally extends to a morphisit, — D, . A similar argument shows that X is not
a positive integer, the morphis(t, F,) defines a natural quotieft, — W, . We call this
thepure quotienof 1, since the latter is a pure degeneration.

Soif A ¢ Z, then, just as in the case= 0, we have a natural retraction: W, — D,
the vector fieldt% is naturally defined omp (as a dilatation field with factor\) so that
we have a flat normal linearization. Furthermore, the deggios is locally canonically the
product of a pure degeneration and an affine space and thadmjoalongD is a central
extension the product of a projective linear group actingprn, and an affine-linear group
acting onD),, o.

If we let¢ — 0 in a fixed sector (on whiclog ¢ is continuous), then foRe(\) < 0 the
developing map has a limit affine equivalent to the projectotoD,, o and if Re(\) > 0,
then the projectivization of the developing map has a limdjgctively equivalent to the
projection ontaD,, ».

Definition 1.9 Let D be a smooth connected hypersurface in an analytic manifoldnd
let be given an affine structure &if — D. We say that the affine structure & — D has
infinitesimally simple degeneration alogof logarithmic exponemt € C if

() V extends td)y (log D) with a logarithmic pole alon@,

(i) the residue of this extension alorg preserves the subshe@f, C Qw (log D) ® Op
and its eigenvalue on the quotient shégf is A and

(iii) the residue endomorphism restricted@ is semisimple and all of its eigenvalues are
Aor0.

It is clear from the preceding that our insertion of the atiyecinfinitesimallya priori
weakens the property in question. We show that this is oftéyapparently so.

Proposition 1.10 Let D be a smooth connected hypersurface in an analytic manifidld
and let be given an affine structure & — D which alongD is an infinitesimally simple
degeneration of logarithmic exponekte C. If A ¢ Z — {0}, then this is true without the
adjectiveinfinitesimally, so that all the properties discussed in Remarks 1.7 anddl@ n
particular, we have a flat normal linearization.

If A is a nonzero integer, then at apyc D there exist a local equationfor D,, in W),
and a morphisn¥ = (Fy, F1) : W, — Ty x T3 to the product of an affine spadg@ and
a linear spacel’ such that(Fy, ¢, F1) is a chart foriW,, and the developing map nearis
affine equivalent to

(Fo,t™™ 4+ logt.c’Fo,t " F; +logt.CYF,) when\ = n is a positive integer,
(Fo +t"logt.CoFy,t",t"Fy) when)\ = —n is a negative integer.

Herec® : To — C, CY : Ty — Ty andC} : Th — Ty are affine-linear maps.
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Corollary 1.11 Suppose we are in the situation of Proposition 1.10) 1§ not an integer
< 0, then Fy defines a natural the affine quotieif, — D, o; if A is not an integer> 0,
then (¢, F1) defines a natural pure quotieft, — W, . If the monodromy around is
semisimple, then the affine structure degenerates simphgdD.

Proof. The first two assertions are clear. As for the last) i a positive integer, then
according to 1.10 the monodromy is given the unipotent faangtion in7y x C x 17 with
matrix

1 0 0
2my/—1c® 1 0
2my/—1CY 0 1

This matrix is semisimple if and only #® andC?{ are both zero, in which case we a simple
degeneration, indeed. The proof for the case whéna negative integer is similar. O
For the proof of Proposition 1.10 we need the following weibwn fact [10].

Lemma 1.12 LetV be a holomorphic vector bundle over the geify endowed with a flat
connection with a logarithmic pole alon,. ThenV (with its flat connection) naturally
decomposes naturally according to the images of the eigeesaf the residue map it/ Z:
V = ®cecx VI[(], whereV[(] has a residue endomorphism whose eigenvalubave the
property thatexp(27y/—1\) = .

Assume now that the residue map is semisimple and that a éagsitiont for D, is
given. If the residue map has a single eigenvaluhen there exists a uniq@&linear section
s:V®C, — V of the reduction map such that*s(u) is a multivalued flat section and any
multivalued flat section is thus obtained. If the residuetiaseigenvaluea and A + n with
n a positive integer, an? @ C, = V) @ Vi4,, is the eigenspace decomposition, then there
exist aC-linear sections : V @ C, — V of the reduction map and @ € Hom(Vy4,, V)
such that the image of

u € Vy =t s(u);
U € Vagn — 72 "s(u) — logt.t sC(u).

spans the space of flat multivalued sections.

We also need a Poincaré lemma, the proof of which is left axarcise.

Lemma 1.13 Let A € C andw € Qyy,(log D) be such that~—*w is closed. Then—*w =
d(t= f) forsomef € Ow,, unless\ is a nonnegative integer: thén*w = d(t=* f)+clogt
for somef € Ow,, and some: € C.

Proof. [Proof of Proposition 1.10] The case = 0, although somewhat special, is
relatively easy; we leave it to the reader. We thereforerassthat\A # 0. Choose a
local equationt for D,. PutV := Q,(logD) ® C, and letV = V, @ V) be the
eigenspace decomposition. Af ¢ Z, then according to Lemma 1.12 there is a section
s =50+ sx: Vo® VN — Quy(logD) of the reduction map such thag resp.t sy
map to flat sections. Any flat section is closed, because theestion is symmetric. Since
the residue has eigenvalten the logarithmic differentials modulo the regular diéfatials,
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so will take its values in the regular differentials. So by owitaré lemma 1.13 botfy and
t—*s, take values in the exact forms: there exists a lirear 5o + 5\ : Vo & Vy, — Ow,p
such thatisy = sp andd(t=*3,) = t~*s\. We putT, := V; and take foFy : W, — T the
morphism defined by,. Choosev € V), notin the cotangent spa@ D so thatV splits as
the direct sum ofv @ (T;; D). Thens, (v) is a unitand s6~*5, (v) is of the formi = for
another defining equatianof D,,. So upon replacing by ¢ we can assume thas (v) = 1.
Then we takel} = (T,D),, and letF; : W, — T3 be defined by the set of elements in the
image ofs, which vanish inp. The proposition then follows in this case.

Suppose now that is a positive integen. Then Lemma 1.12 gives us a sectnt s, :
Vo ® Vi, — Qwp(log D) and a linear mag' : V,, — Vj such that the images af, and
t~"s, — logt.soC are flat. The image of, consists of exact forms for the same reason as
before so that we can still defigg : Vo — Ow,, and a flat morphisndy : W, — Tp = V.
If u € Vy, thent™"s, (u) —logt.soC(u) is flat and hence closed. SinegC(u) = dsoC(u)
we have that="s,,(u) + 5,C(u)t~1dt is also closed. Invoking our Poincaré lemma yields
that this must have the ford(s,, (v) + c(u) log t) for somes,, (v) € Ow,, ande(u) € C. So
Sn(u) +logt.(c(u) — 5oC(u)) is a multivalued affine function. the argument is then fingshe
as in the previous case.

The remaining casex a negative integer is done similarly. O

We shall need to understand what happens in the case of alnessing divisorD C
W with smooth irreducible componenty so that we have a simple degeneration along each
irreducible component. Fortunately, we do not have to déél the most general case.

Suppose for a moment that we are in the simple situation whednas only two smooth
irreducible component®; and D,, with nonzero logarithmic exponenis, .. PutS :=
D, N Dy and letp € S. We have two residue operators actinglf, (log D) @ C,. They
mutually commute and respect the exact residue sequence

0— Qsp — Qw(logD) ® Os,p, — Og, © Og, — 0.

The affine-linear functions nearwill have alongD; order zero or—);. The formation of
the affine quotient oD as a quotient of its ambient germ persists as a submergjpn-
(D1)p,0 precisely when there are no affine-linear functions whicheharder zero oD,
and order—\; on D,. So we see that we have a local equatipfor D; and a morphism
F = (Fy, F1, F») : W, — Ty xT1 x T, to a product of which the first factor is an affine space
and the other two are linear, which makes up with witht, a chart and has the property that
the developing map is affine-equivalent to

(Fo, t7 (1, By, t7 M 522 (1, Fy)) « Wy — T x (C x Ty) x (C x Ty).

Notice that the decomposition 6f, defined byF'|.S,, underlies the eigenspace decomposition
defined by the two residue operators; the fact@isl, 1> correspond to the eigenvalue pairs
(0,0), (A1,0) and(A1, A2) respectively.

If A2 = 0 (but Ay # 0), then only a small modification is need&gis a singleton, so
that we only have a morphistfi = (Fy, Fy) : W,, — Ty x 17, and the developing map is
affine-equivalent to

(Fo, t7 (1, F1,log ta)) : W, — Ty x (C x Ty x C).
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So in this casé), is decomposed into two factors.
This immediately generalizes to

Proposition 1.14 Let W be an analytic manifoldD a normal crossing divisor ol which

is the union of smooth irreducible componetits, ..., Dy, and V an affine structure on
W — D which is simple of logarithmic exponekt along D;. Assume thai; # 0 fori < k.
Suppose that for any pair < i < j < [ the formation of the affine quotient of the generic
point of D; extends across the generic point/of N D;. Then atp € N; D;, we have a local
equationt; for D; and a morphism

P (Fo,Fl,...,Fk):WpHTQXTlX-~-><Tk |f)\k7é0,
(F(),Fl,...,kal)IWPHT()XTlX"'XTk,1 |f)\k:0,
to a product of an affine spade and linear space%, . . ., T, which together wittt, . . . , )

define a chart foi¥,, such that the developing map is affine equivalent to the valilied map

(Fo, (7 -t M (L Fy))E) if A, # 0,
(Fo, (t7™ - 7 M (L )2 ™ 67 (1, Fia, log i) if A, = 0.

1.3 Admissible metrics

If M is a connected complex manifold with an affine structure amd M, then a flat her-
mitian form on (the tangent bundle ofi restricts to a hermitian form offi, M which is
invariant under the monodromy. Conversely, a monodromgriawnt hermitian form off}, M
extends to flat hermitian form of/. This also shows that the kernel of such a hermitian
form is integrable to a foliation i/ whose local leaf space comes with an affine structure
endowed with a flahondegenerathermitian form.

Remark 1.15 Consider the situation of definition 1.5, wheké = W — D and the affine
structure has simple degeneration aldngwith exponent\. A flat hermitian formh on
M must be compatible with the structure that we have rdgaiSo when\ = 0, then this
gives rise to flat hermitian structure, on D. When the degeneration is pure (so that
has a projective structure), then this determines a hemmitrmhp on D which is flat for
the projective connection oP, so that ifhp is hondegenerate, the connectionns just
the Levi-Civita connection fohp. We will be mostly concerned with the case whiep
is positive definite. Of particular interest are the caseswhis positive definite (thefp
is isomarphic to a Fubini-Study metric) and wherhas hyperbolic signaturg:, 1) and is
negative on the normal dilatation field (thep is isometric to a complex hyperbolic metric).
In general we have locally ob» a metric product of these two cases.

Definition 1.16 Let be given an affine analytic manifold and a dilatation fieldZ on M.
We say that a flat hermitian formon the tangent bundle dff is admissible relative t@ if
we are in one of the following three cases:

(ell) his positive definite.
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(par) his positive semidefinite with kernel spanned By

(hyp) h has a hyperbolic signature andE, F) is negative everywhere.

They define on the leaf space a Fubini-Study metric, a flatimatd a complex hyperbolic
metric respectively, to which we shall simply refer asligptic, parabolic hyperbolic struc-
ture.

2 Linear arrangements with a Dunkl connection

2.1 Review of the terminology concerning linear arrangemets

We adhere mostly to the notation used in the book by Orlik sardd [21].

Let (V, H) be alinear arrangementthat is, a finite dimensional complex vector spé&te
and a finite collectiori of (linear) hyperplanes df . We shall suppose th&t is nonempty
so thatdim(V) > 1. Thearrangement complemerthat is, the complement il of the
union of the members df, will be denoted by °. We will also use the superscriptto
denote such a complement in analogous situations (sucteasatie of a projective setting),
assuming that the arrangement is understood.

The collection of hyperplane intersectiongirtaken from subsets 6 is denoted’ ()
(this includesV itself as the intersection over the empty subset®f We consider it as a
poset for the reverse inclusion relatiah:< M meansl D M. (This is in fact a lattice with
join LV M = LN M and withmeetL A M the intersection of thé/ € H containingL. U M .)
The members df{ are the minimal elements (tleoms of £L(H) — {V'} andNgey H is the
unigue maximal element. Fdr € £(H) we denote by, the collection ofH € H which
containLZ. We often think ofH, as defining a linear arrangement BpL. Clearly, £(HL,)
is the lower link ofL in L(H), that is, the set oM € L(H) with M < L. The assignment
L — My, identifiesC(H) with a subposet of the lattice of subsetstofand we will often
tacitly use that identification in our notation.

Given anL € L(H), then eachH € H — Hr meetsL in a hyperplane ofL.. The
collection of these hyperplanes 6fis denoted”. We call the arrangement complement
L° C L defined byH anH-stratum these partitiorl/.

A splitting of H is a nontrivial decomposition dff of the formH = H L Hy, with
L,L' € L(H)andL + L’ = V. If no splitting exists, then we say thaf is irreducible A
membert. € L(H) is calledirreducibleif 7, is. This amounts to the property that there exist
(codim(L) + 1) hyperplanes fror{;, such thatl is the intersection of anyodim(L)-tuple
out of them. Or equivalently, that the identity componentaft(V/L, 1) is the group of
scalarsC*. Itis clear that a member 6{ is irreducible. We denote bg;,.(H) C L(H) the
subposet of irreducible members.

GivenL € L(H), then anirreducible componentf L is a maximal irreducible member
of L(H). If {L;}, are the distinct irreducible componentsiofthenL is the transversal
intersection of these in the sense that the ap> &;V/L; is onto and has kernél.

Lemma 2.1 GivenL,M € L(H) with M C L, denote byM (L) € L(H) the common
intersection of the members®fy; — Hy. If M € L, (HL), thenM (L) is the unique irre-
ducible component aff in £(H) which is not an irreducible component bf In particular,
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if L € Lire(H)andM € L; (HL), then eitherM = M (L) € Li(H) or {L, M (L)} are
the distinct irreducible components &f in L(H).

Proof. Left as an exercise. O

2.2 Affine structures on arrangement complements

Let H be a linear arrangement in the complex vector sgaceFor H € H, we denote
by wy (or w};, if a reference to the ambient space is appropriate) theuergeromorphic
differential onV with divisor — H and residud alongH. Sowy = qb,;ld@{, wheregy is
a linear equation fof{.

SupposeV is a torsion free flat connection on the complem®ntof the union of the
members of{. We regard it in the first place as a connection on the tangerdib and then
write it asV := V° — Q, whereV? is the standard (translation invariant) flat connection
on the tangent bundle &f and? is aEnd(V')-valued holomorphic differential olr°: Q €
H°(V°,Qy)®cEnd(V), theconnection fornof V. The associated (dual) connection on the
cotangent bundle df° (also denoted by) is characterized by the property that the pairing
between vector fields and differentials is flat. So its cotinadorm is —Q*.

Corollary 2.2 Suppose thaV is invariant under scalar multiplication (as a connection o
the tangent bundle df’) and has a logarithmic singularity along the generic poifevery
member of{. Then for evenyd € H, Resy (V) is a constant endomorphispg; € End(V)
whose kernel containd and(2 has the form

= Z wH ® pH.
HeH

If £y denotes the Euler vector field dn, then the covariant derivative dfy with respect
to the constant vector field parallel to a vectore V' is the constant vector field parallel to

v ZHGH P (v).
If prr # 0, thenV induces onH € H a connection of the same type.

Proof. The assumption tha¥ is invariant under scalar multiplication means that the co-
efficient forms ofQ2 in H(V°,Qy) are C*-invariant. This implies that these forms are
C-linear combinations of the logarithmic differentials; and so{2 has indeed the form
Y nenwr ® pu With pry € End(V). Following Lemma 1.4py; is zero or has has kernel
H. This lemma also yields the last assertion.

Finally, let ¢y be a defining linear form fof so that we can writer; = gb;{ldng and
¢ (u) = ¢y (u)vy forsomevy € V. Then

¢u (v)
wr(0y)pu(Eyv) = qu—(z)d)H(Z)avH = apH(u)-
SinceVy (e) =y, itfollows thatVa, (Bv) = 9y — 3 gess Opu (v) - O

We denote by the projective compactification 6f obtained by adding the hyperplane
at infinity P(V).
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Proposition 2.3 Suppose that for everl{ € H we are giverpy € End(V') with kernel H
and letQ := >, ., wr ® pg. Then the connection on the tangent bundlé’/6fdefined
by V := V° — Qis C*-invariant and torsion free. As a connection on the cotandpem-
dle it extends td2-(log(IP(V)) with logarithmic singularities so tha¥ is regular-singular.
Moreover, the following properties are equivalent

() Visflat,
(i) QA =0,
(i) for every pair L, M € L(H)with L C M, 3"y oy, pra@nd) o, pn COMMute,

(iv) foreveryL € L(H) of codimensior, the sumd ., pn commutes with each of its
terms.

Proof. The C*-invariance ofV is clear. Letpy € V* have zero sel{. Then there exist
ey € V such that
Q=" ¢y'dou @ dpn @ e,y

HeH

which plainly shows thaf) is symmetric in the first two factors. S@ is symmetric. The
connectiorV has onQy-(log(P(V)) visibly a logarithmic singularity along each member of
‘H and so it remains to verify that this is also the case alB(lg). It is clear thatP(V)

is pointwise fixed under th€*-action. The generic point of P(V') has a local defining
equationu in V that is homogeneous of degreé. TheC* -invariance ofV implies that its

matrix has the form
du

u
whereA is a matrix and)’ a matrix valued differential in the generic point®fl/).
The proof that the four properties are indeed equivalenbeaiound in [15]. O

® A(w) + Q' (w),

Example 2.4 (The case of dimension twoxamples abound in dimension two: suppose
dimV = 2 and let{p; € End(V)},¢; a finite collection of rank one endomorphisms with
ker(p;) # ker(p;) if ¢ # j and which has more than one member. Sw;ifs the logarith-
mic differential defined byer(p;), then the connection defined by = . w; ® p; is flat,
precisely wherd . p; is a scalar operator.

Notice that in that casé has just two elements;, p2, then both must be semisimple.
This is because the centralizergfin End (V') is spanned by; and the identity.

Example 2.5 (Complex reflection groups)lrreducible examples in dimension 2 can be
obtained from finite complex reflection groups. I&tc GL(V') be a finite irreducible sub-
group generated by complex reflections andHdie the collection of fixed point hyperplanes
of the complex reflections itr. Choose aG-invariant positive definite inner product an
and let forH € H, my be the orthogonal projection alorg onto H+. If k € C™ is
G-invariant, then the connection defined by the fory, ,, wy ® kpmy is flat [15].

The next subsection describes a classical example.
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2.3 The Lauricella local system

Let V be the quotient o£™*! by its main diagonal. Label the standard basi€8f! as
€o, ... ent1 and letfor0 < i < j < n, H;; be the hyperplane; = z; (either inC"*! or
in V) andw;; := (z; — z;)~d(z; — z;) the associated logarithmic form. We [&t be the
collection of these hyperplanes so that we can thinK ©as the configuration spaceof 1
distinct points inC given up to translation.

Let be given positive real numbers, . . ., 1, and define an inner produ¢t ) on C*+!
by (e;,e;) = w:d; ;. We may identifyV with the orthogonal complement of the main di-
agonal, that is, with the hyperplane defined ®y 11;z; = 0. The line orthogonal to the
hyperplanez; — z; = 0 is spanned by the vecter;e; — p;e;. (For this reason it is often
convenient to use the basis, := u[lei)i instead, for then the hyperplane in question is the
orthogonal complement af, — ¢’; notice that(e;, e;;) = 1y '6; ;) So the endomorphism
pi; of C"*1 which sends: to (z; — z;)(uje; — pie;) is selfadjoint, hasd;; in its kernel
and hasu;e; — pie; as eigenvector with eigenvalyg + ;. In particular,p;; induces an
endomorphismp;; in V.

Proposition-definition 2.6 The connection

Vi=v— ZWij & pij

i<j

is flat (we call it theLauricella connectioyand has the Euler vector field dnas a dilatation
field with factorl — 3", p;.

Let~ be a path inC which connects; with z; but otherwise avoid$zy, . .., z, } in C. If
bothy; < 1andp; < 1 and a determination of the integrand in

/ (20— C)H0 - (2 — O HndC

is chosen, then this integral converges. It is translatiovariant and thus defines a multi-
valued holomorphic (so-calledauricellg function onV°. This function is homogeneous of
degreel — >, i; and its differential is flat for the Lauricella connection.

Proof. The first assertion follows from a straightforward compietabased on Proposition
2.3: one verifies that fod < ¢ < j < k < n the transformatiornp;; + pix + pj. acts
on the orthogonal complement ef + ¢; + ¢, in the span ot;, e;, e;, as multiplication by
i + p15 + i SO that this sum commutes with each of its terms.

The convergence and the translation invariance and the genity property of the inte-
gral are clear. If" denotes the associated multivalued function, then thesfiatofd F' comes
down to

o’F 1 OF  OF
Z-Zj 02107, dz; ® dz; = — Z D (,Uja_zi - ma—zj) (dz; — dzj) @ (dz; — dzj).
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Fori < j, we have

1 OF OF N —pip; 1 1 . L
ﬂ(“ja_zi_“ia_zj) = ZiZJj/v(ZiC_ZjC)H(ZV_C) s

v=0

= Miftj L(Zi ORI, Ul;[()(z” — Q) dC= 02,0z

If we combine this with the observation that, 2 = 0, we find the desired identity.
ThatEy is a dilatation field with factot — >, y; is left to the reader. O

This implies that locally, the Lauricella functions spanector space of dimensiod
n+1(<nincase)_, u; # 1). We can be more precise:

Proposition 2.7 If u; < 1 for all 4, then the Lauricella functions span a vector space of
dimension> n. Soif) ", u; # 1, then their differentials span the local system of Lautiel
flat 1-forms.

Proof. Fori = 1,...,n, we choose a path; from z to z; such that these paths have disjoint
interior. We prove that the corresponding Lauricella fiows £, . . ., F,, are linearly inde-
pendent. For this it is enough to show that is not a linear combination of}, ..., F,_1.
LetT c C be the union of the images af,...,v, minusz,. We fix z1,...,z,_1, but
let let z,, move along a path,, (s) in C — T that eventually follows a ray to infinity. Then
Fi(z0,-.-,2n-1,2n(8)) is for s — oo approximately a constant times,(s)~#~ in case

i # n, and a nonzero constant timeg(s)! ~#» wheni = n. The assertion follows. O

2.4 Connections of Dunkl type

The examples coming from complex reflection groups and theitella examples suggest:

Definition 2.8 We say that a flat connection dn° whose connection form has the shape
Q= e wn @ pr With pg € GL(V) is of Dunkl typeif there exists a positive definite
inner product or/ for which eachpy is selfadjoint, in other words, ity denotes the or-
thogonal projection ontd/ -, thenpy = kg my for somexy € C. We callQ2 a Dunkl form
and the pai(V, V° — Q) aDunkl system

So in the complex reflection example we have a connection okDiype and the same
is true for the Lauricella example. This last class showsiths possible that not just the ex-
ponent functiork, but also the hermitian inner product (and hence the orthalgmojections
) that can deform continuously in an essential manner whtgming the Dunkl property.
We shall see in Subsection 2.6 that for the arrangement efdyp any connection of Dunkl
type is essentially a Lauricella connection: its connectaym is proportional to a Lauricella
form.

Example 2.9 There are still many examples in dimension two. In order tdeustand the

situation here, let be given a complex vector speoaf dimension two and a finite sét of
lines inV which comprises at least three elements.
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Suppose that is given an inner produch on V. Choose a defining linear forgy; € V*
for H of unit length relative the dual inner product anddgt € V' be the unique vector per-
pendicular toH on which¢y takes the valué. Soey is also of unit length. By Proposition
2.3-iv,x € (C*)™ defines a Dunkl form relative to this inner product if and adifithe linear
map

veVi— Z ko (v)eg €V
HeH

commutes with each orthogonal projectiop. This means that the map is multiplication by
a scalarg. Since(v,ey) = ¢ (v), we can also write this as

Y kudn ()W) = ro(v,v').

HeH

This equality remains valid if we replace each coefficientitbyreal resp. imaginary part.
Notice, that if everys is real and positive, theny ¢ ® ¢z can be thought of as an inner
product on the lind’/ H.

Conversely, if we are given for eveldf € H an inner product, )y on V/H, and
ag € Rissuchthat, ) := > ;4 an(, )m is aninner product ofr, then we get a Dunkl
system relative the latter withy = ax (v,v)x/{v,v) for a generator of H-.

Assumptions 2.10Throughout the rest of this paper we assume tast irreducible, that
the common intersection of the memberg{of reduced to{0} (these are rather innocent)
and that the residuesy are selfadjoint with respect to some inner prod(ch onV (this is
more substantial).

Then there exist complete flags of irreducible intersestion

Lemma 2.11 EveryL € L;,,.(H) of positive dimension contains membeiCgf, () of codi-
mension one irl.. In particular there exists a complete fldag > Ly > Lo > --- > L, =
{0} of irreducible intersections frorf.

Proof. If all members ofH — H;, would containL-+, then’ would be reducible, so there
exists aH € ‘H — H, which does contai. . It is clear thatL N H is then irreducible. O

For each linear subspadeC V we denote byr;, the orthogonal projection with kernel
L and imagel*. So each residugy is written asxm for somexy € C. The following
lemma shows that;, is independent of the inner product.

Lemma 2.12 Suppose that none of the residygs is zero. Then any inner product dn
for which each of they is selfadjoint is a positive multiple df, ). (So the Dunkl form
Q= >, wy ® kymy then determines botK and the inner product up to scalar.)

Proof. Suppose , )’ is another hermitian form ol for which the residuepy are selfad-
joint. Then( , )" —¢(, ) will be degenerate for some reak R. We prove that this form
is identically zero, in other words that its C V is all of V. Sincepy is selfadjoint for
this form, we either havé&~ ¢ H or K ¢ H. Soif H' c H resp.H” C ‘H denote the
corresponding subsets, then for every g&it, H”) € H' x 1", H'* 1 H"*. SinceH is

22



irreducible, this implies that eithé(’ = § or H’ = H. In the first caséx lies in the common
intersection of the € H and hence is reduced {0}, contrary to our assumption. So we
are in the second cas&’* = {0}, thatis,K = V. O

Lemma 2.13 Let V be a Dunkl connection with residueg; 7y and letL € L;,,(H). Then
the transformatiory _ ;. xu7n is of the formx 7z, where

1
"L codim(L) H; e
L

In particular, the Euler vector field”y is a dilatation field forV with factor1 — kq.

Proof. It is clear thatZHeHL kpmy is zero onL and preserve&.. Since this sum com-
mutes with each of its terms, it will preseni& and H+, for eachH € Hy. SinceH,,
containscodim(L) 4+ 1 members of which eactvdim(L)-element subset is in general po-
sition, the induced transformation i will be scalar. This scalar operator must have the
same trace a$_ ., xu7u, and so the scalar equals the numbgrabove. Since.* is

the span of the lineél -, H € H, the first part of the lemma follows. The last assertion
follows from Corollary 2.2. O

Example 2.14 In the Lauricella case a membérof ;. (H) is simply given by a subset
I c {0,...,n} which is not a singleton: it is then the setof V for whichz, —z; = 0
wheni, j € I. Itis straightforward to verify that, = 3", ; p.

Forkx € C®, put

VE=vV0 -, QF = Z wH Q@ KETH-
HeH

Notice that the set of € (C*) for which V* is flat is the intersection of a linear subspace
of C™ with (C*)™. We shall denote that subspace®}f-fat.

Corollary 2.15 Choose for everyl € H a unit vectorey € V spanningH+. Then the
connectiorV” is flat if and only if for eveny € £;,,(H) of codimension two we have

Z ki (v,eg)(em,v') = kp(rp(v), 7L (V"))

HeHL

for somex;, € C. In particular, C™f12t is defined oveR. Moreover, anys € (0, co)™fat js
monotonic in the sense thatiif M € L;,.(H) and M strictly containsL, thenx,; < xr.

Proof. Lemma 2.13 and condition (iv) of Proposition 2.3 show that tlatness ofV* is
equivalent to the condition that for evely € L;,.(H), ZHeHL kg IS proportional to
mr, in other words tha} 4, ku(v,en)en = kpmr(v) for somex, € C. If we take the
inner productwith/’ € V', we see that this comes down to the stated equality. Sincertimes
(v,em){em, v’y and{my (v), 7 (v") are hermitian, this equality still holds if we replace the
coefficients by their complex conjugates.
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Finally, if x € (0, 00)" 2% andL € L;..(H) then

KL {v,v) = Z (kpmp(v),v) = Z k|, er)|?.

HeHy, HeHy,

If M € L(H) strictly containsL, thenH, strictly containsH ,,, and from

(kL —ka)(v,0) = Y kalven)

HeHr—Hwm

it follows (upon takingy € L+) thatsy, < ki O
Proposition 2.3 shows that for evefye £(H),

Qp = E wHg Q KETH
HeHyp

defines a Dunkl-connectioviz, in (V/L)°. We shall see thal® also inherits such a connec-
tion.

Denote byi;, : L C V the inclusion. Notice thatif € H — H, theni} (wg) is the
logarithmic differentialu? -, on L defined byL N H.

The setH” of hyperplanes inl. injects intoL;,, (H) by sendingl to I(L), the unique
irreducible intersection such thatn I(L) = I as in Lemma 2.1. The set df ¢ H for
whichI(L) ¢ H will be denotedH%, so thatH’ — HL injects intoH — H . We denote the
image of the latter by /.

Lemma 2.16 GivenL € L(H), then the connection on the tangent bundl& akstricted to
L° defined by

1 (=Qp) = Z ijwy @ KETH.

HeH—HL

is flat. Moreover, the decompositidn = L+ @ L defines a flat splitting of this bundle; on
the normal bundle (corresponding to the first summand) timeotion is given by the scalar
valuedl-form ", ;.. (k1 — k1 )wf, whereas on the tangent bundlelofcorresponding to
the second summand) it is given by el (L)-valuedl-form

L._ L L.
Q- = Z Wi @ K{(L)TT;
IeHE

herent denotes the restriction of; to L. We thus have a natural affine structure Hf
defined by a Dunkl connectioii” whose form is defined by restriction of the inner product
to L and the functiok” : T € HL — k1(z)- The extension of that function .. (H") (as
defined by Lemma 2.13) is given by € L;, . (HL) — KM(L)-

Proof. Let M € L;..(H). We verify thatZHeHM_HL kgT™H commutes withr;, and that
its restriction toL equalsk s (rymas(r)- If M is irreducible relative té+ (so thatM (L) =
M), then
Z RHTH — KMTMN — RLTY,.
HeHy—HL
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Itis clear that the right-hand side commutes withand that its restriction td is x p 7l If
M is reducible relative t6<, thenM (L) is the unique irreducible component df distinct
from L so that

Z KHTH = KM(L)TM(L)-

HeHu—Hi
SinceM (L) and L are perpendicular, the right-hand side commutes wijth;, and its re-
striction to L is r yy (1) ;-
The very last assertion of the proposition now follows: bgpuping the members of

‘Has — H according to their intersection with, we see that

Z KHTH = Z Z KHTH

HeHy—Hr Ie’)—[ﬁl HeHi—Hr

and according to the discussion above, the left-hand sidel®g ;)7 (z), Whereas the
internal sum of the right-hand side equalg;7 (). For the flatness ov L we invoke crite-
rion (iv) of Proposition 2.3: ifM, N € L;,.(H*) satisfy an inclusion relation, then it follows
from the above, that the surris:HeHM_HL KHTH andZHeHN_HL kgTH commute and
the flatness follows from this.

If we let M run over the members 6~ we get

L
O—-Qr = E W7 ® KTy + E WH QKHYTH.
IeHrk HeHE

irr

Since all the terms commute witty, it follows thatr, is flat, when viewed as an endomor-
phism of the tangent bundle &f restricted toL. It also follows that the components of the
connection are as asserted. O

Remark 2.17 The last property of Lemma 2.16 imposes a very strong canmddns when
viewed as a function on the posét..(#): it implies that for any pail, < M in this poset
we have the equalityys — k. = ) (k1 — k1), Where the sum is taken over @l L, (H)
which satisfyL. < I < M and are minimal for that property. In fact, it turns out thast
condition yields all the possible weights for Coxeter agaments of rank at least three. We
we will not pursue this here, since we will obtain this cléisation by a different method in
Subsection 2.6.

Definition 2.18 The Dunkl connection o’/ L)° resp.L° defined by}, resp.Q* is called
the L-transversakesp.L-longitudinalDunkl connection.

2.5 Local triviality

Let L € Ly, (H), f : Bl V — V be the blow-up ofZ in V' and denote byD the excep-
tional divisor. The inner product identifi&with L x V/ L and this identifie®l;, V with L x
Blo(V/L), D with LxP(V/L) andQg,, v (log D) with PTEQL@]?TT//LQBIO(V/L)GO&’; P(V/L)).
The projection on the second factor defines a natural pajegf;, v (log D) — Qpy, v (log D),
which we shall denote by .
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Lemma 2.19 The affine structure oiir° is of infinitesimal simple type alonf with loga-
rithmic exponenk, — 1: its residue is(k;, — 1)7;. Whenky # 1, the first factor of the
product decompositio® = L x P(V/L) is the affine quotient and the second factor the
projective quotient oD (in the sense of Remark 1.8).

Proof. The last assertion is clearly a consequence of the first.plbet a generic point of
D, precisely, suppose thate D andp not in the strict transform of an{l € H — Hy.
We identify V* with (V/L)* @ (V/L*)*. We must show that foy € (V/L+)* andx €
(V/L)*, f*V(dy) and f* (V(fldm) — (kz — Dz~ ldz ® xfldx) both lie inQp1, v, ®
Qg1 v,p(log D). The pull-back ofuy to Bl V' is a regular differential gt unlessH € H;,,
in which case it is logarithmic differential with residueeariVVe have that

V(dy) = Y wi @k (dy)
HeH

and sincery;(dy) = 0 in caseH € Hp, we see right away that*V(dy) € Qgi, vp @
Qg1 v,p- Now consider

dr d d
Vot =~ 0% 5 o i),

T
HeH

Let us first concentrate on the subsum o¥&r. Fix a local defining equationof D at p.
Then(f*xz~1dz), — t~1dt is regular and so i§f*wp), — t~*dt whenH € Hy. So if we
calculate modul@g;, v, ® Qgi1, v,p(log D), then we find

( Z wH®f£H7rH(dx))——®f ( Z ki ( dx)z

HeHp HeHL

= Yo rum D) = nep (Lo D)

t x x

So it remains to show that

N dzr
f ( > wn®@kaTy(— )) € Qp1, vp ® Qp1, v,p(log D).
HeH—-HL

Here all thef*wy are regular ap, so it is rather the denominator of 'dz that is cause
for concern. For this we group thE € H — H, according to their intersection with.
Let ] € HL. ThenforH € H; — Hy, the restriction ofvy to L as a form isw¥, hence
independent off. The same is true fof*wy: its restriction toD as a form is the pull-back
of w¥ and hence independent &. This means that iff, H' € H; — Hy, then the image
of f*wg — f*wmr in Qgi, vp(log D) can we written as a form divisible bt plus a form
divisible by¢. In other words, it lies inQg;, v,,(log D). Sincef*(z=') € t7'O0py, v,p, it
follows that if we fix someH, € H; — Hr, then

f*< Z WH®“H7T7{(d§>)Ef*WHU®f*< Z HHWH(d;))-

HeHi—Hr HeHr—HL
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If Iis irreducible, therd_ ;. 4, kumH = Kimp — k. Sincen; andry leavedx
invariant, it follows thaty_ ., 5, ke (x7lde) = 3 ey, _w, (1 — k) (@™ de),
and hence the image of this sum undgérlies in Qg;, v,,(log D). If I is reducible, then
it has two irreducible componentsand(L). In that case)_ s, 5, kumy(x dr) =
mI(L)w;(L)(x—ldx) and sinceL* is in the kernel ofr; ;) it follows that the latter is identi-
cally zero. The proof of the lemma is now complete. O

Given L € L(H), then we say that a Dunkl connection &1t hassemisimple holon-
omy aroundL if the holonomy around the exceptional divisor of the bloviip V' has that
property. Itis a property we know is satisfied when¢ Z or x;, = 0.

Corollary 2.20 Suppose we have semisimple holonomy ardumd(;,, (7). Then the con-

ditions (and hence the conclusions) of Proposition 1.10satésfied in the generic point of
the blow-upf : Bl V — V of L in V with A = xk; — 1. In particular, we have a normal

linearization in the generic point of the exceptional dorisf Blz, V.

Here is a simple application.

Corollary 2.21 If no kg is an integer ands<o — 1 is not a negative integer, then every flat
1-form onV° is zero. (Equivalently, every cotangent vectohdf which is invariant under
the monodromy representation is zero.) Similarly, if4)pis a negative integer andy — 1

is not a positive integer, then every flat vector fieldiohis zero.

Proof. We only prove the first assertion; the proof of the secondnslai. Let« be a flat
1-form on V°. Since the Dunkl connection is torsion free,s closed. Let us verify that
under the assumptions of the statemenig regular in the generic point &f € H. Near the
generic point ofH is a linear combination of the pull-back of a differential thre generic
point of H under the canonical retraction and a differential whichkie ¥ ~"# d¢, where¢
is a local defining equation fdi. So if the latter appears im with nonzero coefficient, then
kg must be an integer and this we excluded.cSs regular in the generic point df .
Hencea is regular on all ofi”. On the other handy will be homogeneous of degree
1 — kg. So if a is nonzero, then — kg is a positive integer. But this we excluded also[]
LetnowLy > --- > Ly > Ly = V be aflaginl;,(H) and letf : W — V be the
iterated blowup of these subspaces in the correct ordetingfavith L, and ending withl.
Denote the exceptional divisor ovér by F;, so that theE;’s make up a normal crossing
divisor. The common intersectiah of the E;’s has a product decomposition

S = LQ X ]P)(Ll/LQ) X oo X P(V/Lk)

Proposition 2.22 Let z = (zo,...,2r+1) be a general point of. If we have semisim-
ple holonomy around everk;, then there exist a local equatiagp for F; and a morphism
(F1,...,Fy41) : W, = T1 x --- X Tj41 to a product of linear spaces such that

(i) F;|S. factors through a local isomorphisf(L;/L;_1)., — T; (and hence the system
(prrg,to, F1, ..., tk, Fry1) is chart foriv,),
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(i) the developing map at is affine equivalent to the multivalued mef, — Ly x (C x
Ty) x --+ x (C x Ty41) given by

(prLov t(l)_ﬁo(la F1)7 t(l)_m)t%_m1 (17 F2)7 s 7t(1)_’l‘i0t}_’l‘il e tllgink (17 Fk+l))a

wherex,; stands forx,,.

If kK = 0, but the holonomy around; is semisimple foi < k, then then there exist a
local equatiort; for E; and a morphisniFy, ..., Fy) : W, — T} X - - - x T}, to a product of
linear spaces such that

(i) F;|S. factors through a local isomorphist®(L;/L;_1)., — T; if i < k, whereas
Fy|S. factors through a local isomorphisf( Ly /Ly —1) X P(V/Lg) (2 2 1) — Tho

(i) the developing map at is affine equivalent to the multivalued mef, — Ly x (C x
T1) x -+ x (C x Ty x C) given by

(p?‘Lo,téiﬁo(l, Fl), téiﬁoﬁ%im(l, Fg), I ,téiﬁot%inl e ﬁ;:?kfl(l, Fk, logtk)).

Proof. This is a straightforward application of Proposition 1.1 see that this applies
indeed, we notice that the formation of the affine quotiengefs its projection tal(, hence
defined everywhere oRy. Likewise, the formation of the affine quotient &% is defined
away from the unionJ;; E; of exceptional divisors of previous blowups and given by the
prOjeCtionEi — Uj<1‘E]‘ — L; — L; 1. O

2.6 A classicification of Dunkl forms for reflection arrangemnents

Let be given be a complex vector spacén which acts a finite complex irreducible reflection
groupG C GL(V). We suppose that the action is essential so Wfat= {0}. LetH be
the collection reflection hyperplanes 6fin V. We want to describe the space of Dunkl
connections oV °, where we regard the inner product as unknown. So we wishagsify
the pairg(, ), x), where(, ) is an inner product o andx € C™ issuch thab" ,,,, wn ®

kg g 1S a Dunkl form (withr g being the projection with kernéf that is orthogonal relative
to (, )). We shall see that in cage is a Coxeter group of rank 3, any such Dunkl system
is G-invariant and hence of the type investigated in Subse&ibnunlesss is of type A or
B. We begin with a lemma.

Lemma 2.23 Let V be a complex inner product space of dimension two andldie a
collection of lines inV.

(i) If H consists of two distinct elements, then a compatible Duyrstésn exists if and only
if the lines are perpendicular.

(i) If H consists of three distinct elements, then a compatible Diamk exists if and
only if the corresponding three points (V') lie on a geodesic (with respect to the
Fubini-Study metric). Such a form is unique up to scalar.
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(iii) Let (¢1, #=2) be a basis of/* such that consists of the line#&l,, H», H', H" defined
by the linear forms)y, ¢2, ¢’ := ¢1 + @2, & := @1 — 2. Suppose that, ) is an inner
product onV for which H; and H, are perpendicular. Lef; be the square norm of
¢; relative to the inverse inner product dn*. Then for every syste(&1, k2, ', k')
of exponents of a compatible Dunkl system there existe C such thatx’ = " =
b(p1 + p2) andk; = a + 2bu; fori =1,2.

Proof. The proofs are simple calculations. The first statementsy aad left to the reader.
To prove the second: ldil;, Ho, H3 be the three members &f. Choose a defining linear
form ¢; € V* for H; in such a way that, + ¢2 + ¢35 = 0. The triple (¢1, ¢2, ¢3) IS
then defined up to a common scalar factor. L&R) be the set ob on which eachy; is
R-valued. This is a real form df and the imageP of V(R) — {0} in P(V) is the unique
real projective line which contains the three points defibgdi;’s. The funcionsp?, ¢3, ¢3
form a basis of the space of quadratic formdoand so if(, ) is an inner product oy, then
its real part restricted t& (R) is the restriction ofy", a;¢? for uniquea; € R. ThenP is a
geodesic for the associated Fubini-Study metri®6W) if and only if complex conjugation
with respect td/(R) interchanges the arguments of the inner product. The agemeans
that(,) = >, a;¢ ® ¢;. According to Example 2.9 this is equivalent tp; ) is part of
a Dunkl system withs; = a;|¢;(v)|>/(v,v), wherev is a generator ofZ;- (and any other
triple (k1, K2, k3) is necessarily proportional to this one).

To prove the last statement, lgt;, e2) be the basis oV dual to(¢1, ¢=2). Sincee; + ey
has square length; ' + x5 ', a quadrupld s, ko, ', k") is a system of exponents if and
only if there exist a\ € C such forallv € V:

A = pu1k1(v, e1)er + ok (v, ea)es + R’M@, e1 +ea)(er +e2)
M1+ 2
)2 e — e)(er — ea).
M1 +H2< ) )

Subsitutinge; ande, for v shows that this amounts to:

Ii/ = Ii” )\ = K1 + ‘uzi(ml + H/I) = K2 + ‘ul(KII + h:/l)
’ Hn1 + po n1 + po

Now putb := &/(pu1 +p2) = = & (1 + p2) ~* so thatky +2bus = K2 +2bu;. The assertion
follows with a := k1 — 2bu; = Ko — 2bjus. O
Recall that on4,,, we have the Lauricella systems: for positive regl. . ., u,, we define
an inner product, ) on C"** by (e;, e;) = p;0; ; and the hyperplaned; ; = (z; = z;),
0 < i < j < n, restricted to the orthogonal complemént= (>_, n;z; = 0) of the main
diagonal, then make up a Dunkl system with; = p; + p;. Is is convenient to switch
to ¢; := p;z; SO that) ", ¢; vanishes ori/ and eachm-element subset of is a coordinate
system. The group’ permutes the;’s (it is the full permutation group on them) and the
inner product is nowy_, u; '¢; ® ¢;. There are choices for the's that are not all positive
for which Y~ p1;¢; ® ¢; is nevertheless positive definite ® We then still have a Dunkl
system and in what follows we shall include such cases whemefeeto the ternLauricella
system
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Proposition 2.24 If G is of typeA,,, n > 2, then any Dunkl form is proportional to a Lauri-
cella form.

Proof. For the casex = 2, it easily follows from Lemma 2.23 that the Lauricella syste
exhaust all examples. So assume 3 and consider the spad® V") of hermitian forms on

V and regard it as a real representatiori:of= S,,.1. Its decomposition into its irreducible
subrepresentations has three summands: one trivial med®on, one isomorphic to the
natural real form of//, and another indexed by the numerical partitien— 1,2) of n + 1.
The hermitian forms with the property that for ady x A; subsystem the two summands
are perpendicular make up a subrepresentatidii(®f); it is in fact the sum of the trivial
representation and the one isomorphidtothese are the formE?:0 ciléi|? with ¢; € R
restricted to the hyperplang” , ¢; = 0. The inner products in this subset are those of
Lauricella type (withy; = ¢; ). According to Lemma 2.23 such an inner product determines
k on everyAs-subsystem up to scalar. Hence it determinagobally up to scalar. This

implies that the Dunkl form is proportional to one of Lautlagype. O
Let now G be of typeB,, with n > 3. We use the standard set of positive roots: in
terms of the basis,, ..., e, of C" these are the basis elements themsedyes. ., e, and

thee; £e;,1 <i<j<n.

Proposition 2.25 Let i1, . . ., iy, be positive real numbers and lete C. Then relative to
this hyperplane system of tyf&, and the inner product defined Hy;, e;) = ui_léi,j, the
exponents; +; := -+, ki := a+2p; define a Dunklform. Inthis casey = a+2), ;.
Any Dunkl form is proportional to one of this kind for certain, . . ., u,; a. In particular, it
is always invariant under reflection in the mirrors of the ghoots.

Proof. The Dunkl property is verified for the given data by means af®sition 2.3-iv and
the computation ok is straightforward.

Suppose now that we are given a Dunkl form defined by the inrayzt(, ) and the
system(k;, ki,+j). Forl <i < j < nande € {1,—1} the hyperplanes; + ¢z; = 0 and
zn = 0 make up ad; x A; system that is saturated (i.e., not contained in a largaesys
of rank two). So these hyperplanes are orthogonal. By tettiand j vary, we find that
(e;,en) = O forall i < n. This generalizes tote;,e;) = 0 wheni # j. Hence the inner
product has the stated form. For every pair of indites: < j < n we have a subsystem of
type B with positive rootse;, e;, e; = e;. We can apply 2.23-iii to that subsystem and find
that there exist;;, b;; € C suchthatk,; ; = k; —; = b;;(p; + pj) ands; = a;; + 2b;41; and
Kj = a;j + 2bi; ;. It remains to show that botly; andb;; do not depend on their indices.
For theb,;’s this follows by considering a subsystem of type defined byz; = 2z, = z3:
our treatment of that case implies that we must hiaye= b3 = bo3 and this generalizes
to arbitrary index pairs. If we denote the common value ofitheby b, then we find that
ai; = ki — 2bu; = Kk — 2bp;. This implies that,;; is also independent of its indices. O

Corollary 2.26 A Dunkl system of typB,, in C", n > 3, hasAT-symmetry and the quotient
by this group is a Dunkl system of tyde . If the parameters aB,,-system (as in Proposition
2.25) are given byuy, . . ., pun; a), then those of the quotiedt, -system aré o, i1 . . . , fin)
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Proof. The quotient of the Dunkl connection by the symmetry grouguiastion will be a flat
connection orC;! with logarithmic poles and i€*-invariant. So by Corollary 2.2, its the
connection form has the shape,, ., wu ® pm, With pr alinear map. A little computation
shows that the nonzero eigenspaceppf _..—o) is spanned by, — e; with eigen value
Mi + uj. ([l

Remark 2.27 A B,-arrangement appears inda,-arrangement as the restriction to a linear
subspace not contained irda,,-hyperplane as follows. Index the standard basig%f+! by
the integers from-n throughn: e_,,, ..., e, and letV be the hyperplane i@?" defined by
St 2z = 0. Anarrangemeri of type A, in V is given by the hyperplanes iri defined

by zi = z;, —n < i < j < n. The involution: of C*"*! which interchanges_; and —e;
(and so sends, to —¢p) leavesV” and the arrangement invariant; its fixed point subspatg in

is parametrized b€ by: (w1, ...,wy,) — (—wp,...,—w1,0,w,...,w,). The members
of H meetV* as follows: forl <i < j < n,w; = wj is the trace of thel; x A;-subsystem
{zi = zj,2_; = z_;} on V", likewisew; = —w; is the trace fo{z; = z_;,z_; = z;}, and

w; = 0 is the trace of thels-systemz_; = z; = 2. This shows that{|V* is of type B,,.
Suppose that we are given a Dunkl form Brnwhich is invariant under. This implies that
V° containsV’° N V* as a flat subspace, so that the Dunkl connectiofr anduces one on
V*. The values of; on the hyperplanes df* are easily determined: since the inner product
onV comes from an inner product @*" in diagonal form:(e;, e;) = pu;'5; ; for certain
positive numberg.;, i = 1,...,n, we must have._; = u;. Up to scalar factor we have
K(zi=z;) = i + pj for —n < i < j < n. So with that provisok u, +uw,—0) = i + i,

1 <i < j <mnandk(y,—oy = 2pi + po, which shows that we get the Dunkl form described
in Proposition 2.25 witlw = pg.

We complete our discussion of the Coxeter case with

Proposition 2.28 Suppose thatr is a finite Coxeter group of rank 3 which is not of typed
or B. Then every Dunkl system with the reflection hyperplanésasf its polar arrangement
is G-invariant.

We shall see in Subsection 3.5 that the local system aseddiatsuch a Dunkl system
can be explicitly described in terms of the Hecke algebr@ of
We first prove:

Lemma 2.29 If the complex reflection grou@' contains a reflection subgroup of tyge,,
but not one of typds,, then any Dunkl form relative t#( is necessarilyG-invariant.

Proof. We prove this with induction on the dimensioniof To start this off, let us first assume
thatG is of type D4. We use the standard root bagis — ez, e3 — e3, €3 — e4, €5+ e4) in [3]
The four roots{e; =+ e, e3 & e4} define a subsystem of tygel; )*. So by the first clause of
Lemma 2.23, these roots are mutually perpendicular: theriproduct ori” has the shape

(v,v) = alvy — v2|® 4 blvy 4+ v2|* + clvs — va|* + dlvs + v4|?
for certain positiver, b, ¢, d. Any g € G sends & A;)*-subsystem to another such, and so

must transforn{, ) into a form of the same type (with possibly different constan. . . , d).
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From this we easily see that= b = ¢ = d, so that{v,v) = a ), |v;|*. This form is
G-invariant. If we apply 2.23 to any subsystem of tyfsgand find that: is constant on such
subsystem. Since tHg is connected by itsl,-subsystems, it follows that is constant.

In the general case, Iét € L;,,(H) be such that its normal system contains a system of
type D4. By our induction hypothesis, the Dunkl system transveisdl is invariant under
the subgroup of € G which stabilizes. pointwise. An inner product is already determined
by its restriction to three distinct hyperplanes; since wieast three sucli, it follows that
the inner product ig7-invariant. TheA,-connectivity ofH implies thatx is constant. O

Proof. [Proof of Proposition 2.28] By Lemma 2.29 this is so wli¢noontains a subsystem
of type D4. The remaining cases are those of tyfae Hs and H,. In each case the essential
part of the proof is to show that the inner prodict is G-invariant. Let us first do the case
Fy. If we have two perpendicular roots of different length,rtttbey generate a saturated
A; x A; subsystem. So the corresponding coroots must be perpégrdimuthe inverse inner
product. Itis easily checked that any such an inner produst fveGG-invariant. Lemma 2.23
then shows see that the exponents are constant on any frhsydiypeA,. Since aG-orbit
of reflection hyperplanes is connected byAtssubsystems, it follows that the Dunkl form is
G-invariant.

The casedd; and H, are dealt with in a similar fashion: any inner product witke th
property that the summands of4 x A; subsystem (all are automatically saturated) are
orthogonal must bé&-invariant. TheA,-connectivity of the set of reflection hyperplanes
implies that every such hyperplane has the same exponent. O

3 From Dunkl to Levi-Civita

3.1 The admissible range

According to Lemma 2.12, the inner prodyct) is unique up to a scalar factor. An inner
product onV’ determines a (Fubini-Study) metric &41") and two inner products determine
the same metric if and only if they are proportional. So wethes basically prescribing a
Fubini-Study metric of(V).

The inner product, ) defines a translation invariant (Kahler) metric on the &rtdun-
dle of V; its restriction tdV° (which we shall denote by®) hasV° as Levi-Civita connection.
We shall see that we can often defolfhwith the connection.

The main results of this subsection are

Theorem 3.1 LetdimV > 2, x € (0,1]" 82t and leth be a hermitian form oV ° flat for
V* with at least one positive eigenvalue. Theis positive definite if and only ¥y, < 1 and
for kg = 1, h is positive semidefinite with kernel spanned by the Euletovéield.

Theorem-definition 3.2 Letdim V > 2 andx € (0, 1]t be such thak, = 1. Assume
we are given for every > 0 a nonzero hermitian form which is flat forvV** and such that
hs depends real-analytically on. Then there is an > 1 such that for alls € (1,m), hs

is of hyperbolic signature antl;(Ev , Ey) is negative everywhere. The supremury,,, of
suchm has the property that when it is finitg,,, _ is degenerate. We call this supremum
thehyperbolic exponerdf the family.
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Remark 3.3 If V° has a nonzero hermitian forinwhich is flat relative tov”~, andL €
L(H), then such a form is often inherited by the transversal anditadinal system asso-
ciated toL. For instance, ifL is irreducible and such that; is not an integer, then the
monodromy around. has the two distinct eigenvalu¢sande?™v~1%z These decompose
the tangent space of a point ndérinto two eigenspaces. This decomposition is orthogonal
relative toh, since the latter is preserved by the monodromy. Both deositipns are flat
and hence are integrable to foliations. It follows that tlesversal system dri/ L and the
longitudinal system orl inherit from a flat form. (But we cannot exclude the possibility
that one of these is identically zero. )

The proofs of the two theorems above require some preparatie begin with a lemma.

Lemma 3.4 Letx € (0, 00)"2* and letF be a vector subbundle of rankof the holomor-
phic tangent bundle df ° which is flat forV*. LetH(F) denote the set dff € H for which
the connection o becomes singular (relative to its natural extension aciib&sgeneric
point of H as a line subbundle of the tangent bundle). Then there extistsvector fieldX

onV with the following properties:

(i) X|V° definesF and the zero set oX is contained in the union of the codimension two
intersections front,

(i) X is homogeneous of degreé:y — 1) — ZHEH(E kg and multiplication ofX by
[irenr) @3 vields a flat multivalued form.

In particular, 3y r) ku < Tko, SO thatH(F) # H. Moreover, in the case of a line
bundle ¢ = 1), the degree oiX is nonnegative and is zero only whénis spanned by the
Euler field ofV.

Likewise there exists a regulddim V' — r)-form n on V satisfying similar properties
relative to the annihilator ofF:

(iii) n|V° defines the annihilator of and the zero set of is contained in the union of the
codimension two intersections frof

(iv) nis homogeneous of degr@im Vfr)(lfno)JrZHeH_H(f) g and multiplication
ofn by HHeH_H(f) ¢4 " yields a flat multivalued form.

Remark 3.5 We will use this lemma in the first instance only in the case tifi@ bundle.
Whenr = dimV, then clearlyH(F) = H and so the lemma then tells us that for any
translation invariandim V-vector X (i.e., one which is defined by a generator¢f™ V1),
[lrcn @3- X is flat for V=,

Proof. [Proof of Lemma 3.4] Let us first observe thatwill be invariant under scalar
multiplication. It extends as an analytic vector subburafléhe tangent bundle over the
complement of the union of the codimension two intersestivom and it is there given
by a sectionX of the rth exterior power of the tangent bundle Wt SinceF is invariant
under scalar multiplication, we caXi to be homogeneous. The local form 1.10vsf along
the generic point off € H implies thatF is in this point either tangent or perpendicular to
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H. In the first case the connecti®f* restricted taF is regular there, whereas in the second
case it has there a logarithmic singularity with residuey. So if D7y denotes the action
of my on polyvectors as a derivation (i.e., it sends-gmolyvectorX; A---A X, 0>, X1 A
AT X A - A X)), thengy dividesDry (X)) or D (X)) — X according to whether
H € H—H(F)or H € H(F). Consider the multivalued functioh := [ [, 5 @7 on
V°. Locally we can find a holomorphic functighon VV° such thatf® X is flat }or V&, we
then have

_ 4 ® X =VX) - Z kudon ® ¢ Dy (X)

f HeH—H(F)

— > kudéy @ ¢5' (Drp(X) - X).
HeH(F)

We have arranged things in such a manner that the right-hdea#sthis identity is regular.
Hence so is the left-hand side. Sinkds nonzero in codimension one, it follows thé/ f is
the restriction of a regular, globally defined (closed)efiéntial onl”. This can only happen
if fis a nonzero constant. Henee*® X is a flat multivalued--vector field onV°. Such
a field must be homogeneous of degrée, — 1). Since®X is homogeneous, so . It
follows thata is a scalar and that the degreefs r (ko — 1) — 3~ ey () fon- The fact that
X must have a degree of homogeneity at lelast V' — r implies thatZHeH(f) kg < TKo.

The assertions regarding the annihilatotFoéire proved in a similar fashion.

Now assumer = 1 so thatX is a vector field. Its degree cannot be, for then
X would be a constant vector field, that is, given by some nanzee V. But then
v € Ngen—n(F)H, whereasH(F) is empty or consists of+, and this contradicts the
irreducibility of H.

If X is homogeneous of degree zero, then clealyr) = () (in other words X is tangent
to each member df) andx, = 1. If we think of X as a linear endomorphisiof V, then
the tangency property amounts¥ € End(V*) leaving each line i* invariant which is
the annihilator of soméf € H. SinceH is irreducible, there aré + dim V' such lines in
general position and $6* is must be a scalar. This means tiats proportional to the Euler
vector field ofV/. 0

Proof. [Proof of Theorem 3.1] We first consider the case whan V' = 2. Assume that
ko < 1. If h is degenerate, then the kernel/ois a flat line subbundle and according to
Lemma 3.4 we then must hawg = 1 and this kernel is spanned by the Euler vector field.
For kg = 1, the Euler field is in the kernel df indeed: if that kernel were trivial, then the
orthogonal complement of the Euler field (relativelto) is also a flat subbundlé+ of the
tangent bundle. But we have just seen that such a bundle mgsrterated by the Euler field
and so we have a contradiction.

Suppose now thdt > 0 with kernel trivial or spanned by the Euler field. Theimduces
on the punctured Riemann sph&@/°) a constant curvature metric. This metric is spherical
or flat depending on whethér> 0. The punctures are indexed Byand at a puncturgy,

H € H, the metric has a simple type of singularity: it is localijtaibed by identifying the
sides of a geodesic sector of total angjé1 — x 7). The Gauss-Bonnet theorem (applied for
instance to a geodesic triangulation®{f") whose vertices include the punctures) says that
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the curvature integralr — 27 ), k; = 4n(1 — ko). This implies in particular that, < 1
whenh is positive definite. This settles 3.1 in this case.

We now verify the theorem by induction efim V. So supposdim V' > 2. According
to Lemma 2.11 there exists an irreducible membe£ @) of dimension one. Ify < 1,
then we have:;, < 1 by the monotonicity property of. By Corollary 2.20 we have an affine
retraction of the germ of° in V° and by our induction hypotheséswill be definite on the
fibers of this retraction. It follows, that if is degenerate, then its kernel is of dimension one;
this defines flat line subbundle and we conclude as beforghisatan only happen when
ko = 1 and the kernel is spanned by the Euler vector field.

It remains to show that ik is positive definite, themy < 1. Our induction assumption
implies that thens;, < 1 for all L € £, (H) different from{0}. Now let H € H. There
exists by Corollary 2.20 an affine retraction of the gerntofin VV° and the restriction of
to the tangent vectors invariant under monodromy definesm ém H ° which is flat for the
longitudinal connection. So the Dunkl system Breaves invariant a positive definite form.
But the exponent of0} viewed as a member df,,,(H!?) is ¢ and so we must have, < 1.

(I
For the proof of Theorem 3.2 we need:

Lemma 3.6 Let T be a finite dimensional complex vector spaéec T a line ands €
(—e,e) — H, areal-analytic family of hermitian forms dfi such thatd; > 0 if and only if

s < 0 andH, > 0 with kernelL. Then fors > 0, H; is of hyperbolic type and negative on
L.

Proof. Let T/ C T be a supplement of in T. Then H, is positive definite orf”’. By
making e smaller, we can assume that eveiy restricted to7” is positive. A Gramm-
Schmid process then produces an orthonormal lasis), . . ., en,(s)) for H restricted to
T’ which depends real-analytically enLete € T generatd., so that(e, e1(s), ..., emn(s))
is a basis forl". The determinant of/, with respect this basis is easily calculated to be
Hg(e,e) — Y7 |Hs(e, ei(s))]?. We know that this determinant changes sigs at 0. This
can only happen ifi;(e, ) is the dominating term and (hence) changes sign-a0. O
Proof. [Proof of 3.2] If p € V°, then Theorem 3.1 and Lemma 3.6 applied to the restric-
tion hs(p) of hs to T,,V, imply that there exists am,, > 1 such that for alls € (1,m,),
hs(p) is of hyperbolic signature antl;(Ev (p), Ev (p)) < 0. In particular,h, is of hyper-
bolic type fors in @a nonempty intervad € (1, m"). We takem be the supremum of the values
m' for which this is true (sd,,, will be degenerate ifn is finite). This proves part of 3.2.
The remainder amounts to the assertion that we canvtgke m for everyp € V°. For this
we note that sincé;(Ev (p), Ev (p)) is homogeneous (of degrée- 2s), it suffices to verify
this on the intersection df ® with the unit spher&; (with respecttq, )).
Let us firstinvestigate the situation ndéf, H € H, for s slightly larger thari (certainly
such thatskr < 1). According to Proposition 1.10 we have a natural affine lloggaction
rs : Vgo — H°. The naturality implies that it sends the Euler field16fto the Euler
field of H. The naturality also accounts for the fact thatdepends real-analytically on
The retraction-, is compatible withi in the sense thdt, determines a hermitian ford,
on H*° which is (i) flat for the longitudinal connection associatedv*®* and (ii) is such
thatr?hs andh coincide on theq;,-orthogonal complement of the relative tangent space of
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rs. In particular,h, is nonzero on the kernel @fr,. Sinceh; is nondegenerate, so is.
We know that fors slightly larger thant, &’ will be of hyperbolic type. Sd:; must be
positive on the kernel ofir;. The Euler fieldEy is tangent toH and we see that oWyo,
hs(Ev,Ey) < (r:h))(Ev,Ey) = ri(h(FEg, Ey)). This proves that for every ¢ H®,
there exist amn,, > 1 and a neighborhood,, of p such that fors € (1,m,), hs(Ev, Ey) is
negative orl/, N V°.

Now letp € V;° be arbitrary. Choose a linear subspace of dimension®wo V' through
p which is in general position with respect 1% in the sense that it is not contained in a
member of { and no point ofP — {0} is contained in two distinct members &f. Let
P, := PN Vi and consider the function

PP x(1,m) =R, (p,s)+— hs(Ev,Ev)(p).

Since every point oP; is eitherinl’° or in someH °, it follows from the preceding discussion
(and the compactness &%) that there exists &/, € (1, m| such that the above function is
negative onP° x (1, m'). Letmp be the supremum of thex, for which this is true. It
remains to prove thahp = m. Suppose that this not the case and assumenthat: m.
Then fors = mp, hs is of hyperbolic type and;(Eyv, Ev)| Py hasO as maximal value. This
means that the developing map fGr“ is affine-equivalent to a morphism from a cover of
Py to the subset of™ defined by|z1 |2+ - - |z,,—1]% — | 2x|? < 0, and such that the inequality
is an equality at some point. This, however, contradictsraexity property of this subset as
is shown by the following lemma. O

Lemma3.7 Let f = (f1,...,fn) : U — C™ be a holomorphic map from a connected
complex manifold/ such that|fi|? + - -+ + | fa—1]*> < |f»|>. Then the latter inequality is
strict unlessf maps to a line.

Proof. We may assume that, is not constant equal to zero so that egch= f;/f, is

a meromorphic function. Sincg := (g2, ..., g») takes values in the closed unit ball, it is
holomorphic. It is well-known that such a map takes valueth@open unit ball unless it is
constant. This yields the lemma. O

3.2 The Lauricella integrand as a rank two example

We do not know whether a Dunkl system with real exponentsysvaamits a nontrivial flat
hermitian form, not even in the cagém V' = 2. However, ifdimV = 2 andky = 1,
then there is natural choice. In order to avoid conflictingation, let us writeP instead of
V, let Hy, ..., H,41 be the distinct elements 61 (so that|?| = n + 2) and writey; for
km, (Sothaty, u; = 2). Recall from Lemma 3.4 that i is a translation invariarit-form,
then ([[ ey 05" ) is a flat multivalued-form. Sincexo = 1, the Euler fieldEp is
flat, and so ifw denotes thé-form obtained by taking the inner product b with o, then
(H?jol ~w is a flat multivalued -form. Hence its absolute value,

K3
hoi=|go| 720 - |72 wl?,
is then a nontrivial flat hermitian form. It is positive serafthite with kernel spanned by the
Euler field.
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This is intimately connected with an observation due to $tarr [25], about which we
will have more to say later on. Sineg = 1, the punctured Riemann sphé&éP°) acquires
an affine structure. The forrh is a pull-back fromP(P°) so thatP(P°) has in fact a Eu-
clidean (parabolic) structure. If we assume that (0, 1) for all 7, thenP(P) is a euclidean
cone manifoldn Thurston’s sense: at the point € P(P) defined byH;, the metric is coni-
cal with total angler (1 — u;). In such a pointis concentrated a certain amount of curgatur
its apex curvatur€mru;, which is its contribution to the Gauss-Bonnet formula ($ien of
these is indeedr, the area of the unit sphere). On the other hand, the multidaform
(ITgew 25" )w is directly related to the Lauricella integrand. To see, tbiwose an affine
coordinatez onP(V') such that ifz; := z(pg,), thenz, 1 = . Then(]‘["+1 wis up
to a constant factor the pull-back of a constant tifigs , (z; — ) ~#*dz, which we recognize
as the Lauricella integrand.

Of course, thén + 1)-tuple (zo, . .., z,) € C"*! is defined only up to an affine-linear
transformation ofC. This means that it/ is the quotient ofC™*! by its main diagonal (as
in Subsection 2.3), then only the image(ef, . . ., z,) in P(V°) matters. Thu®(V°) can
be understood as the moduli space of Euclidean metrics ospthere withn + 2 conical
singularities which are indexed liy ..., n + 1 with prescribed apex curvatupery; at the
ith point.

3.3 Flat hermitian forms for reflection arrangements

The following theorem produces plenty of interesting dituas to which the results of Sub-
section 3.1 apply. It may very well hold in a much greater gality.

Theorem 3.8 Suppose that{ is the reflection arrangement of a finite complex reflection
group G. Then there exists a map fro®’)“ to the space of nonzero hermitian forms
on the tangent bundle df° (denoteds — h*) with the following properties: for every
Kk € (RM)G,

(i) A" is flatfor V* and invariant undeiG.

(i) t € R~ A" is smooth (notice that® was already defined) and the associated curve
of projectivized forms;, — [h!”] is real-analytic.

Moreover this map is unique up to multiplication by a (notessarily continuous) function
(R™)¥ — (0, 00).

Likewise there is a map frorfR*)% to the space of nonzero hermitian forms on the
cotangent bundle df° (denoted: — A*) with analogous properties.

Example 3.9 ForV = C and() = k2~ 'dz, we can takei"(z) := |z|~2%|dz|?. Notice that
we can expand this in powers efas
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We shall first prove that in the situation of Theorem 3.8 wefoahsuch am*” formally
atk = 0. For this we need the following notion, suggested by Exar8gde Let be given
a complex manifoldl/ and a smooth hypersurfade@ C M. We have the real-oriented
blowup of D in M; this is a real-analytic manifold with boundary. (®, z1,...,2,) is a
coordinate system ate D such thatD is given bys = 0, thenr := |¢|, 0 := arg(¢), x; :=
Re(z;),y; := Im(z;) are coordinates for this blowup, where of coufse given modul®n
and the boundary is given by= 0. We say that a function on a neighborhoogaf A — D
is mildly singular alongD if it can be written as a polynomial ilog » with certain continuous
coefficients: we want these coefficients to be real-anatytithe real-oriented blowup dp
atp (and so constant on its boundary). Sircs unique up to a unit factolpg r is unique up
to an analytic function in the coordinates, and so this mosandependent of the coordinate
system.

Likewise, we say that a differential on a neighborhoog @f M — D is mildly singular
along D if it is a linear combination by mildly singular functions abf real-analytic forms
on the real-oriented blowup whose restriction to the bounéa a formis zero. So thisis a
module over the ring of mildly singular functionsgaand as such generated &y, rdf and
dri,dy;,i =1,...,n.

Lemma 3.10 In this situation we have:

(i) logr is algebraically independent over the ring of real-anadyftinctions on the real-
oriented blowup of) overp.

(i) Any mildly singular differential ap that is closed is the differential of a mildly singular
function atp.

Proof. For the proof of (i), suppose that we have a nontrivial refati

N
Z fk’(Tv G,ZE,y)(lOg r)k = 05

k=0

with eachf; analytic (and periodic if). Divide then by the highest power ofvhich divides
eachfy, so that now not alf (0, 6, z, y) vanish identically. If we substitute:= e~1/#, with
p small, thenZkN:1 fx(0,0,z,y)(—p)~* will be a flat function atp = 0. This can only be
the case if eaclf. (0, 0, z, y) is identically zero, which contradicts our assumption.

For the proof of (ii) we note that if is mildly singular atp, andy is one of the module
generatorgr, rdf, dz;, dy;, then the integral of n over the circle- = ¢, x = y = 0 tends to
zero withe. So ifw is a closed differential that is mildly singular@atthen it can be integrated
to a functionf on the complement ab in a neighborhood of. This function will there be
real-analytic. It is a straightforward to verify thats mildly singular atp. O

Lemma 3.11 In the situation of Theorem 3.8, lat € (R™)%. Then there exists a formal
expansiorh® = % s®hy, in G-invariant hermitian forms that are mildly singular along
the smooth part of the arrangement with initial coefficigpt= h°, and with the property

thath®" is flat for V.
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Proof. The flatness of.** means that for every pair,v’ € V (thought of as translation
invariant vector fields oY) we have

d(h®*(v,v")) = —sh® (Q"(v),v") — sh® (v, Q" (v")),
whereQ”(v) = >, kamr(v) ® wg, which boils down to
() (s (0,0))) = —ha(Q%(0),0') — hi(0, (W), k=0,1,2,...

In other words, we must show that we can solve (*) inductivslyz-invariant forms. In case
we can solve (*), then it is clear that a solution will be urégip to a constant.
The first step is easy: if we choose our defining equatigne V* for H to be such that

<¢H; ¢H> = 1, then

h(v,0') = =k Yy (mn (v), 7 (0')) log |$m|*.

will do. Suppose that for some > 1 the formshyg, ..., hi have been constructed. In
order that(x) has a solution foh;; we want the right-hand side (which we shall denote
by ni(v,v")) to be exact. Itis certainly closed: if we agree thé&b ® v,w’ ® v') stands for
h(v,v")w A w’, then

dng(v,v") = he_1(Q° A Q% (v),v") — he_1(Q%(v), Q7 (V")) +
+ hp_1(2°(0), Q%) + hgp_1(v, 2 A Q5 (V) =
= h—1(Q" A Q% (v),0") + hg—1(v, Q" A Q" (') =0

(since2” A Q" = 0). So in order to complete the induction step, it suffices bynbrea 3.10
that to prove thaty, is mildy singular along the arrangement: since the compierimel” of
the singular part of the arrangement is simply connectedhese writen, as the differential
of a hermitian formhy; onV that is mildly singular along the arrangement and averaging
suchhy1 over itsG-transforms makes &-invariant as well.

Our induction assumption says that né&t we can expandy, in log |¢| as:

N

hi = Z(log \Gr|) hii

=0

with hy ; a continous hermitian form o'V near H° which becomes real-analytic on the
on the real-oriented blowup d7°. We claim that the projectiony restricted toI'V|H®

is selfadjoint relative to each terfy, ;. For h; is G-invariant and hence invariant under a
nontrivial complex reflectioy € G with mirror H. Since|¢y| is also invariant undey and
since the above expansion is unique by Lemma 3.10-i, itii@lthat this property is inherited
by each ternhy, ;. In particular, the restriction dfy ; to TV|H? is invariant undey. Since
my 1S the projection on an eigenspacegothe claim follows. Nowy, is nearH° modulo a
mildly singular form equal to

N
—RH Y (thk,i(WH(U)v V') + Wahii(v, WH(U/)) (log |pm )"
=0
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The selfadjointness property of; implies that this, in turn, is modulo a mildly singular form

equal to
N

—26 Y hii(wa (v),0') (log | ¢a|)Fd(log | ),
=0

showing thaty, is mildly singular alongH ° as desired. O

In order to prove Theorem 3.8, we begin with a few generalitegarding conjugate
complex structures. Denote Byt the complex vector spadé with its conjugate complex
structure: scalar multiplication by € C acts onV't as scalar multiplication bj € C
in V. ThenV @ VT has a natural real structure for which complex conjugatosiinply
interchanging arguments. The ensuing conjugatiodil” & V) is, when restricted to
GL(V) x GL(V1), also interchanging arguments, whereas on the space é&ilforms on
V x V1, itis given byh'(v,v") ;= h(v/,v). So areal point of V @ VT)* is just a hermitian
formonV.

Fix a base point € V° and identify7.V° with V. Forx € (C")%, we denote the
monodromy representation ®" by p" € Hom(w; (V°, %), GL(V)). Notice that" depends
complex-analytically om. Then the same property must hold for

K€ (CMY = () € Hom(m (V°, ), GL(VT)).
Recall from 2.15 thatC™)< is invariant under complex conjugation.

Lemma 3.12 Let H be the set of pairgx, [h]) € (C™)¢ x P((V @ VT)*), whereh €
V x VI — Cisinvariantundenp” @ (p®)" and letp, : H — (C™) be the projection. Then
H resp.p; (H) is a complex-analytic set defined over(in (C*)¢ x P((V ® VT)*) resp.
(C™)¥) and we havey, (H(R)) = (R7)%.

Proof. ThatH is complex-analytic and defined ovRiis clear. Since); is proper and defined
overR, p; (H) is also complex-analytic and defined oWerlf x € (R™)€ is in the image of
H, then there exists a nonzero bilinear mapl” x V1 — C invariant undep” @ (p~)!. But
then both the ‘real part (h + k') and the ‘imaginary partéh (h — k') of h are hermitian
forms invariant undep” and clearly one of them will be nonzero. The lemma followsJ

Proof. [Proof of Theorem 3.8] Now leL. ¢ (C™)“ be a line defined oveR. By the
preceding discussion, there is a unique irreducible compbh of the preimage of. in H
which containg0, [r°]). The mapL — L is proper and the preimage 6fis a singleton.
HencelL — L is an analytic isomorphism. Sinde is defined oveiR, so areL and the
isomorphismL — L. The forms parametrized biy(R) define a real line bundle ovér(R).
Such a line bundle is trivial in the smooth category and heatreits a smooth generating
section with prescribed value ih We thus find a mag — h* with the stated properties.
The proof for the map: — h* is similar. O

If h is a nondegenerate hermitian form on the tangent bundi& afhich is flat for the
Dunkl connection, theiv must be its Levi-Civita connection &f (for V is torsion free); in
particular,h determinesv. Notice that to give a flat hermitian fori amounts to giving a
monodromy invariant hermitian form on the translation spatA. Soh will be homoge-

neous in the sense that the pull-backhafinder scalar multiplication oir°® by A € C* is
|>\|272 R,e(ng)h_
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3.4 The hyperbolic exponent of a complex reflection group

In caseH is a complex reflection arrangement of a finite reflection grGuwe can estimate
the hyperbolic exponent. According to Chevalley, the gdaalgebra ofG-invariantsC[V]¢

is a polynomial algebra. Choose a set of homogeneous gergrAt, . . ., f,,, ordered by
their degreesleg(f;) < --- < deg(f.). Although the generators are not unique, their
degrees are. We pdt := deg(f;). The numbern; := d; — 1, which is the degree of the
coefficients ofdf; on a basis of constant differentials bn is called theith exponendf G. It

is known that the subalgebra 6Finvariants in the exterior algebf@V] ® A*V* of regular
forms onV is generated as such l, . . ., df, [24]. In particular any invariant-form is
proportional tadfy A - - - A dfy,.

The geometric content of Chevalley’s theorem is the assettiat the orbit spacé’\V/
is an affine space, a fact which never stops to surprise us. uiiioe of the members of
‘H is also the union of the irregular orbits and hence is thewdargocus of the orbit map
7 : V — G\V. The image of this orbit map is a hypersurfaceiRV, thediscriminantof
G. ltis defined by a suitable power of the jacobiar(ff, . .., f.).

Avector field onG\V lifts to V precisely when itis tangent to the discriminant and in this
manner we get all thé&-invariant vector fields oiv. The G-invariant regular vector fields
make up a grade@[V]¢ -module and it is known [21] that this module is free. As witie t
Chevalley generators, we choose a system of homogeneoesagensX,, ..., X, ordered
by their degreedeg(X;) < --- < deg(X,,). We putd; := deg(X;) andm; := 1+ deg(X;)
(so thatm] is the degree of the coefficients &f; on a basis of constant vector fields on
V). The generator of smallest degree is proportional to tHerHield. Henced; = 0 and
mj = 1. The numbem is called theith co-exponenbf G. It usually differs fromm;,
but whenG is a Coxeter group they are equal, because the defining eepedi®n ofG is
self-dual.

A polyvector field onz\ V lifts to V' if and only if it does so in codimension one (that is, in
the generic points of the discriminant) and we thus obtaithal=-invariant polyvector fields
onV. For reasons similar to the case of forms, the subalgebf&iofariants in the exterior
algebraC[V] ® A®V of regular polyvector fields ol is generated as such B, ..., X,,.

Theorem 3.13 Suppose that{ is the reflection arrangement of a finite complex reflection
group G which is transitive orf{. Then the hyperbolic exponent for the r&@, oo)™)
(which is defined in view of Theorem 3.8pism}.

Proof. Letx € ((0,1)")% be such that, = 1 and leth, be the family of hermitian forms on
the tangent bundle df ° whose existence is asserted by Theorem 3.8nLet (1, ] be its
hyperbolic exponent. lfn = oo there is nothing to show, so let us assume that co. This
means that,,, is degenerate. So its kernel defines a nontrivial subbufidié the tangent
bundle ofVV° (of rank r, say) which is flat forvV™*. This bundle isG-invariant. So the
developing map maps to a vector spatendowed with a monodromy invariant hermitian
form H,, with a kernel of dimension. SinceH,, is nontrivial, so isH,,,(F 4, E4) and hence
so ish,,(Ev, Ev). In other wordsF does not contain the Euler field.

Let X be the associatedvector field onV" as in Lemma 3.4. That lemma asserts that
H(F) # H. SinceH(F) is G-invariant, this implies that{(F) = ) so thatX has degree
r(m — 1). We prove thatX is G-invariant. SinceX is unique up to a constant factor it
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will transform underG' by means of a character. For this it is enough to show xhi left
invariant under any complex reflection. Lt H. The splittingl’ = H @ H* defines one
of "V ATV = ATH @ (H+ ® A"~1H). This splitting is the eigenspace decomposition
for the action of the cyclic groupy of g € G which leaveH pointwise fixed. It is clear
from the way X andH(F) are defined that the value &f on H will be a section of the
first summand so thaX is invariant undelGy indeed. Now writeX out in terms of our
generators:

X = Z iy oin Xig N oo N X

1<i1 <+ <ir<n

SinceF does not contain the Euler field; is not divisible byX; and so a term with; > 2
appears with nonzero coefficient. This means that the dedr&ewill be at leasids + - - - +
dr > r(d3y) =r(ms — 1). It follows thatm > m3, as asserted. O

Remark 3.14 There are only two primitive complex reflection groups ofka@mneater than
two which the hypothesis of Theorem 3.13 excludes: tfpand the extended Hesse group
(no. 26 in the Shepherd-Todd list). The former is a Coxeteugiand the latter is an arrange-
ment known to have the same discriminant as the Coxeter grbtype B3 (in the sense of
Corollary 5.4). Since we deal with Coxeter groups in a monecoete manner in the next
Subsection 3.5, we shall have covered these cases as well.

3.5 A Hecke algebra approach to the case with a Coxeter symnrgt

The monodromy representation ®f and its invariant formh* can be determined up to
equivalence in case the Dunkl connection is associated tita @oxeter group.

Let W be an irreducible finite reflection group in a real vector spE¢R) without a
nonzero fixed vector. We take f@t the collection of reflection hyperplanes®@df in V and
for H € H, we letry = 1(1 — sy), wheresy is the reflection in. Choosex € R™
to beW-invariant. We know that theW* is a flatWW-invariant connection. We account for
the W-invariance by regarding’© as a connection on the tangent bundlé/gf (the group
W acts freely onl’°). So if we fix a base point € V/W?°, then we have a monodromy
representatiop™°” € Hom(m (Viy,, ), GL(V)). Itis convenientto let the base point be the
image of a real point € V(R)°. Sox lies in a chambe€' of V. Let I be a set that labels
the (distinct) supporting hyperplanes@f { H;};c; and let us writes; for sy,. ThenI has
dim V' elements. Letn, ; denote the order dfs;s;), so thatM := (m; ;) ; is theCoxeter
matrix of W. Then theArtin group Ar(M ) associated td/ has a generating sét; );cr with
defining relations (thértin relationg

O—lo-jo-l... = O']O'l(j"7 ...7
—_———
mi,j i, 5

where both members are words comprising; letters. The Coxeter groul’ arises as
a quotient ofAr(M) by introducing the additional relationg = 1; o; then maps tos;.
According to Brieskorn [4] this lifts to an isomorphism ofagips Ar(M) — w1 (Vig,, *)
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which sendsy; to the loop is represented by the pathlifi from z to s;(«) which stays in
the contractible sét° N (V(R) 4 /—1C).

Aslong agk;| < 1, p™°(0;) is semisimple and acts as a complex reflection over an angle
m(1+4k;). Soif we putt; := exp(37k;v/—1), theno; satisfies the identityo — 1) (o +t2) =
0. Although the monodromy need not be semisimplexfp£ 1, this equation still holds (for
t? = —1) . In other words, when-1 < x; < 1, p™° factors through the quotient of of the
group algebr&[Ar(M )] by the two-sided ideal generated by the elemémts- 1) (o; +2),

1 € I. These relations are called tHecke relationsnd the algebra thus defined is known as
theHecke algebrattached to the matrix{ with parameterg = (¢,);. (Itis more traditional

to use the elementso; as generators; for these the Artin relations remain valid,the
Hecke relations take the forfa; + 1)(o; — t7) = 0.) If the t;’s are considered as variables
(with ¢; = t; if and only if s; ands; are conjugate i), then this is an algebra over the
polynomial ringC[¢;| i € I].

There are at most two conjugacy classes of reflectiof® irThis results in a partition of
I into at most two subsets; we denote byC I a nonempty part. We have two conjugacy
classes (i.e.J # I) only for a Coxeter group of typ& (even), Fy and B;>3. We denote the
associated variablegsandt’ (when the latter is defined).

If we put allt; = 1, then the Hecke algebra reduces to the group alg€pid), which
is why the Hecke algebra for arbitrary parameters can bededaas a deformation of this
group algebra.

For us is relevant theeflection representatioof the Hecke algebra introduced in [9].
Since we want the reflections to be unitary relative someriaaithermitian form we need
to adapt this discussion for our purposes. We will work ober domainR obtained from
Clt:|+ € I] by adjoining the square root ¢f;¢;)~' for each pairi,j € I. So eitherR =
C[t,t='] or R := C[t,t, (tt')~*/?], depending on whethd#” has one or two conjugacy
classes of reflections. SB containstfté if k£ and! are half integers which differ by an
integer. SoI' := Spec(R) is a torus of dimension one or two. Complex conjugation in
C extends to an anti-involution € R — 7 € R which sendg; to ¢; ! and (t;t;)'/? to
(titj)*l/Q. This givesT a real structure for whicl’ is anisotropic (i.e.7'(R) is compact).
We denote byr : R — R ‘taking the real part'R(r) := 1(r +7).

Let H(M) stand for the Hecke algebra as defined above with coefficiakés inR (so
this is a quotient oR[Ar(M)]). Fori, j € I distinct, we define a real element Bf

Nij = §R(eXp(ﬂ\/—1/mi7j)t3/2t;1/2).

Notice that); ; = cos(m/m; ;) if t; = t;. If W has two orbits ir{, then there is a unique
pair (jo,j1) € J x (I — J) with mj, ;, # 2. Thenm,, j, must be even and at leasand we
write m for mj, ;,, and\ resp.\’ for \; j» resp.\j ;. SOX = R(exp(my/—1/m)tt/ 2t/ =1/2)
and)\ = R(exp(my/—1/m)t=1/21'1/2).

Define for everyi € I alinear forml; : RT — R by

i) 1+ ¢7 if i = 7,
i\€j) = .
/ —2\ijt;  ifi# g

Let p™fi(0;) be the pseudoreflection iR’ defined by

pr0i)(2) = 2 = li(2)es.
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We claim that this defines a representatiordf\/). First observe that the minimal polyno-
mial of p*f(o;) is (X — 1)(X + t2). Fori # j, we readily verify that

li(ej)lj (61) = tf + t? + 2tit]‘ Cos(27r/mi7j),

This implies that the trace ¢f*"(;)p™(o;) on the plane spanned by ande; is equal to
2t;t; cos(2m/m; ;). Since its determinanti§t?, it follows that the eigenvalues pfett (o) pr (o))
in this plane are;t; exp(2my/—1/m; ;) andt;t; exp(—2mv/—1/m; ;). In particularp™f (o)
andp (o) satisfy the Artin relation. Sp*" defines a representation&f(11).

Lemma 3.15 Fix ap € T and consider the reflection representation of the corresiiom
specializatior?{ (M )(p) onC!. Then(C!)*(M) ) s the kernel of the associated linear map
(I;); : CI — C!. Moreover, ifK is a proper invariant subspace @ which is not contained
in (CHRAM®) thenJ # I and )N = 0 and K equalsC”’ resp.C’~ modulo(C!)"(M)(»)
when)\ = 0 resp.A = 0.

Proof. The first statement is clear.

SinceK ¢ (CH®M)(®) somel; with will be nonzero onk’; suppose this happens for
i€ J.Letz € K besuch;(z) # 0. Fromz — p*f(a;)(2) = I;(2)e; it follows thate; € K.
Sincet # 0, our formulas imply that the&’ > C”’. SinceK is a proper subspace &f,

J # I andl; vanishes on¥ for all j € I — J (otherwise the same argument shows that
K D C!=7). This implies in particular thax’ = 0. O

1 /
By sending« toe2” —1kH \we obtain a universal covering
7 (CHY - T

Let A c (C*)W denote the locally finite union of affine hyperplanes defingdiy; € Z
andkg € {0,—-1,-2,...}.

Proposition 3.16 The mapr lifts to a holomorphic intertwining morphismfrom the mon-
odromy representatiop™°™ of Ar(M) to the reflection representatigric? of # (A1) in such

a manner that it is an isomorphism away fralnand nonzero away from a codimension two
subvariety(C™)" contained inA.

Proof. Suppose firsk ¢ A.

Since eachx g is nonintegralp™°"(c;) is semisimple and acts ¥ as a complex reflec-
tion (over an angler(1 + x;)). Hencel — p™°"(o;) is of the formv; ® f; for somev; € V
and f; € V*. The individualf; andwv; are not unique, only their tensor product is. But we
havef;(v;) = 1+t = l;(e;) and the fact that; ando; satisfy the Artin relation implies
thatfi(’l}j)fj (Ul) = tf + t? + 2tit]‘ COS(QTF/mz'J') = li(ej)lj (61)

We claim that they;'s are then independent and hence form a basls.dfor if that were
not the case, then there would exist a nonzere V* which vanishes on all the;’s. This
¢ will be clearly invariant under the monodromy representatiBut this is prohibited by
Corollary 2.21 which says that theg — 1 must be a negative integer.

Since the Coxeter graph is a tree, we can put a total ordérsurch that that if € 7 is
not the smallest element, there is precisely prei with m; ; # 2. Our assumption implies
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that whenevern, ; # 2, at least one of; ; andJ; ; is nonzero. This means that in such a
case one of;(e;) andi;(e;) is nonzero. On the other hand, it is clear thét;) = 0 when
m;; = 2. We can now choosg; ande; in such a manner thaf(v;) = l;(e;) for all ¢, j:
proceed by induction oi1 The fact that for exactly ong < ¢ we have that one df(e;) and
l;(e;) is nonzero can be used to fix or f; and sincey; ® f; is given, one determines the
other. This prescription is unambiguous in case Bgih;) andi, (e;) are nonzero, for as we
have seenf;(v;) f;(vi) = li(e;)l;(ei).

We thus obtain an intertwining isomorphishix) : V. — CZ, e; — v;, which depends
holomorphically onx and is meromorphic along.. Since we are free to multiply by
a meromorphic function oC*)", we can arrange that extends holomorphically and
nontrivially over the generic point of each irreducible qmment ofA. O

Remark 3.17 With a little more work, one can actually show that the préeggroposition
remains valid if we alter the definition & by letting <z only be anoddinteger.

We define a hermitian fornif on R’ (relative to our anti-involution) preserved pyf.
This last condition means that we want that foriadl I,

Li(2)H (es,e;) = (1 4+t2)H(z, e;).

In case all the reflections ¥ belong to a single conjugacy class so that atake the same
valuet, then the form defined by

TN
Heie))={ ") =
—cos(m/m; ;) ifi#j
is as desired. In case we have two conjugacy classes of reflecthen
NR(t) ifi=j5€lJ,
AR(t) ifi=j5¢el—J,
H(ej,ej) = ¢ =X cos(m/m; ;) ifi,j € J are distinct,

—Acos(m/m; ;) ifi,j € I — Jaredistinct,
—AX cos(m/m; ;) otherwise.

will do. If we specialize in somg € T', then the kernel off is of courseH (M) (p)-invariant.
If \'(p) = 0 resp.\(p) = 0, then the formulas show that this kernel contaiiisresp.C~.
The zero loci of\" and \ are disjoint and so no specialization Hfis trivial, unlessI is a
singleton and? = —1.

We conclude from Proposition 3.16:

Corollary 3.18 Suppose that takes values if0, 1). Then the monodromy representation is
isomorphic to the reflection representation and thus coneswch an isomorphism with a
nonzeralV -invariant hermitian form.
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At points where all the;’s take the same value (so this is all'Bfin caseJ = I and the
locus defined by = ¢’ otherwise), there is a neat formula for the determinartfofvhich
goes back to Coxeter and appears as Exercise 4 of GI6 W Bourbaki [3]:

1]
det(H (ei, e)i,j) = H(?R(t) — cos(mm;/h)),

=1

whereh is the Coxeter number 68 and them;’s are the exponents 6¥. SinceRe(t) =
cos(imk). Soift = exp(3v/—1rk), we see thaf is degenerate precisely wher4 =
m;/2h (mod Z) for somem;. Since then;’s are distinct and in the intervdl, ..., h—1},
the nullity of H is 1 in that case. The cardinality 6{ is h|I|/2 ([3], Ch. V,§ 6, no. 2, Th.
1), so that<g = hrx/2. HenceH is degenerate precisely wheg = m; (mod 2hZ). If we
combine this with the results of Subsection 3.1 and 3.16, ek fi

Corollary 3.19 In casex : H — (0,1) is constant, then the flat hermitian form of the
associated Dunkl connection is degenerate precisely wieguals some exponemnt;. In
particular, mo is the hyperbolic exponent.

This raises the following

Question 3.20 Assuming thaf is nota singleton, can we find a system of generaxars . ., X
of theC[IW]-module ofl¥-invariant vector fields oir” of the correct degreésn; —1, ..., m 5 —
1) such that the ones in degreg generate the kernel of the flat hermitian metric we found
for the constant map : H — (0, 1) characterized by, = m;?

It makes sense to ask this question more generally for a @aneflection group (where
we should then take the co-exponents as the appropriateadieaton). (We checked by an
entirely different technique that the hermitian form altiad to a constant map: H — (0, 1)
is degenerate precisely whepis a co-exponent, at least when the group is primitive of rank
at least three.)

3.6 A flat hermitian form for the Lauricella system

Let H be a monodromy invariant hermitian form on the translatjpece ofA and denote by
h the corresponding flat hermitian form &f. Suppose that, # 1, so that we can think
of H as a hermitian form on the vector spgcg O). Then the associated ‘norm squared’
function, H(a, a), evidently determine&/. So if we viewH as a translation invariant form
on A, then we can express agy/—199(H(E4,E4)) = Im(H), whereE 4 is the Euler
vector field on(A4, O). Since the developing map senflg to (1 — ko) E4, this property is
transfered td’° as: if N : V° — R is defined byN := h(Ey, Ey ), then

v—=1
2
So if h is nondegenerate, then the Dunkl connection is also detedhidy N. It would be

interesting to findV explicitly, or at least to characterize the functiaiison V° that are thus
obtained. We can do this for the Lauricella example:

OON = |1 — ko|*Im(h).
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We consider the Lauricella system 2.3. For the moment we sthadl the parameters
u; € (0,1) as usual, but we now also require that+ --- + u, > 1 (recall that here
to + -+ - + pn = ko). We abbreviate the multivalued Lauricella differentigl b

ni= (20 =7 (20 = ()7HdC.

Notice thatn A 77 is univalued2-form and that the conditions imposed on flaés guarantee
that it is integrable, provided thét, ..., z,) € V°. Sincegdg A d( is the area element

of C,
v—1
N(zo,y ... 2n) = — 5 /7}/\ﬁ
C

is negative We will show thatV is a hermitian form in Lauricella functions. This implies
that the Levi form ofN is flat and hence defines a flat hermitian formioh

For this purpose, let be an smoothly embedded oriented interval on the Riemarersph
which connectsg, with co and passes through, . . ., z,, (in this order). On the complement
of ~, n is representable by a holomorphic univalued differentiblohr we extend taC —
{20, ..., 2n} by taking ony the limit ‘from the left’. We continue to denote this differéal
by n, but this now makeg discontinuous along: its limit from the right on the stretchy,
from zj,_1 t0 2, (readoo for z,.1) is easily seen to be=2mV =10+ +u1i-1) timesy. We
find it convenient to putyy = 1 andwy, := ™V~ Lot +u—1) for k = 1,...,n so that the
limit in question can be writtew? 7. We put

F(C) :[:n,

where the path of integration is not allowed to crgssSo F' is holomorphic onC — ~ and
continuous along from the left. In casey, ..., z, are all real and ordered by size, then a
natural choice fory is the straight line on the real axis which goes fregnin the positive
direction toco. Then onvy;, (the positively oriented intervdky_1, zx]) a natural choice of
determination of the integrand is the one which is real arsitpe: 1, := ((—z0) "0 --- ({(—
Zg—1) Rt (2 — Q) THE - (2, — ) THnd(. As Ty, = Wy, this suggests to introduce

Fy ::wk/ n, k=1,...,n+1,
Tk

in general. This is a Lauricella function (up to scalar fagtand so isFy := F(zp). For
(€, k=1,...,n+1,we have

k—1 ¢
F(O) = S wFi(2) + / 0
=0 z

k—1
Lemma 3.21 Under the above assumptions (gp € (0,1) for all k and >} _, pur > 1)
the Lauricella functions; satisfy the linear reIationZZL1 Im(wg)Fr, = 0 and we have
N(2) = Xo1<jcnensr Im(w;wp) F; Fy.
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Proof. If { € ~, then the limiting value of" in ¢ from the right is equal to

k—1 ¢
Z’LTJij +’LTJ]% / 1.
=0

Zk—1

The fact that the value df atco is thus calculated in two ways yields the idenfjty,jill wrFy =
S v X1 wi Fy, or what amounts to the same} | Tm (wy,) Fy, = 0.

Now N (zo, ..., z,) is the integral of the exterior derivative of theform @FU. If
is the1-form on~ which is the difference betwedr; and its limiting value from the right,
then the theorem of Stokes implies théfzo, . .., z,) = 7*1 f7 7. The above computations
show that onyy, n is equal to

k—1 B ¢ k—1 B ¢
( ’LDJFJ+/ 77)77_ ( wJFJ+/ wkn)wfn—
j=1 Zk—1 j=1 Zk—1
k-1 k=1
=Y (0; —wjwp)Fjn=—2v—1 Z Im(wjwy)Fjwen
j=1 j=1
and hence
—1 r _
N(20;- -, 2n) = T/ n= >, Tm(wa)F;F
v 1<j<k<n+1
O
Let us think ofFy, ..., F},+1 as linear functions on the receiving spatef the devel-

oping map that satisfy the linear relati@?jl1 Im(wyg)Fyx, = 0. The preceding lemma tells

us thatV defines a hermitian form oA that is invariant under the holonomy group. This
suggests to consider for afiyy + 1)-tuplew = (wy, . .., w,+1) of complex numbers of norm
one that are not all real, the hyperplatg of R**! with equationZZ;1 Im(wy)ar, = 0and
the quadratic form o™+ defined by

Qu(a) = Z Im(w;wy)(a;ar).

1<j<k<n+1

We determine the signature @, .

Lemma 3.22 Let us represeni, . . ., w, 11 by real numbersg, . . ., u,, as before, sa;, =
e/~ Iuot+u-1) Then thenullity (that is, the number of zero eigenvaluesyxf on A,,
is equal to the number of integers in the sequenge. . , i, Y, i; and itsindex(that is,
the number of negative eigenvalues) is equabt’_, ;] — > i o [wil-

Proof. It is clear that(A,,, Q.,) only depends on the reduction g, . . ., u,, modulo2, but
the isomorphism type dfA.,, Q.,) only depends on their reduction moduloif we replace
ik bY pi + 1, then the new values’; of w; are: w; = w; for j < k andw); = —w; for

j > kand we note thalay, ..., an1) — (a1,..., a5, —Akt1, ..., —Gn+1) UMNS(Ay, Qu)

into (A, Q.). So without loss of generality we may assume that u < 1 for all k.
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We proceed by induction on > 0. As the case: = 0 is trivial, we suppose: >
1 and the lemma proved for smaller valuesrof This allows us to restrict ourselves to
the case whed < pi < 1 forall k: if up = 0, thenwy = wiiy and so ifw' =
(w1, ..., Wk, Wita, .., Wn), then(A,, Q) isthe pull-back of A/, Q.,/) under(ay, ..., a,) —
(al, ey Qp—1, Ak + Qp41, Akg2,y - - - an).

We now letw’ := (wy,...,w,). First assume thab, ¢ R so thatzz;lﬂk ¢ Z.

According to our induction hypothesis this means {#t,, Q) is nondegenerate of index
[Z;:Ol ui]. There exist unique, ¢ € R such thatv,, 41 = sw,, +¢. The factthad < p,, <1

implies thatt # 0. We seta’ := (a1, ..., an—1,a, + San+1). Then we have
n+1 n
Z Im(wg)ay — Z Im(w},)a), = Im(wp410n+1 — Wnant18) = Im(tay41) =0
k=1 k=1

sothata € A, ifand only ifa’ € A,. A similar calculation shows that
Qu(a) = Qui(a) — tTm(w,1)a2 . a € Ay

If w,y1 ¢ R, then from the equality = —sw,, + w,+1 and the fact that-w,, makes a
positive angle (less thar) with w,, 11, we see thatIm(w,,1) > 0if and only if Im(w,,) and
Im(wy,+1) have different sign. The latter amountg§@ + - - - + ] = [0+ - -+ pn—1] + 1,
and so here the induction hypothesis yields the lemmdAar, Q,,). This is also the case
whenw, 1 € R, forthen}>"  11; € Z.

Supposeav,, € R, in other words, thaE;:Ol wi € Z. lfwe letw” = (wq,...,wp—1),
thenQ(a1,...,an) = Qur(ai,...,an—1). We may assume that > 2, so that4,,- is
defined. By induction(A,,, Q. ) is nondegenerate of indéZ?;OQ wi]. Itis now easy to
check that(A,,, Q,,) is isomarphic to the direct sum d¢fd,,(R), Q.,) and a hyperbolic
plane. HencéA,,, Q.,) is nondegenerate of indézzzoz ui] + 1. This last integer is equal
to 32" u; and hence also equal 7", 1] O

Corollary 3.23 The functionV defines an invariant hermitian form on the Lauricella system
whose isomorphism type is given by Lemma 3.22. 4f u;, < 1 for all &, then the form

is admissible of elliptic, parabolic, hyperbolic type fag < 1, ko = 1,1 < kg < 2
respectively.

Proof. All the assertions follow from Lemma’s 3.22, except the ashitiility statement. For
the hyperbolic rangé < k¢ < 2, admissibility follows from the fact thalv is negative in
that case. Fok = 1, Lemma 3.22 says that the hermitian form is positive semmdefivith
nullity one. According to Theorem 3.1 this kernel is thenrsped by the Euler vector field
and so we have admissibility in this case, too. O

Remark 3.24 In the hyperbolic casez; € (0,1) foralli and)_, p1; € (1,2), we observed
with Thurston in Subsection 3.2 th&{V°) can be understood as the moduli space of Eu-
clidean metrics on the sphere with+ 2 conical singularities with a prescribed total angle.
The hyperbolic form induces a natural complex hyperbolitrim@n P(V°). The modular
interpretation persists on the metric completionP¢¥ °): in this case we allow some of
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the singular points to collide, that is, we may include sohediagonal strata. This metric
completion is quite special and is of the same nature as tleetsht parametrizes: it is what
Thurston calls a cone manifold.

Remark 3.25 If eachy; is positive and rational, then the associated Lauriceliiesy with

its hermitian form can also be obtained as follows. § &k a common denominator, so that
i = p;i/q for some positive integey;, and putp := . p;. Consider the Dunkl system on
the Coxeter arrangement of tyde _; defined by the diagonal hyperplanes in the hyperplane
V, in C? defined by}"?_, z; = 0 and withx constant equal té/q. LetVp C V), be the
intersection of hyperplanes defined by the partit®n= (po, p1,...,pn) of p. Then the
Lauricella system can be identified with longitudinal systen V. The hermitian form that
we have on the ambient system via the Hecke algebra approaéhiBherited by/» (as a

flat hermitian form). This approach is taken (and consisidntlowed) by B. Doran in his
thesis [14].

3.7 The degenerate hyperbolic case

By a degenerate hyperbolic formn a vector space we simply mean a degenerate hermitian
form which is a hyperbolic form on the quotient of this vecspace by kernel of the form.

If H is such a form on the vector spadewith kernel K, then the subsé@& C P(A) defined

by H(a,a) < 0is best understood as follows: sinEeinduces a nondegenerate fofiit on

A’ := A/K, there is a balB’ defined inP(A’) by H'(a’,a’) < 0. The projectiond — A’
induces a morphism : B — B’ whose fibers are affine spaces of the same dimensiéh as
The vector groufilom(A’, K) acts as a group of bundle automorphismsrafhich act as

the identity onB’ but this action is not proper. So if the holonomy preservesrafof this

type it might not act properly oB.

Let us see what happens in the Lauricella case. We returretgithation of Subsec-
tion 3.6 and choosg; € (0,1) fori = 0,...,n and such tha} . p; = 2. We also letw =
(wy, = ™V ot yntl 4 - R the hyperplane defined By, Tm(w;)a; = 0,
and @y : Ay — R, Qu(a) = Zlgqgnﬂlm(ijk)ajak be as before. Notice that
wnp+1 = 1. According to Lemma 3.22¢),, has a one dimensional kernel. In fact, if
w' = (wy,...,w,), then omission of the last coordinate,= (a1,...,an41) — o =
(ay,...,ay), defines a projectiom,, — A,, we haveQ,(a) = Q. (a’) and Q. is
nondegenerate of hyperbolic signature (see the proof ofma&r8.22). This describes the
situation at the receiving end of the developing map. Nowutetnterpret this in the do-
main. The projectiod,, — A, amounts to ignoring the Lauricella functidt,;; this
is the only one among thé, ..., F,1; which involves an integral withho as end point.
Observe that the conditiop’, ; = 2 implies thatoo is not a singular point of the Lau-
ricella formn = (z9 — {)7#0 --- (2, — {)"#~d¢. This suggests an invariance property
with respect to Modbius transformations. This is indeeddhse: a little exercise shows that
(25) € SL(2,C) transforms; into (czg + d)*° - - - (cz,, + d)*»n. Hence the firsh coordi-
nates of the developing mdg, ..., F,+1) (with values in4,, ® C) all get multiplied by
the same factor: fok = 1,...,n we have

(azoer az, +0b

- A - (czp + )P Fi(20, - - ., 2n).
k czo+d’ ’czn—i—d) (cz0 +d) (czn + d)" Fi (20 #n)
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In geometric terms this comes down to the following. EmB&d! in (P')"+! in the obvious
manner and let the Mobius grolfsL(2, C) act on(P!)"*! diagonally. This defines a bira-
tional action ofPSL(2,C) on (C™*!)°. Recall thatV° stands for the quotient ¢fC+!)°

by the main diagonal. The obvious mép"*1)° — P(V°) is the formation of the orbit
space with respect to the group of affine-linear transfoionatof C. Hence aPSL(2, C)-
orbitin (P*)"*+1 which meetgC"*1)° maps to a rational curve iB(V°). Thus the fibration
of P(V°) can (and should) be thought of as the forgetful morphistg .2 — Mo 41
which ignores the last point: it is represented(By; zo, . . . , z,, ) — (P*; 20,...,2,). In
particular, the fiber is afin 4 1)-pointed rational curve; it can be understood as the curve
on which is naturally defined the Lauricella fomm(up to a scalar multiple). Thus we have
before us the universal family for the Lauricella integhak conclude:

Proposition 3.26 The fibrationMg ,,+2 — My 41 integrates the distribution defined by
the kernel of the flat hermitian form so that we have a comnvataiagram

MO,n+2 — Bw

| !

MO,n-l—l — Bw’

where on the left we have the holonomy coveMyf ;-2 — Mo »+1 and on the right,,
andB,, are the open subsetsBfA,, ® C) resp.P(4, ® C) defined by the hermitian forms.

The holonomy along a fiber 081 ;,+2 — My »+1 is understood as follows. L&t :=
P! —{z0,...,2n} represent a point oM, ,,1. The mapH;(C;Z) — R which assigns to
a small circle centered at the valueu; defines an abelian covering 6f; it is a covering
on which the Lauricella integrand becomes single valued aiether abelian cover may be
needed to make this single valued form exact. The resuliipgtent coverC — C appears
as afiber oﬂ/lvo,nJrQ — //\/lVMH and the developing map restricted to this fiber is esseytiall
the functionC' — C which integrates the Lauricella integrand.

4 The Schwarz conditions

4.1 The Schwarz symmetry groups

We begin with the simple, but basic

Example 4.1 TakeV of dimensionl so thatH consists of the origin. If is a coordinate for
V, thenQ = rz~1dz for somex € C. The new affine structure ovi° = V — {0} is given
by z1=% (k # 1) orlog z (x = 1). So in casex is irrational or equal td, then the developing
map defines an isomorphism of the universal covér of {0} onto an affine line.

Suppose now: € Q, but distinct from1, and writel — x = p/q with p, g relatively
prime integers ang > 0. The holonomy cover extends with ramification over the oris
the ¢-fold coverV — V defined byw? = z. The developing map is the essentially given by
w +— wP. So it extends across the origin onlyif> 0, thatis, ifx < 1, and it is injective only
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if kK = +1. This is why it would have been betterlif had been equipped with the group of
pth roots of unityu,, as a symmetry group. For then we can pass to the orbit spaceythis
group: thep,-orbit space ofl’° is covered by the,-orbit space of/° and the developing
map factors through the latter as an open embedding. Thisated the definition below.

Definition 4.2 Given a Dunkl system for which takes values if), then we say that €
L+ (H) satisfies theSchwarz conditioif 1 — «, is zero or a nonzero rational number with
the following property: if we writdl — k;, = py,/qz, with py,, ¢, relatively prime andy, > 0,
then the Dunkl system is invariant under the grégpof unitary transformations df which
fix L pointwise and act as scalar multiplicationiirt by a|py|th root of unity. We callG,
the Schwarz rotation groupf L. TheSchwarz symmetry groupthe subgroup of the unitary
group ofV generated by the Schwarz rotation grothsofthe L € L;,.(H) which satisy the
Schwarz condition; we will usually denote it 6y, We say that the Dunkl systesatisfies the
Schwarz condition in codimension oifievery member of{ satisfies the Schwarz condition.
We say that thé®unkl system satisfies the Schwarz conditf@very L € L;,,(H) satisfies
the Schwarz condition.

Notice that the Schwarz symmetry group is finite: this foofsom the fact that the
group of projective-linear transformations BfV') which leave’H invariant is finite (since
'H is irreducible) and the fact that the determinants of theegators ofG are roots of unity.
This group may be trivial or be reducible nontrivial (desptite irreducibility of). If the
Schwarz symmetry group is generated in codimension one, dbeording to Chevalley's
theorem, the orbit spad&\V is isomorphic to affine space. Since multiplicationlirby a
nonzero scalar leavels andx unchanged, it is clear thg0} always satisfies the Schwarz
condition.

Example 4.3 For the Lauricella system discussed in Subsection 2.3, ¢thev&z condition
in codimension one amounts to: o ¢ < j < n, 1 — u; — p; is a positive rational number
with numeratorl or 2 with 2 only allowed if u; = pj;. This last possibility is precisely
Mostow’s XINT-condition [18].

Let L € L. (H). If a Dunkl system satisfies the Schwarz condition, then finiperty
is clearly inherited by both thé-transversal Dunkl system. This is also true for the
longitudinal Dunkl system:

Lemma 4.4 Suppose that the Dunkl system satisfies the Schwarz conditieen for every
L € Li:(H), the longitudinal Dunkl system dif also satisfies the Schwarz condition.

Proof. Let M € L;..(H"). EitherM is irreducible i or M is reducible with two compo-
nentsL and M’. The exponent of/ relative toH’ is thenx,,; andx,, respectively. It is
clear that the Schwarz symmetry grouphMdfresp.M’ preserveq.. O

4.2 An extension of the developing map

Every point ofVV determines a conjugacy class of subgroups in the fundahgnuap of
V° (namely the image of the map on fundamental groups of thesiah in1’° of the trace
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on V° of a small convex neighborhood of that point), hence alserd@hes a conjugacy
class inl'. If the latter is a conjugacy class of finite subgroups we &ay we havdinite
holonomy at this pointThe seti’f  V of the points at which we have finite holonomy is a
union of H-strata (including/°) and open iri/ (the subscripy stands for finite). We denote
the corresponding subset 6{*) by £f (). Notice that the holonomy covering extends
uniquely to a ramified-coveringV’/ — V7.

If eachxy is rational# 1, then£/(H) containsH and soV — V/ is everywhere of
codimension> 2.

Theorem 4.5 Assume that takes values in the rational numbers. Then the Schwarz symme
try group G acts freely ori/° and lifts naturally to one oi/’/. The latter action commutes
with theI'-action and the developing map is constant@worbits: it factors through a mor-
phismevg : G\W’ — A.

If ko # 1 (and write1 — ko = po/qo With po, g relatively prime mtegers angdp > 0
as usual), then thed’ N C* consists of they-th roots of unity and bot/ and G\Vf

come with natural effectiv€ < -actions such that’/ — V/ is homogeneous of degreg,
Ve — G\V° is homogeneous of degregandevg : G\V° — A is homogeneous of degree
one.

In casexy = 1, then the lift of the Euler vector field generates a free actbC™ on
G\V° such thatev¢ is equivariant with respect to a one-dimensional tranglatsubgroup
of A.

Proof. SinceG preserves the Dunkl connection, it preserves the locaésyatfy.. SoG
determines an automorphism grolip of Ve (with its affine structure) which contains the
holonomy groud” and has as quotient acting in the given mannersf. This group acts
on A as a group of affine-linear transformations. Denotddbthe kernel of this representa-
tion. Sincel’ acts faithfully on4, K N T" = {1} and so the mag’ — G is injective. On
the other hand, if. € £;,.’H satisfies the Schwarz condition, then the local model near th
blowup of L in V' shows that the developing map is ndaconstant on thé& 1 -orbits. So
G C K and hencé&? C K. This proves thal's is in fact the direct product df andG. It

is now also clear that the developing map factors as asseStade the developing map is a
local isomorphism oV, the action ofz on VV° must be free.

Suppose now:y # 1. The holonomy ofAffy . along aC*-orbit in V° is of orderqgg
and sol’° comes with an effectiv€ * -action for which its projection t&’° is homogeneous
of degreegy. The developing mapv : Vo — Ais constant on the orbits of the ordey
subgroup ofCX but not for any larger subgroup. The infinitesimal genasatd theC* -
actions on/° and 4 are compatlble and sov is homogeneous of degreg and there is a
(unique) effectiveC* -action onG\VO which makes/° — G\V° homogeneous of degree
Po- ThenevG G\V° — A will be homogeneous of degree one. These actions exterid to

andG\Vf respectively.
The last assertion follows from the fact that the holonononglaC*-orbit in V' is a
nontrivial translation. O
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Theorem 4.6 Suppose that everyy is a rational number smaller thahand that the Dunkl
system satisfies the Schwarz condition in codimension d¢rea the developing mapo — A
extends toV’/ and this extension drops to a local |somorph|sm; G\Vf — A. In

particular, G\Vf is smooth and thé&s-stabilizer of a point of// acts near that point as
a complex reflection group. Moreover, everyc Li,.(H) N L£f (H) satisfies the Schwarz
condition and has, < 1.

Proof. The local model of the connection near the generic poinHokE H shows that
H° c Vf and that the developing map extends of&rand becomes a local isomorphism

if we pass to th&r g -orbit t space. So the developing map extendg fdn codimension one.

Hence it extends to all f / and the resulting extension ef ; to G\Vf will even be a local
isomorphism.

Now let L € Li..(H) N £f(H). Then the composite afv with a generic morphism
(C,0) — (V,L°) is of the formz — z!=*z plus higher order terms (fot; # 1) or
z +— log z plus higher order terms (for;, = 1). As the developing map extends ovet, we
must havex;, < 1. Since the developing map is in fact a local isomorphismgtL must
satisfy the Schwarz condition. O

Remark 4.7 The orbit space&\V andG\W are both smooth. Notice that\V'/ underlies
two affine orbifold structures. One regardgV'/ as a finite quotient o’/ and has orbifold
fundamental grougs. Another inherits this structure from the Dunkl connectibasev :

G\V/ — A as developing map aridas orbifold fundamental group.

5 Geometric structures of elliptic and parabolic type

5.1 Dunkl connections with finite holonomy

In casd is finite, then the vector spa¢d, O) admits a -invariant hermitian positive definite

inner product. In particular, the tangent bundlé/©fadmits a positive definite inner product
invariant under the holonomy group of the Dunkl connect®imce the Dunkl connection is

torsion free, the latter is then the Levi-Civita connectidithis metric. Conversely:

Theorem 5.1 Suppose that € (0,1)”, that the Dunkl system satisfies the Schwarz con-
dition in codimension one and that there is flat positive diefihermitian form. Then the
holonomy of the affine structure defined by the Dunkl conmedifinite and so we are in the
situation whereev; is aI'-equivariant isomorphism @\ V onto A andxy < 1. In partic-
ular, this map descends to an isomorphism of orbit spacesflgfation groupgr\V — T'\ A

via whichP(G\ V) acquires another structure as a complete elliptic orbifold

The proof of Theorem 5.1 uses the following topological lemriVe state it in a form
that makes it applicable to other cases of interest.

Lemmab5.2Let f : X — Y be an continuous map with discrete fibers between locally
compact Hausdorff spaces and ¥t C Y be an open subset of which the topology is given
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by a metric. Suppose that there is a symmetry giowh this situation (i.e.J" acts onX and
Y, fisT'- equivariant and” preserve’”’ and acts there as a group of isometries) for which
the following properties hold:

(i) The action ofl* on X is cocompact.

(i) Foreveryy € Y and neighborhood” of y in Y there exists am > 0 and a neighbor-
hoodV"’ of y such that the-neighborhood o¥/’ N Y is contained in/.

Then there exists an > 0 such that every: € f~'Y” has a neighborhood which is proper
over thes-ball in Y’ centered atf (). In particular, if f is a local homeomorphism ov&¥
andY” is connected and locally connected, théis a covering projection ovey”.

Proof. Letxz € X. Since the fiber through is discrete, we can find a compact neighborhood
K of x such thatf(z) ¢ f(0K). PutU, := K \ f~1f(0K)andV, := Y — f(0K) so that

U, is a neighborhood of, V. a neighborhood of () and f mapslU,, properly toV,.. By (ii)
there exist a neighborhodd of f(x) and a, > 0 such that such that for evegye vV, NY’
thee,-neighborhood of; is contained in/,,.. We letU., be the preimage df; in U,. It has
the property that any,.-ball centered at a point of(U.) N Y’ has a preimage ifV, that is
proper over that ball.

LetC C X be compact and such thBtC' = X. ThenC'is covered byU;, ,...,U, ,
say. We claim that := min}\_, {¢,,} has the required property. Given amyc f~'Y”, then
vz € U, for somei andy € I'. By construction, the-ball centered af (yx) is contained
in V., and its preimage i/,,, is proper over that ball. Now take the translate oyet and
we get the desired property at O

Proof. [Proof of Theorem 5.1] We have already verified this whiém (1) = 1. So we
takedim(V') > 2 and assume inductively the theorem proved for lower valdiesma (V).
The induction hypothesis implies th&t’ containsl’”” = V — {0}. By Theorem 4.&v¢ is
then a local isomorphism on preima@e}ﬁ. On G\W we have an effectiv€* -action for
which evg is homogeneous of nonzero degree. Sieg is a local isomorphism, it maps
G\V' to A — {O} and is theC*-action onG\ V" without fixed points. Sev induces a
local isomorphism ofC* -orbit spacesz\P(V") — P(A). The action ofl" on G\P(V") is
discrete and the orbit space of this action is a finite quotiéfi*(1") and hence compact. So
G\P(V’") — P(A) satisfies the hypotheses of Lemma 5.2 (With= Y = P(A)), hence is
a covering map. Theavg : G\W — A —{O} is also a covering map. But — {O} is
simply connected and so this must be an isomorphism. Suclpa&rtends across the origin
and so the degree of homogeneity is positive: ko > 0. It also follows that the subgroup
I of GL(A) acts properly discretely oA — {O} so thatT" is finite. O

5.2 Aremarkable duality

Suppose that the holonomy of the Dunkl connection is finithermaccording to Theorem
4.6, we have:;, < 1forall L € £;,(H) and the developing map defines a isomorphism of
G\V onto Ar. SoG\V has two orbifold structures, one with orbifold fundamegtaupG

, another withl".
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There is a simple relation between the invariant theory efgtoups= andIl’, which was
observed earlier by Orlik and Solomon [20] in a somewhatedéhit and more special setting.

The C*-action on(A4, O) descends to &*-action onAr with kernell' N C*. Let
1 <di(T) < dy(T) < --- < daim 4(T') be the set of weights of this action, ordered by size.
The degrees- 1 are the degrees of the basic invariantd’ofTheir product [, d;(T") is the
degree ofA — Ar, thatis, the order df. The situation for th&-action is likewise. The iso-
morphism between the two orbit space€s-equivariant once we pass to the corresponding
effective actions. This implies that the weights of thesaugs are proportional:

di(T) = (1 — ko) 'di(G), i=1,...,dimV.
So the degrees df are readily computed from the pdit, G). In particular, we find that
T = (1~ ko)~ V|G,

The isomorphisnG\V — T'\ A maps theG-orbit space of the union of the hyperplanes
from H onto a hypersurface id whose preimage idl is al'-invariant union of hyperplanes
containing the reflection hyperplaneslafIf we denote that linear arrangementdnby H’,
then we have bijection between theorbits in’H and thel'-orbits in theH’.

We can also go in the opposite direction, that is, start viighfinite reflection group' on
A and define a compatiblé-invariant Dunkl connection od whose holonomy group &
has a developing map equal to the inverse of the developipgifar the Dunkl connection
on V. The following theorem exhibits the symmetry of the sitaati At the same time
it shows that all pairs of reflection groups with isomorphiscdiminants arise from Dunkl
connections.

Theorem 5.3 Let for: = 1,2, G; € GL(V;) be a finite complex reflection group and
and D, C Vj its union of reflection hyperplanes. Then any isomorphisrarbit spaces
f: Gi\Vi — G2\ V» which maps7,\D; onto G»\ D2 and isC*-equivariant relative the
natural effectiveC* -actions on range and domain is obtained from the developiag of a
G4 -invariant Dunkl connection ofr; — D; (and then likewise fof —!, of course).

Proof. The ordinary (translation invariant) flat connectionigndescends to a flat connection
on G2\ (V, — D3). Pull this back viaf to a flat connection o\ (V7 — D7) and lift the
latter to aG-invariant flat connectio®w onV; — D;. It is clear thatV is C*-invariant. A
straightforward local computation at the generic point ofember of the arrangement shows
thatV extends to the tangent bundlelgf with a logarithmic poles and semisimple residues.
So by Corollary 2.2 it is a Dunkl connection. It is clear tifatalizes its developing map]

Corollary 5.4 Let fori = 1,2, G; C GL(V;) be a finite complex reflection group and
D, C V; its union of reflection hyperplanes. If the germstif\ D; and G2\ D» at their
respective origins are isomorphic, then the two are reldtgdhe above construction: one is
obtained from the other by means of the developing map of &I@mamnection.

Proof. Any isomorphism of germg : G1\(V1, D1,0) — G2\(V2, D2, 0) takes the effective
C*-action onG1\V; to an effectiveC*-action on the gernirs\ (V2, D2, 0). A finite cover of
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this action lifts to an effective action on the gefit, D2, 0) which commutes with the action
of G5. Restrict this action to the tangent spacd/efat the origin. The fact that it preserves
D, implies that it is just scalar multiplication iy V>. So if we identify this tangent space
with V, then we get another isomorphisfg : (G1\V1, D1,0) — (G2\Va, D2,0) which is
C*-equivariant (and hence extends globally as such). Nowyapmorem 5.3 O

Remark 5.5 The groupG; acts onL(H;) as a group of poset automorphisms and we have
a quotient poset:;\ L(H;). The ramification function induces, : G;\Li,:(H;) — Q. If

z; is the function on@;\ £, (H;) which assigns td. € L;,.(H;) the order of the group of
scalars in the image di, (L) in V;/L, then the isomorphisnfi of this theorem induces an
isomorphism of poset&1\L(H1) = G2\L(H2) which takeszs to (1 — x1)z1 andz; to

(1 — Iig)Zg.

5.3 Dunkl connections with finite holonomy (continued)

In this subsection we concentrate on a situation where we teagstablish finite holonomy
without the hypothesis thaty < 1 for all H € H. We denote the collection df € £;,,(H)
for which, — 1 is negative, zero, positive b§~ (H), L°(H), L+ (H) respectively. Since
is monotonic, the unioy — of the members of ~ (H) is an open subset 6f.

The result that we are aiming at is the following. It will beedswhen we treat the
hyperbolic case.

Theorem 5.6 Let be given a Dunkl system which has a flat positive definitaitian form.
Suppose that’(H) is empty and that the following two conditions are satisfied:

() everyH € 'H with k;, < 1 and every lineL in L£;,(£) with x;, > 1 satisfies the
Schwarz condition and

(i) the intersection of any two distinct members(f, (£) with x;, > 1 is irreducible.

Then the system has a finite holonomy group, satisfies theaGclvandition, and the de-
veloping map induces an isomorphigsf\V— = I'\ A°, where A° is a linear arrangement
complementim. This gives?(G\V ) the structure of an elliptic orbifold whose completion
can be identified witfi\[P(A).

Remark 5.7 Observe that we are not making the assertion here that thelagévg map
extends across a cover bf. In fact, if we projectivize, so that we get a Fubini metric on
P(V°), then we will see that the metric completion®fl”°) may involve some blowing up
and blowing down orP(V'). The modification ofP(V') that is involved here is discussed
below in a somewhat more general setting. After that we tgkihe proof of the theorem.

Discussion 5.8Let be given a Dunkl system with semisimple holonomy arotnecdhhembers

of L(H) and for whichZ®(H) is empty, butC* () is nonempty (so that, > 1). We further
assume that takes values iff) and that the Schwarz condition is satisfied by all members
of £~ (H) of codimension one (hyperplanes) and and all memberstd#) of dimension
one (lines). It follows from Theorem 5.1 that the holonomyeoextends to a normal cover
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V- — V= and that the developing map extends to that cover and fatttoyvagh a local
isomorphismG\V— — A. Let f : VT — V be obtained by the blowing up the members
of L € L*(H) in the order defined by the partial order (so starting withdhgin first). We
shall identifyV ~ with its preimage it/ . Notice that the groug naturally acts o/ .

Every L € L (H) defines an exceptional divisdf(L) and these exceptional divisors
intersect normally. If we writd — x;, = pr./qr, as usual (s@;, andq;, are relatively prime
integers withg;, > 0 and hence, < 0), then the holonomy arounfi(L) is of finite order
qr- So the holonomy covering extends to a ramified covelirg — V*. The preimage
of ULE(L) in V+ is also a normal crossing divisor. According to Lemma 2.1 4dffine
structure onl’° degenerates simply alorfg(L) with logarithmic exponent; — 1 and the
associated affine foliation is given by its projection ohto

The divisorsE(L) determine a simple type of stratification Bft. Let us describe the
strata explicitly. Fo, € £ (H) we put

L™ :=L—-U{M : MeL"(H),L<M}.

So everyM € L;,(H) which meetsL~ but does not contail belongs toL~(H). The
preimage ofL.~ in VT is a union of strata and trivial as a stratified space dver It has a
unique open-dense stratum which can be identified with thdymtZ— x P((V/L)7).

An arbitrary stratum is described inductively: the colientof divisors defined by a
subset of£*(H) has a nonempty intersection if and only if that subset makea €flag:
Le: Ly > Ly >---> L > V. Their common intersection decomposes as a product:

E(Le) := L§ x P((L1/Lo)") x --- x P((V/Lg)™)
and contains a stratu$\( L, ) as an open-dense subset, which decomposes accordingly as:
S(Le) =Ly xP((L1/Lo)™) x -+ x P((V/Lg)7).

The developing map will in general not extenditd- (it will have a pole along the preim-
age ofUy, E(L)), but things improve if we projectivize. That is why we shi@itus on the
central exceptional divisoF,, which we will also denote b¥(V ). Notice thatP(V/*)

is a projective manifold and thatt — VT restricts to al-coveringP(V+) — P(VT).
EachE(L) with L € LT (H) — {0} meetsP(V 1) in a smooth hypersurfade(L) of P(V )
and these hypersurfaces intersect normallf(i ™). The open dense stratumBfV *) is
clearlyP(V~). The groupl’ acts onP(V+) properly discontinuously with compact orbit
spaceP(VT). We have a projectivized developing map

G\P(V—) - P(A)

which is a local isomorphism. A stratum &(V T) is given by a flagL, as above with
Ly = {0} and so will have the form:

S(Le) =P(Ly) x P((L2/L1)7) - x P((V/Lg)™).
It is open-dense iF(Ls) = P((L1/Lo)") x --- x P((V/Li)"). Let us now writeE;

for Er,, k; for k1, etc. According to Proposition 2.22, the developing map é&nthtz =
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(z1,...,zk+1) € S(Ls) linearly equivalent to a map of the form:

k+1

k41
vi=Jlexm), (o0 0,m)
i=1

=1
HereF; : V;* — T; is amorphism to a linear spagwhose restriction t& (L. ) . factors as
the projectionS(L,), — P(L;/L;, )., followed by a local isomorphis®(L;/L;, )., — i,
andt; is a local equation foE';,,. So (ti,l,E)fill isachartforV ™ atz. If dimL; = 1,
then in terms of this chart, the grodgy,, acts in thet;-coordinate only (as multiplication by
|p1 |th roots of unity).

We restrict the projectivized developing magPtd’ +) (which is defined by, = 0). The
preceding shows that this restriction is projectively gglént to the map with coordinates

(o ) T L R (L Fi) ).

(The component which is constant 1 reminds us that we are imggpan affine space which
is to be viewed as an open subset of a projective space.g I&eﬂP’(W) lie over z, put
D;,:=FE; ﬂ]P’(‘f/:) and denote bﬁi the irreducible component of the preimagdafwhich
containsz and byg(L.) the stratum. Iff > 0, then nea&, V¥ is simply given by extracting
the g;th root of ¢;: 7" := ¢; Since we have semisimple holonomy around the members of
L(H), the projectivized developing map isagiven in terms of this chart and an affine chart
inP(A) by

(T;pl TP EY), PR (L F), (1,Fk+1)).

Recall that each; is negative. So this clearly shows that the projectivizatiefines a regular
morphismP(V+) — P(A) and that its restriction to the preimageS\fL. ) factors through a
covering of the last factdP((V/Lx) ™). The fiber through is here defined by putting. = 0
and F,., constant. It follows that the connected component of thisrfltes in D, more
precisely, that it lies in a connected component of a fibehefriatural ma, — Dj =
P(L}) x P((V/Lk)*) — P((V/Li)"). We also see thatis isolated in its fiber if and only
if the flag is reduced tdy = {0} > L; with dim L; = 1; in that case, the map above is
simply given by(r; ?*, F}). Since this is also a chart for the orbit spagg, \P(V+), we
see that the projectivized developing map modtilis then a local isomorphism at the image
of Z. Since the holonomy ne&f(L,) decomposes as a product, a connected component
S(L,) of the preimage ofS(L,.) in P(V+) decomposes as a product as well(L,) =
P(LT) x P((L2/L1)7)--- x P((V/Lg)~). Its closure is an irreducible component of the
preimage off (L, ); the normalisation of that closure decomposes accordingly

B(La) = P(LT) x P((La/L1)*) - x P((V/Li)b).

The proof of 5.6 proceeds by induction dim V. The induction starts trivially.
Since the form is positive definite, we shall (by simple agérg) assume that it is invari-
ant under all the Schwarz symmetry gradp

Lemma 5.9 For everyL € L1 (H) — {0}, the longitudinal holonomy ifk.° is finite.
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Proof. We verify that the affine structure oh® satisfies the hypotheses of theorem that
we want to prove, so that we can invoke the induction hypdsheBhe flat metric orl/°©
determines one of°. It remains to show that every hyperplahec £+ (H*) and every
line M € £~ (HT) satisfies the Schwarz condition. In the first case; 1 must negative on
‘H; and so it follows from Theorem 4.6 thatsatisfies the Schwarz condition. We claim that
in the second casé{ is irreducible in£(H) (so that the Schwarz condition holds). For if
that were not the case, then by Lemma R/{Ihas two irreducible componensandM (L).
The irreducible componerdt/ (L) must be inL~ (H) by assumption (ii) and since we have
kb = K (L), We would get a contradiction. O

Corollary 5.10 The connected components of the fibers of the projectivieeelaping map
P(V+) — P(A) are compact.

Proof. OverP(V ), the projectivized developing map is locally finite and sthiese points
the claim is clear. Let us therefore examine the situaticer another stratuny(L,) (as in
the Discussion 5.8). Since the stratum is not open, we hawel. We observed that the
connected component of a fiber througliies in the fiber over, € P((V/Ly)~) of the
composite 3

Dy — Dy =P(Li{) x P(V/Lr)") = P((V/Lr)")

The holonomy in the last factd((Lx)™) is longitudinal and hence finite, The implies that
every irreducible component i, overP(L;") x {2} is compact. O

A continuous maff : X — Y between topological spaces always h&gmlogical Stein
factorization this is the factorization through the quotiekit - X g of X defined by the
partition of X into connected components of fibersfofSo the latter map has then connected
fibers and the induced mafys; : Xs¢ — Y has discrete fibers in case the fibersfodre
locally connected. Here is a useful criterion for an analgtunterpart.

Lemmab5.11 Let f : X — Y be a morphism of connected normal analytic spaces. Suppose
that the connected components of the fibers afe compact. Then the Stein factorization of
s

[ X Xei —15 Y,
is in the analytic category. More precisely, — X is a proper morphism with connected
fibers to a normal analytic spac& s, and fs is @ morphism with discrete fibers. If in
addition,Y is smoothf is a local isomorphism in every point that is isolated in itgefiand
such points are dense K, thenfs; is a local isomorphism.

Proof. The first part is well-known and standard in c&sis proper. The second part perhaps
less so, but we show that it is a consequence of the first pamte$ : X — Y is then
a morphism from a normal analytic space to a smooth spaceeagadime dimension which
contracts its singular locugs; : Xg¢ — Y will be a local isomorphism outside a subvariety
of X of codimension one. But then there is no ramification at aiesa ramified cover of
a smooth variety has as its ramification locus a hypersurface

So it remains to show that we can reduce to the proper caseo\Wstby showing that if
K C X is a connected component of the filfer! (y), then there exist open neighborhoods
U of Kin X andV of yin Y such thatf(U) Cc V andf : U — V is proper. This indeed
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suffices, forify’ € V, thenf~1(y’) N U is open and closed ifi—*(y’), and hence a union of
connected components 6f ! (y/).

Choose a compact neighborha@f K which does not meet~!(y) — K. Clearly, for
every neighborhootl of y in Y, f : f~1V N C — V is proper. So it is enough to show that
f~tv N Cis open inX (equivalently,f =1V N dC = () for V small enough. If that were
not the case, then we could find a sequence of pgints 0C)2, whose image sequence
converges tq. SincedC' is compact, a subsequence will convergerte 9C, say. But
clearly f(z) = y and sar € K. This cannot be sinc& N dC = (). O

Corollary 5.12 The Stein factorization @\P(W) — P(V),
G\P(VH) —— (G\B(VH)er —— B(V),
is analytic and the Stein facthG\]P’(If/:)gt — P(V) is a local isomorphism.

Proof. In Corollary 5.10 and the Discussion 5.8 we establishedtti@tonditions in both

clauses of the Lemma 5.11 are satisfied. - O
Proof. [Proof of Theorem 5.6] We first prove thB{G\V +)s; — P(V) is al'-isomorphism.

For this we verify that the hypotheses of Lemma 5.2 are verftiethat map witht”’ =Y =

P(V). By Corollary 5.12P’(G\1//\J:)6t — P(V) is alocal isomorphism. We know thBtacts

properly discontinuously of?(V'+) with compact fundamental domain. This is then also
true forP(G\f/:)gt. Sincel acts onP(V') as a group of isometries, Condition (ii) of 5.2
is fulfilled as well. SOP(G\V*)s¢ — P(V) is a covering projection. BUk(V') is simply
connected, and so this must be an isomorphism. It foIIoWsIFth%) is compact, so thdt
must be finite.

An irreducible componenD(L) over D(L) gets contracted iflim L > 1, with image in
P(V') a subspace of codimension equal to the dimensidn & particular, we get a divisor in
caselim L = 1 and so the image of a coveringBfV ) is mapped to an arrangement com-

plementP(A°), say. So the developing mapg : G\V~ — A° becomes an isomorphism
if we pass taC*-orbit spaces. According to Theorem 4x&; is homogeneous of degree one.
It follows that this map as well as the induced n@pV — — I'"\ A° are isomorphisms.
Finally we verify the Schwarz condition for any € £;,.(H). We know already that

this is the case wheh € £~ (H). For L € L*(H) this is seen from the simple form of the
projectivized developing map at a general pointdf.): in terms of alocal chaitr , Fy, F»)

of P(V+) at such a point it is given byr; ', 7, 7' Fy, F»). Since(G\P(V+)g: — P(V) is
an isomorphism¢ must contain the group df_, |th roots of unity acting on the transversal
coordinater; . This just tells us that. satisfies the Schwarz condition. O

5.4 Dunkl connections whose holonomy is almost a Heisenbeggoup

Theorem 5.13 Let be given a Dunkl system withe (0, 1)* andx, = 1, which satisfies the
Schwarz condition in codimension one and admits a nontrlaahermitian form. Then:

(i) the flat hermitian form is semidefinite with kernel gertechby the Euler field,
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(i) V¥ =V —{0}, the monodromy grouB /Ty of the connection o6 - C*\V° is finite
andT is an integral Heisenberg group,

(iii) the developing map identifies the'T'y-cover ofG\V — {0} in a C*-equivariant fash-
ion with an anti-ampleC*-bundle over an abelian variety,

(iv) G\V%} — A is al'-isomorphism and the Dunkl connection satisfies the Schwarz
condition.

(v) The hermitian form giveB(G\V) the structure of a complete parabolic orbifold: if
K is the kernel of the hermitian form on the translation spatelpthenI" acts in
K\ A via a complex crystallographic space group and the develppiap induces an
isomorphism betwedh(G\ V') and the the latter’s orbit space.

Proof. The first assertion follows from Theorem 3.1. Upon repla¢ivegflat form by its neg-
ative, we assume that it is positive semidefinite; we derfogeform byh. The monodromy
around every member df;,. () — {0} leaves invariant a positive definite form and hence is
finite by Theorem 5.1. This implies th&t/ > V' — {0}; it also shows that the monodromy
of the connection is finite. Sino&) = 1, the Euler fieldEy, is flat and determines a nonzero
translationl” A such thar+/—17 is the monodromy around@> -orbitin V°. In particular,
the monodromy around such an orbit is not of finite order, soW{ =V — {0}.

The Euler field respl’ generate a faithfuC*-actions onl — {0} resp.A such that the
developing map descends to a local isomorphi§h - G\V — {0} — C*\A. Observe
that the translation space Gf"\ A has al-invariant positive definite hermitian form: if the
kernel ofh is spanned by this is clear and it is positive definite we simply identify the
translation space in question with the orthogonal complgmE&l” in the translation space of
A. The groupl’/(27+/—1T) acts onCT.G\V — {0} through a group which acts properly
discretely. The orbit space of this action can be identifiét @\P(1"), hence is compact.
So the assumptions of Lemma 5.2 are fulfilled (with= Y = C*\ A) and we conclude that

CH.G\V — {0} — CH\A

is a covering. Since the range is an affine space (hence sitoplyected), this must be an
isomorphism. It follows that the action dfon A is properly discrete and cocompact. It also
follows that the developing map define§-@quivariantisomorphism a¥\V' — {0} onto A.
LetT'y be the subgroup of € I' that act as a translation iiT\ A. This subgroup is
of finite index inT" and our assumption implies thBg\A — T’y - CT\ A has the structure
of a flat C*-bundle over a complex torus. The developing map induces@madrphism
I'o\A = Ty - G\V — {0}; the latter is finite ovez\V — {0} and extends therefore as a
finite cover ovelG\ V. This means that the associated line bundle over the cortyplex has
contractible zero section. Hence this line bundle is ampi® andl’, is a Heisenberg group.
Property (iv) is almost immediate from Theorem 4.6. O
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6 Geometric structures of hyperbolic type

In this section we consider Dunkl systems of admissible Hyplee type. So the affine space
A in which the evaluation map takes its values is in fact a wegpace (it comes with an
origin) equipped with a nondegenerate hermitian form ofdrpplic signature. We denote
by L* C A the set of vectors of negative self-product andlby= P(L*) C P(A) its
projectivization. Notice thaB is a complex ball and thdat™ can be thought of as @*-
bundle overB. By addingB at infinity we obtain a line bundl& overB that hasB as the
zero section. The admissibility assumption means thatvhkiation map takes its values in
L* so that its projectivization takes its valuesiin

6.1 The compact hyperbolic case

This is relatively simple case and for that reason we stadgpaove it separately. The result
in question is the following.

Theorem 6.1 Suppose that the Dunkl system is of admissible hyperbglg; satisfies the
Schwarz condition and is such thate (0,1)", x;, < 1forall L € Li.(H) — {0}. Then

I" acts onB discretely and with compact fundamental domain and theldpirey map in-
duces an isomorphisi\ V' = I'\IL*. ThusP(G\V) acquires the structure of a complete
hyperbolic orbifold isomorphic td"\ B.

Proof. Arguing as in the proof of Theorem 5.13 we find that = V — {0}. The developing

map descends to a local isomorphiém]P(Vf) — P(A). It takes values in the complex ball
B. The latter comes with &-invariant Kahler metric. The orbit space of theaction on

G\P(W) can be identified wittG\[P(V'), hence is compact. So the assumptions of Lemma

5.2 are fulfilled and we conclude th@\P(V /) — B is a covering. Since the range is simply
connected, this must be an isomorphism. In particular, ti®m of I' on B is properly
discrete and cocompact.

It also follows thatz\ V' = I'\L* becomes an isomorphism if we pas€to-orbit spaces.
It then follows that the map itself is an isomorphism, beedtigontains by definition all the
scalars which leave the developing map invariant. O

6.2 Statement of the main theorem

The general hyperbolic case concerns the situation wherbdlonomy group is of cofinite
volume (rather than being cocompact) in the automorphismgof a complex ball. This is
substantially harder to deal with.

Given a Dunkl system for which the flat hermitian form= h" is of hyperbolic type
(i.e., nondegenerate of index one, so thatefines a complex bal} in the projective space
atinfinity P(A) of A). If L € £;,»(H) is such thak;, > 1, then if we approacli® from V°
along a curve, the image of a lift in° of this curve under the developing map tends to infinity
with limit a point of P(A4). These limit points lie in well-defined-orbit of linear subspaces
of P(A) of codimensiondim(L). We call such space special subspacm P(A) and its
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intersection withB a special subball We use the same terminilogy for the corresponding
linear subspace of.
The main goal of this section is to prove:

Theorem 6.2 Let be given a Dunkl system with € (0,1)* which comes with a flat ad-
missible formh of hyperbolic type. Suppose that every hyperpléhe 7 and every line
L € Li:(H) with , > 1 satisfies the Schwarz condition. Then:

(i) The system satisfies the Schwarz condition.

(i) The collection of special hyperplanes is locally finitelL* and if (L)~ denotes
the complement if.* of the union of the special hyperplanes, then the projexetiVi

developing map defineslaequivariant isomorphismt&\V/ — (L*)~.

(iii) The groupl’, considered as a subgroup of the unitary grdiigh) of k, is discrete and
has cofinite volume iV (h).

(iv) The developing map induces an isomorph&hi’/ — T'\ (LX)~ of normal analytic
spaces.

Thus ifB~ denotes the the complementBnof the union of the special hyperplanes, then
P(G\V/) can be identified witi"\B~ and acquires the structure of a hyperbolic orbifold
whose completion B\ B.

Remarks 6.3 Our proof yields a more precise result, telling us in fact He\#\V) is ob-
tained from the Baily-Borel compactification 8f\B by a blowup followed by a blowdown.
This is in fact of the type described in [16].

Couwenberg gives in his thesis [7] a (presumably completedt the cases for whichl
its Coxeter arrangement aidglis the associated Coxeter group. The Schwarz condition for
the lines then amounts to: i is a line which is the fixed point subspace of an irreducible
Coxeter subgroup af and such that;, > 1, then(xz —1)~!is aninteger or, wheh* € H,
half an integer. The fact that the list is substantial gitestheorem its merit. In particular, it
produces new examples of discrete hyperbolic groups ofitefiolume.

6.3 Connection with the work of Deligne-Mostow

Theorem 6.2 implies one of the main results of Deligne-Medtt?] and Mostow [18].

Theorem 6.4 (Deligne-Mostow)Consider the Lauricella system with all of its parameters
[os - - pn in (0,1) @and ") e € (1,2) so thatu,11 =2 — >, o € (0,1) also.
Suppose that for every pair< i < j < n+1,1 — p; — p; is a positive rational number
with numeratorl or 2, allowing the latter only in casg < n andp; = p;. Then the
system satisfies the Schwarz condition and the Schwarz sggmgreup is the groups of
permutations of0, ..., n} which preserves the weight function: {0,1,...,n} — R, the
collection of special hyperplanes is locally finite Bnl" is a lattice in the unitary group oft
and the developing map identifid¢G\V/) with T\ B~
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Proof. We verify the hypotheses of Theorem 6.2. First of we all we twhe Schwarz
condition for everyH; ; satisfied: this means that for every paiK i < j < n, we want

1 — p; — py; to be positive rational number with numeratoor 2, allowing the latter only
in casey; = pj. We also want the Schwarz condition fulfilled at a linedr (). Such a
line is given by am-element subset of0, ..., n}, say as the complement of the singleton
{i}, such thaty ., ;.; #;j > 1. The Schwarz condition is fulfilled at this line #1 +
ZOQSW# w; is the reciprocal of an integer. This amounts tat # ; — 41 IS positive,
then it is the reciprocal of an integer. The rest follows freasily from Theorem 6.2. [

Remark 6.5 The conditions imposed here imply MostoW$NT-condition: this is the con-
dition which says that for any pair < ¢ < j < n + 1 such thatl — p; — p; is positive,
we want this to be a rational number with numerdtar 2, allowing the latter only in case
wi = pj. Clearly, this condition is more symmetric, because it dogsattribute a special role
to 11n+1. This symmetry is understood as follows. We can regaf®l(®°) as parametrizing
the collection ofmutually distinct(n + 1)-tuples(zo, ..., z,) in the affine lineC given up
to an affine-linear transformation. But it is better to irddwo and to think of P(V°) as
the moduli space ofmutually distinct(n + 2)-tuples(zo, ..., zn+1) on the projective line
P! given up to a projective-linear transformation, that isjdentify P(V°) with Mo_,,42.
This makes evident an action of the permutation group®f..,n + 1} onP(V°). ltis
conceivable that there are cases for which 31N T-condition is satisfied and ours aren't,
even after permutation. The table in [26], lists 94 systéms> 1 > -+ > pup+1 > 0)
satisfying theX:INT-condition. Most likely, it is complete. In this list, ére is precisely one
case which escapes us and that is whep2 = 12 and ally;’s equal to%. With little extra
effort, we can get around this (and at the same time avoidtirgdo this list) if we let the
group of permutations ofo0, ..., n + 1} which leaveu : {0,...,n 4+ 1} — Q invariant act
from the outset. This group contaiisand the elements not ifi act nonlinearly oP(V/7).
An alternative approach starts with analyzing the develgpnap of a Dunkl system with a
degenerate hyperbolic form (see Subsection 3.7); thiglisdd a class worth studying its own
right.

Remark 6.6 Deligne and Mostow show that there is a modular interpretetif the Baily-
Borel compactification of'\B. Given positive rational numbeys, . .., i,+1 With sum2,
then let us say that agffective fractional anticanonical divisan P! of type x is simply a
given by a set ofr + 2 points endowed with the weighis), ..., un+1, given up to order.
We do not require the points to be distinct. So such a divieterthines aupport function
P! — Q. which is zero for all but finitely many points and whose sumefd®') of its
values is two. It is said to betable(resp.semistablif this function is everywhere less than
(resp. at most) one. The projective linear group acts ondhiety of the semistable fractional
divisors and this action is proper on the (open) subvariétige@stable ones. So a stable orbit
is always closed. Any other minimal semistable orbit is espnted by a fractional divisor
whose support consists of two distinct points, each withgiwel. The points of its Hilbert-
Mumford quotient are in bijective correspondence with thiaimal semistable orbits. We
thus get a projective compactificationo ,+2 C Mg,%g. A period map enters the picture
by imitating the familiar approach to the elliptic integrtdat is, by passing to a cyclic cover
of P! on which the Lauricella integrand becomes a regular difféaé Concretely, write
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w; = m;/m with m;, m positive integers such that the;’s have no common divisor, and
write v; for the denominator ofi;. Consider the cyclic covet’ — P! of orderm which has
ramification overz; of ordery;. In affine coordinateg} is given as the normalization of the
curve defined by

The Lauricella integrand pulls back to a regular differahiion C, represented by ~1d(.
Overz; € P! we havem /v; distinct points in each of which has a zero of order; (1 —

ui) — 1. This form transforms under the Galois group by a certaimattary and up to a
scalar factorjj is the only regular form with that propertyf - (C)X is a line spanned by.

It turns out that such Hodge data are uniformized by a compddix Although the holonomy
group need not map to an arithmetic group, much of Shimuhnasry applies here. Indeed,
Shimura (see for instance [23]) and Casselman [5] (who wéasBh'’s student at the time)
had investigated in detail the case for whighs prime before Deligne and Mostow addressed
the general situation. A (if nahe) chief result of Deligne-Mostow [12] is a refined Torelli
theorem: if their INT condition is satisfied, then

(i) the holonomy group maps to a subgroup of automorphisnteeHodge period ball
which is discrete and of cofinite volume,

(i) the corresponding orbit space admits a compactificedioBaily-Borel type (this adds
a finite number of points, the cusps),

(iii) the map described above identifie?Tz(g,n 1o With this Baily-Borel compactification,
making the minimal semistable nonstable orbits correspotite cusps.

This is essentially the content of their Theorem (10.18 ey also determine when the
holonomy group is arithmetic (the systematic construatisuch groups was in fact Mostow’s
original motivation).

6.4 The Borel-Serre extension

Before we begin the proof of the main theorem, we first makenadieservations regarding
the unitary groufJ(h) of h (sinceA has an origin, we regard this as a group operating)in
Suppose we have a unipotent transformagion U(h) that is not the identity. LeE C A

be the fixed point space gf ThenE"' is g-invariant and hence contains eigenvectors. So
EnN E+is non trivial. In other wordsE contains an isotropic liné. Now g induces inf+ /1

a transformation that will preserve the form inducedhbysince this form is positive definite
andg is unipotentg will act trivially on I+ /1. The unitary transformations which respect
the flag{0} c I c I+ C A and act trivially on the successive quotients form a Heisegb
groupN; whose center is parametrized as follows. Notice that thedimensional complex
vector spacé ® I has a natural real structure which is oriented: it is definethb ‘positive’
ray of the elements ® e, wheree runs over the generators 6f This line parametrizes a one
parameter subgroup 6fL(A):

exp: [ @1 — GL(A), exp(le®e):z€ Ars z+ Mh(z,e)e, ecI,AeC.
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The transformatiorxp(Ae ® e) is unitary relative toh if A is purely imaginary and sexp
mapsy/—17 ® I(R) to a one-parameter subgroup©Gfk). This one-parameter subgroup
is the center of the Heisenberg gronp above. The groupV; is parametrized by pairs
(a,e) € I+ x I: any element of this group is written

Jae: 2 € A 2+ h(z,a)e — h(z,e)a — 1h(a,a)h(z, e)e.

This is not quite unique siNC&,+xc.e = ga, WhenA € R. But apart from that we have
uniquenessN; modulo its center can be identified with vector grdipy I @ I by assigning
to (a, ) its image inl+ /I 1.

Let T be a subspace of on whichh is degenerate with kernél sol ¢ 7' C I+. We
suppose thal” # I. Clearly, N; preserved’. Suppose thaj acts trivially onA/T and
induces in the fibers ol — A/T atranslation. So if we writg in the above formyg = g ..,
then we see that must be proportional te: a = e with X\ purely imaginary, in other words
g is in the center ofV;.

Let I C A be an isotropic line. When is a positive real number, and € I, then
exp(Ae ® e) is not unitary, but it will still mapB into itself. In fact, the orbits of the ray of
positive elements i ® I are (oriented) geodesic rayslinwhich tend to[7] € OB. Perhaps
a more concrete picture is gotten by fixing a generater I so that every point oB can
be represented in the affine hyperplan&idefined byh(z, e) = 1: under the realization of
B in this hyperplane, the geodesic ray action becomes sirhplgtoup of translations over
positive multiples ot. We regard the spad¥ ) of these rays as a quotient spac®afo that
we have a fibration by rays(7) : B — B(I). The Borel-Serre topology on the disjoint union
BUB(I) is generated by the open subsetBaind the subsets of the fortix () (U), where
U runs over the open subsetshbinvariant undetV; and the positive ray ii® 1. This adds a
partial boundary t@® so that it becomes a manifold with boundary. Bet > B be theBorel-
Serre extensioassociated td': for every isotropic linel C V for whichI' N Ny is discrete
and cocompact, we do the above construction. That mekes manifold with boundary, the
boundary having in an infinite number of connected compa@nrtbeing empty). Notice
that the action of” on this boundary is properly discrete and cocompact—thisdsed the
main justification for its introduction.

6.5 Proof of the main theorem

We now turn to the proof of Theorem 6.2. Throughout this secthe assumptions of that
theorem are in force and we also retain some of the notatiboadnced in Subsection 5.3,
such asC™ (H), LO(H), LT (H),- - -.

We begin with a lemma in which we collect a number of usefuperties.

Lemma 6.7 We have:

(i) Forany L € Li,(H), h induces on(V/L)° a flat hermitian form which is positive,
semipositive with one-dimensional kernel, hyperbolicoading to whether; — 1 is
negative, zero, or positive.

(i) The intersection of any two distinct membérs L, of £°(H) U LT (H) is irreducible
and (hence) belongs 0 (H).

67



(i) If L € LT (H), then the longitudinal Dunkl connection di? has finite holonomy and
L satisfies the Schwarz condition (so that the system satisée3chwarz condition).

Proof. The flat hermitian form induces one on the Dunkl systénd.. This form is nonzero
(L cannot be a hyperplane since we assumedithakes a value less than one on these) and
so the first statement readily follows from our results intiec5.

If for L1, Lo asin the lemmal,; N L» were reducible, then then the flat form Bi(L, N
L,) induced byh would have an isotropic plane, a property which is cleartpidden by the
signature ofh.

LetnowL € LT (H). Then the longitudinal holonomy ih° has a flat positive hermitian
form. The desired properties now follow from Theorem 5.6ziaw of the wayx” is defined,
and part (i) any one-dimensional memberdm (H%) is in fact a member of * () and so
satisfies the Schwarz condition and any codimension one meimis ~ (%) comes from a
member of£~ (M) and hence satisfies the Schwarz condition. O

Discussion 6.8We introduced in the Discussion 5.8 a blowlp  under the assumption
that £°(H) is empty and described the behavior of the projectivizedb@ing map on the
preimage of the origin of/. We generalize this to the situation whet®(#) is allowed to
be nonempty.

Our V* will now be obtained by blowing up the members®f (H) first (in the usual
order), and then blowing up ea¢he £°(H) in areal-oriented mannerThis is unambigu-
ously defined since by Lemma 6.7-(ii) the intersection of sueh members lies id ™ (H)
and so their strict transforms will not meet. It is clear that is a manifold with smooth
boundary whose manifold interi®™ — &V T is a quasiprojective variety. The latter contains
v/ as an open-dense subset and the complemérif oh V+ — 9V * is a normal crossing
divisor whose closure iiv + meets the boundary transversally.

Any L € LT (H) defines a diviso(L) in VT and anyL € £°(H) defines a boundary
componen®;, V. These cross normally in an obvious sense so that we get ehstiatifi-
cation of V*. Let us describe the strata explicitly. Fbre £°(H) U £+ (H) we defineL~
as in Discussion 5.8:

L™ :=L—-U{M : McL'H)ULT(H),L < M}.

So everyM € Li(H) which meetsL~ but does not contait. belongs to£~(H). In
particular,L~ is contained in the subsét’ of L defined by the longitudinal connection. It is
clear that — = V7. The preimage of.~ in V' is a union of strata and trivial as a stratified
space ovel.~. It has a unique open-dense stratum which can be identifigdtivé product

L= x P((V/L)?) in caseL € L*(H). If L € L£°(H), then we must replace the factor
P((V/L)¥) by S(V/L), whereS assigns to a (real) vector space the sphere of its real half
lines. (There is no need to writd¢’/ L)’ here, since the latter equalg L — {0}.)

An arbitrary stratum is described inductively: the colientof divisors and boundary
walls defined by a subset d° (H) U £ (H) has a nonempty intersection if and only if that
subset makesup aflags : Lo > Ly > -+ > Ly > L1 = V. Their common intersection
contains a straturfi(L,) which decomposes as

S(La) = Ly x [] PULi/Lioa) ) x BV/ L)),
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atleast, wher, € £ (H);if Ly € £L°(H), we mustreplace the last factor 8V /Ly). Itis
clear thag.icX naturally acts oV *. The covering// — V7 extends naturally to a ramified
coveringV+ — V+ with ' x G-action. Since the holonomy alon§yL,) decomposes
according to its factors, a connected comporf(it, ) of the preimage of a stratui(L, )
decomposes as a product of coverings of the factors(@f). By Lemma 6.7, the covers
of these factors are finite except for the last, which is tHetwmy cover of?((V/L,,)?) or
S(V/Ly,).

The preimageP(V ™) of the origin of V in VT is a compact manifold with boundary.
Let us write BT for P(V*+) and denote its interior bjs. So B is a quasiprojective manifold
which containsP(V /) as the complement of a normal crossing divisor. The strat&in
are given by the flag&. which begin withL, = {0}. We denote byD(L) the exceptional
divisor in BT defined by € L1 (H). (Itis easy to see thdd(L) = P(LT) x P((V/L)™).)
The groupl” acts onB+ properly discontinuously with compact orbit spaée.

Proposition 6.9 The projectivized developing map extends to this covering eontinuous
I'-equivariant mapB+ — B which is constant on thé&'-orbits. It has the following prop-
erties:

(i) Itmaps every boundary componenﬁ to a Borel-Serre boundary componentiof
and the restrictionB — B is analytic.

(iiy Every irreducible component of the preimagefhof an exceptional divisoD(L),
L € L£*(H), is mapped to an open subset of special subbalb aff codimension
dim(L) and the resulting map from such irreducible components &zigp subballs
reverses the inclusion relation.

(iif) Every connected component of a fiber of the nifa\ﬁ — BT is compact. If that
connected component is a singleton, then at the image o$itiggeton inG\ B+, the
mapG\ Bt — BT is local isomorphism.

Progf/.The proof amounts to an analysis of the behavior of the ptigjeed developing map
on B+. Since we did this already in the case without boundary carapts in the proof of
Theorem 5.6, we shall now concentrate on the case of a boggtiatum. Such a stratum is
givenbyaflagle = ({0} = Lo > Ly > -+- > Ly > Li+1 = V), forwhich L; € LT (H)
fori < kandL; € £°(H):

S(Le) 2P((L1/Lo)") x -+ x P((Li/Lr-1)") x S(V/Ly)

Let us writed;, for the boundary component & defined byLy. If we had not blown up the
strict transform of;, in a real-oriented fashion, but in the conventional marthen the last
factor would beP(V/Ly). On a point over that stratum, the developing map is accgrtdin
Proposition 2.22 affine-linearly equivalent to a map takiatyes inC x 73 x C - - - x Ty, x C
with components

(e T QRIS ™ (20 (L B log ).
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HereF; is a morphism at a point of this conventional blowup to a lirszaceT;, ¢; defines
theith exceptional divisor antko, Fi, ..., Fi, tx) is a chart. However, on the real-oriented
blowup,log t;, is a coordinate: its imaginary paitgt; helps to parametrize the ray space
S(V/Ly) and its real partog |t;| must be allowed to take the valuex (its value on the
boundary). We denote this coordinate On a connected compone$itL, ) of the preimage
of S(L.) in B*, we have defined roots of the normal coordinates: 7/, i = 0,...,k —

1, so that(Fy, 71 ..., Fy, ) is a chart forB+. In terms of this chart, the projectivized
developing map becomes

(7_1—171 t 'T;ff71(17F1)7 .. 'aT;ff71(17Fk—1)7 (15Fk77-k))7

where we recall that-p; is a positive integer and the constant comporieréminds us of
the fact that we are mapping to an affine chart of a projecipars. We use this to see
that the projectivized developing map extends3tb — B™. A chart of B is (implicitly)
given by the affine hyperpland; C A defined byh(—,e) = 1, wheree is minus the
unit vector corresponding to the slot occupiediy(the geodesic action is then given by
translation over negative multiples ef. This normalization is here already in place, for
the coordinate in question is in the slot with constant 1. Sotlken have in fact a chart
of the Borel-Serre compactification, provided that we rertuemhavtr;C takes its values in
[~00,00) + v/—1R. In particular, we have the claimed extensiBri — B*. It sends the
boundary stratun$(L, ) to the Borel-Serre boundary (fiXe(7;, ) takes there the valuecc)
with image herein the locus defined by putting all but the thete slots equal zero. The
fiber passing through is locally given by putting+_; = 0 and fixing the values of}, and
T (with real part—o0). In particular, this fiber is smooth &t This is true everywhere, and
hence a connected component of that fiber is also an irredumitmponent. Let us denote
the irreducible component passing throughy ®;. So®; lies overdy.

If £ = 1,then®; = {Z} and the extension is atsimply given by(1, F;, 1) and hence is
there a local isomorphism. Iif > 1, then sincg F, Im(73;)) defines a chart for the product
P((Lk—1/Lg)") xS((V/Lg)™"), ®5 is an irreducible component of a fiber of the natural map

e~

8kD(Lk,1) — 8kD(Lk,1) = ]P)(LLJ X P((kal/Lk)Jr) X §((V/Lk)+) —
= P((Ly—1/Li)™) x S((V/Li)™).

SinceL;_, has finite longitudinal holonomy by Lemma 6.7, the irredigitomponents of
the fibers of this map are compact. & = {z}, then we must havéim L;_, = 1. This
implies thatt = 2 and that(r,, F», 72) is a chart ofB+ at Z (we haveT; = {0} in this case).
The extension af is given by(r; ', 1, F», 12). SinceGy, acts on the first component as
multiplication by|p; [th roots of unity, we see that the extension i€ @t local isomorphism
moduloG. The proof of the proposition is now complete. O
Proof. [Proof of Theorem 6.2] According to Proposition 6.9, the néapB+ — BT has
the property that the connected components of its fibers @rgact, that the preimage of
the Baily-Borel boundary is in the boundary of the domain tirad where this map is locally
finite it is in fact a local isomorphism. So Lemma 5.11 can bgliag (in its entirity) to this

70



situation and we find that for the topological Stein factafi@an ofG\fB\J: — BT,
G\EJ: e G\E\;Gt — BY,

the second map is a local isomorphism oBer We first prove tha’G\EGt — Bisal-
isomorphism. For this we verify that the hypotheses of Lendr2aare verified for the Stein
factorG\’B\;Gt with Y’ .= B.

We know thafl” acts properly discontinuously g8 with compact fundamental domain.
The first Stein factor is proper afdequivariant and sb' acts also properly discontinuously
on G\E:GL. Sincel acts onB as a group of isometries, Condition (ii) of 5.2 is fulfilled as
well. The lemma tells us thaﬁ‘?\éet — B is then a covering projection. Bl is simply

connected, and so this must be an isomorphism. It is easgtihat>\ B+s; — B* is then
aI'-homeomorphism. SincE acts on the domain discretely and cocompactly, the same is
true on its range. This implies thAtis discrete and of cofinite volume in the unitary group
of h.

The irreducible components of the preimageinf the exceptional divisor®(L) are
locally finite in B; since B — G\ Be, is proper, the image of these B are also locally
finite. An irreducible componenb(L) over D(L) gets contracted iflim . > 1, and its
image inB is the intersection o with a special subspace of codimension equal to the
dimension ofL. The irreducible components of the preimages of the digiS(Z) in B+
are locally finite. Hence their images Bhare locally finite inB. We get a divisor precisely
whendim L = 1. It follows that the collection of special hyperplanes isdtly finite on
B, and thatG\P(V/) c G\Bes maps isomorphically onto the complement of the special
hyperball arrangement moduly '\ B~

SinceG\P(V/) — T'\B~ is an isomorphism, so §\V/ — I'\(L*)~. O

6.6 A presentation for the holonomy group

. The holonomy group is the image of a representation of the fundamental grQu@\ V°, «).
In caseG is a Coxeter group anH is its set of reflection hyperplanes, thenG\V?°, %) is
the Artin group ofG that we encountered in Subsection 3.5. But as the Laurisgfitems
show,H may very well be bigger than the set of reflection hyperplari&s. We describe a
set of generators of the kernel of the holonomy represemtatid thus obtain a presentation
of the holonomy grouf’ in case we have one af (G\V°, ).

Let us first note that anf € £() unambiguously determines a conjugacy class in the
fundamental group o¥°: blow up L in V' and take the conjugacy class of a simple loop
around the generic point of the exceptional divisor in (theipage of)V’°. If we pass to
the orbit spac&’\V°, thenL° determines a stratum i&\ V. This stratum determines in the
same way a conjugacy classan(G\V°, ). If L is irreducible and and, € 71 (G\V°, %)
is a member of this conjugacy class, thzéﬁ” is in the conjugacy class af, (V°, ) defined
above. Ifsy, # 1, then the holonomy around this stratumGiV° has order,, whereqy, is
the denominator of — k1. Soa$" is then the smallest power af;, which lies in the kernel
of the monodromy representation.
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Theorem 6.10 Suppose that we are in the elliptic, parabolic or hyperbal&se, that is,
in one the cases covered by Theorems 5.1, 5.6, 5.13 and 6.2n ITis obtained from
71 (G\V°, %) by imposing the relations?* = 1 for

(1) L € Hand
(2) L € Li;x(H) is of dimensior< 1 andky, > 1.

(Notice that for the complete elliptic and parabolic case$ &nd 5.13 the relations of the
second kind do not occur.)

Proof. We limit ourselves to the hyperbolic case, since the othexeasier. Theorem 6.2
shows that7\V° can be identified with an open subsetIdfL. SinceL is a contractible
(hence simply connected) complex manifaltls the orbifold fundamental group a@f\L.
Hence the quotient; (G\V°,*) — T can be understood as the map on (orbi)fold funda-
mental groups of the ma@\V° — T'\L. Itis well-known (and easy to see) that the kernel
of such a map is generated by the powers of the conjugacyeslasshe fundamental group
of G\V° defined by irreducible components of codimension one of tmepement of the
image,I"\LL — G\V'°, the power in question being the order of local fundamemalg at a
general point of such an irreducible component. Theseugite components are naturally
indexed by the strata @\ V of the type described in the theorem: the strata of codins@nsi
one of G\ V yield the irreducible components meetiag V4, the zero dimensional stratum
corresponds the image of the zero secfith C I'\LL and the strata of dimension one on
whichx > 1 correspond to the remaining irreducible components. Theespoare of course
as stated in the theorem. O

Remark 6.11 Once we seek to apply Theorem 6.10 in a concrete case, we heedrse

to have at our disposal a presentation of the fundamentalpgndG\V° in which the ele-
mentsaz, can be identified. Fo&G a Coxeter group, this is furnished by the Brieskorn-Tits
presentation [4], [11]; this produces in the elliptic rarige presentations of the associated
complex reflection groups that are due to Coxeter [8], Sesti@.1 and13.4. For the case of
an arbitrary finite complex reflection group, one may use agration of the fundamental
group due to Bessis [2].

6.7 Automorphic forms and invariant theory

According to Theorem 4.5, the developing midp — (LX)~ is homogeneous of negative

degreep, (recall thatp, is the numerator of the negative rational numbgr- 1). We can

express this in terms of orbifold line bundles as follows)ifi 5 (—1) denotes th&'-quotient

of the automorphic line bundi@g- (—1) overI'\B—, then the pull-back of this bundle over

P(V') is isomorphic taDp vy (—po). NowP(V) —P(V)/ is a closed subset &(1') which

is everywhere of codimensian 1 and so for any: > 0, the space of sections ¥y s (k)

is the spacé&C[V], of homogeneous polynomials dn of degreek. We conclude that we

have an isomorphism of graded algebras
EnzoH(B™,0(—n))" 2 @,>0C[V]E

—npo*’
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In particular, the lefthand side is finitely generated as®ibj can be identified witldr\P(V').
In [16] a systematic study was made of algebras of meromoigitiomorphic forms of the
type under consideration here. The upshot is thaPthg of the lefthand side is explicitly
described as a modification of the Baily-Borel compactifarabf I'\ B which leaved™\B~
untouched.

To be more explicit, let us start out with the data consisthghe ballB, the groupl’
, and the collection of special hyperplanes. Let us also nia&eather modest assumption
thatdim V' > 3, so thatdim B > 2. The following lemma verifies the central hypothesis of
Corollary 5.8 of [16] (where the hermitian form is given thgposite signature).

Lemma 6.12 Everyl-dimensional intersection of special hyperplanes is peesitefinite.

Proof. Any 1-dimensional intersectioR” of special hyperplanes which is negative semidefi-
nite defines a point on the closure®fIf K is negative (which defines an interior pointi,
then K is a special subspace and hence corresponds to a membe(Hf) of codimension
one, that is, a membétf € H. Sincexy < 1, this is impossible. IfK is isotropic, then
choose &-dimensional intersectiof? of special hyperplanes which contaiAs Since the
projectivization of P meetsB, it is a special subspace and hence corresponds to a member
L € LT (H) of codimensior2. The transversal Dunkl system Ir)/ L has a projectivized
developing map taking values N P(P). SoH, contains a membédl with ky = 1. But
this we excluded also. O

Although Corollary 5.8 of [16] does not apply as its standsreed not be arithmetic—
one can verify that the arguments to prove it only require be discrete and of cofinite
volume in the relevant unitary group. It then tells us sorimgtlve already know via our main
theorem, namely that the algebra of automorphic form&avith arbitrary poles along the
special hyperplanes is finitely generated with positiverdegenerators and that the Proj of
this graded algebra defines a certain projective completidh B~: in the present situation
the latter is justP(G\V). But in [16] the completion is explicitly described as a bilgw
followed by a blowdown of the Baily-Borel compactificatiohB\B. If we go through the
details of this, we find that this intermediate blowup is adt@\ B : the difference is that
we now must blow up the parabolic € £°(H) in the standard manner and not in the real-
oriented sense.

Question 6.13The algebra of"-automorphic forms (of fractional degree) must appear in
C[V]¢ as a subalgebra. It is in fact the subalgebraGeihvariant polynomials which in
degreen vanish on eacl, € £*(H) of order> n(x, — 1)/(ko — 1). Itis only via our
main theorem that we can give a geometric interpretatioh@Ptoj of this subalgebra as a
modification ofP(G\ V). In the Lauricella case, this can done directly by means ofrgsric
invariant theory, but is this possible in general?

7 Classification of orbifolds for reflection arrangements

Our aim is to list the Dunkl systems whose underlying arramgygt is that of a finite reflection
group and for which the holonomy is as studied in the previthapters: elliptic, parabolic
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or hyperbolic with a discrete holonomy group of cofinite vakel More precisely, we classify
the cases for which the hypotheses of the Theorems 5.1, Bdl8.2 are satisfied.

In order to display the information in an efficient way, weleleate a little on Remark
2.27. Given a Dunkl system of typé, onV = C"*!/(main diagonal with the parameters
10, - - - 5 n, then form = 0, ... n we have a map

Sm i C" =V, (uryeety) = (Ul w0002 ul).
Remark 2.27 tells us that pulling back the Dunkl system atbiggmap yields a Dunkl system
of type B,,; we refer to this way of producing B,,-system aseduction of the4,,-system at
indexm. Notice that any typd3;, subsystem of thés,,-system determines/a+ 1-element
subsetl C {0,...,n} which containsn (and vice versa) with taking the value-1+2u; on
its fixed point subspace (whegg := >, ; 1;). On the other hand, any typé, subsystem
is contained in a unigue subsystem of tyBg;; and so determineg: + 1)-element subset
of J C {0,...,n} — {m}; s takes then valug ; on its fixed point subspace.

If we only wish to consider non-negative weights on arrangets, then reduction at
indexm is allowed only if% < pi + pm < 1foralli # m. Since the Dunkl system is
invariant under reflection in the short roots, we see thaSittevarz condition on the weight
k for a B-type intersection becomes: for dll> m, 1 — uy is zero or the reciprocal of an
integer. In particular the weights dB,, that satisfy the Schwarz conditions are all obtained
by reduction at an index oA,, that satisfies the Schwarz conditions.

The tables below list all the weights for arrangements oétyipand B that satisfy the
Schwarz conditions. The parametersare defined by:; /d wheren; andd appear in the
table. If a parametet,,, is typeset in bold then the weight obtained by reduction attjom
m satisfies the Schwarz conditions for type If additionallyn; + n,, = d/2 for all i # m
then the reduced weight can be considered as a weight onamgament of type). Note
that such a weight is then invariant under the Weyl-grouypéD. In the “remark” column
“ell” stands for elliptic, “par” for parabolic and “cc” for@-compact. If no remark indicates
otherwise, the group will be hyperbolic and acts with coéiniblume.

We omit the case = 0 from our tables. There is one additional series, corresipgrtd
the full monomial groups, that is obtained as follows. Takegers: > 1, ¢ > 2 and define
aweightond,, by o = ... = pp—1 = 0, u, = 1 — 1/¢. This weight can be reduced at
indexn and satisfies both the Schwarz conditions for tyjpend typeB.

Table 1: TypesA. and B,

#1d ng mi mns m3 ng ns ng ny ng Mng | remark

113 1 1 1 1

214 1 1 1 1 par
3(4 1 1 1 2

415 2 2 2 2 cc
5(6 1 1 1 1 ell
6|6 1 1 1 2 ell
7|6 1 1 1 3 par
8|6 1 1 1 4
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par

cc
cc
cc
cc
cc
cc
cc
cc

cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc
cc

cc

cc
cc

cc
cc
cc
cc
cc
cc

cc
cc
cc

6 1 1 2 2
6 1 1 2 3
6 1 2 2 2

6 1 2 2 3

6 2 2 2 3
8 1 3 3 3
8 2 2 2 5

8 3 3 3 3

8 3 3 3 4
9 2 4 4 4

9 4 4 4 4

9
10
11
12
13
14
15
16
17
18
19

20010 1 4 4 4

21110 2 3 3 3

22110 2 3 3 6

23110 3 3 3 3

24110 3 3 3 5

25110 3 3 3 6

26|12 1 5 5 5

27112 2 2 2 7

28112 2 2 2 9

29112 2 2 4 7

30112 2 4 4 7

3112 3 3 3 5

32112 3 3 3 7

33|12 3 3 3 8

34112 3 3 5 5

3512 3 3 5 6

3612 3 5 5 5

37112 3 5 5 6

38|12 4 4 4 5

39|12 4 4 4 7

40112 4 4 5 5

41112 4 4 5 6

42112 4 5 5 5

43112 4 5 5 6

44112 5 5 5 5

45112 5 5 5 6

46114 2 5 5 5

47114 5 5 5 5

48115 4 6 6 6
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
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cc
cc
cc
cc
cc
cc
cc
cc

cc
cc

par

cc
cc

6 1 2 2 2 2
6 1 2 2 2 3
6 2 2 2 2 3
8 1. 3 3 3 3
8 3 3 3 3 3

4 1 1 1 1 1 1

4 1 1 1 1 1 2

6 1 1 1 1 1 1
6 1 1 1 1 1 2
6 1 1 1 1 1 3
6 1 1 1 1 1 4
6 1 1 1 1 2 2
6 1 1 1 1 2 3
6 1 1 1 2 2 2
6 1 1 1 2 2 3
6 1 1 2 2 2 2

4 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1

6 1 1 1 1 1 1 2
6 1 1 1 1 1 1 3
6 1 1 1 1 1 14
6 1 1 1 1 12 2
6 1 1 1 1 12 3
6 1 1 1 12 2 2

6 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 12
6 1 1 1 1 1 1 13
6 1 1 1 1 1 12 2

89

90
91

92

93

94110 2 3 3 3 3

95|10 3 3 3 3 3

96|10 3 3 3 3 6

97112 2 2 2 2 7

98|12 2 2 2 2 9

9|12 2 2 2 4 7
100112 3 3 3 3 5

101112 3 3 3 3 7

102112 3 3 3 5 5

103112 3 3 5 5 5

104

105
106
107
108
109
110
111
112
113
114

115110 3 3 3 3 3 3

116 (12 2 2 2 2 2 7

117
118
119
120
121
122
123

124
125
126
127
128
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1296 1 1 1 1 1 1 1 1 1
1306 1 1 1 1 1 1 1 12
1316 1 1 1 1 1 1 1 1 1 1

Tables2-5 list all remaining cases for the arrangements of the exaeatireal and com-
plex reflection groups. The Shephard grodps, Gas andGs, are omitted because these
are already covered by the tables for typls B; and A4 respectively.

Only in the F, case the group has more than one orbit in its mirror arrangenTéis
number is then two, which means that its discriminant hasitveolucible components; we
write ¢; andg, for the ramification indices along these components, whéauige a single
in all other cases. The weighton the arrangement is obtained by setting = 1 — 2/qy
wheregy; is the ramification index along the image of the mirfoiin the orbit space.

All listed cases correspond to a hyperbolic reflection grexgeply; = 2, ¢o = 3 for type
F4 which is of parabolic type. If a numbaeror ¢; is typeset in bold then the corresponding
group acts co-compactly on a hyperbolic ball, otherwiset avith co-finite volume. All the
obtained hyperbolic groups for theal exceptional root systems are arithmetic.
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Table 2: Types,,

n|l 6 718
ql 34|33
Table 3: TypeF,
q || 2 3 4|6

g || 3,4,5,6,8,12 | 3,4,6,12| 4| 6

The case;; = 2, ¢o = 3 is of parabolic type.
Table 4: Typedd,

n | 3 4
qll 34510 3,5

Table 5: Shephard-Todd grougs,

n || 24 27 29 |31 | 33|34
qll 3,4,56,812|345|3,4/35|3 |3
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