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§1. Introduction

A large part of spherical function theory on a Riemannian symmetric space can be

generalized, after restriction to a maximal split torus, to the case where the root mul-

tiplicities of the restricted root system are allowed to be arbitrary real or complex

parameters [HO, He 1, O 1, O 2, O 3, He 2]. We have called these more general func-

tions hypergeometric functions associated with a root system, since the rank one case

just amounts to the theory of the Gaussian hypergeometric function. Our approach

was through differential equations, whose form was quite easy to conjecture in simple

algebraic terms. However the existence of these differential equations only followed in

the very end, and depended at several stages on transcendental arguments.

In this paper we give an elementary algebraic construction of these hypergeometric dif-

ferential equations. We also find the associated shift operators as previously obtained

by Opdam [O 2]. The key tool is a global analogue of the Dunkl differential-difference

operators [Du, He 3]. Although these operators do not form a commuting family (as

they do in the infinitesimal case) they turn out to be self adjoint. Once this fact is

realized (and easily proved) the desired hypergeometric differential operators and their

shift operators are constructed in a fairly straight forward way.

Recently Macdonald has constructed q-analogues of the Jacobi polynomials associated

with a root system [Ma 2]. These polynomials form a bridge between the spherical

function theory for semisimple groups over a real and p-adic field. The q-analogue

constant term conjectures, formulated by Macdonald several years ago, naturally fit

into this frame work and even have appropriate generalizations [Ma 1, 2]. We hope

that the results of this paper will also have natural q-analogues, which in turn might

yield a solution to the Macdonald conjectures, analogously to the work of Opdam in

the case q = 1 [O 3].

§2. The operators Dξ are self adjoint.

Let E be a real vector space of finite dimension, endowed with a positive definite

symmetric bilinear form (·, ·). For α ∈ E with α 6= 0 we write

(2.1) αν =
2α

(α, α)
∈ E

for the covector of α and

(2.2) rα(λ) = λ − (αν , λ)α

for the orthogonal reflection in the hyperplane perpendicular to α.
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Definition 2.1. An integral root system R in E is a finite set of non zero vectors in

E with (β, αν) ∈ Z ∀α, β ∈ R and rα(β) ∈ R ∀α, β ∈ R.

Let R ⊂ E be an integral root system. We write W = W (R) for the group generated by

the reflections rα, α ∈ R. Let P = {λ ∈ E; (λ, αν) ∈ Z ∀α ∈ R} be the weight lattice

of R. We write R[P ] for the group algebra over R of the free abelian group P . For each

λ ∈ P let eλ denote the corresponding element of R[P ], so that eλ·eµ = eλ+µ, (eλ)−1 =

e−λ and e0 = 1, the identity element of R[P ]. The eλ, λ ∈ P form an R-basis of

R[P ]. The Weyl group W of R acts on P and hence also on R[P ] : w(eλ) = ewλ for

w ∈ W, λ ∈ P . It is easy to see that for α ∈ R the operator

(2.3) ∆α =
1 + e−α

1 − e−α
◦ (1 − rα) : R[P ] → R[P ]

is a well defined endomorphism of R[P ]. Clearly ∆−α = −∆α and w∆αw−1 = ∆wα

for α ∈ R, w ∈ W .

For ξ ∈ E the partial derivative

(2.4) ∂ξ : R[P ] → R[P ]

is defined by ∂ξ(e
λ) = (λ, ξ)eλ. Clearly the map ξ 7−→ ∂ξ is linear, and w∂ξw

−1 = ∂wξ

for ξ ∈ E, w ∈ W .

Definition 2.2. Suppose for α ∈ R we have given kα ∈ R with kwα = kα ∀α ∈

R, ∀w ∈ W . Suppose R+ ⊂ R is a fixed set of positive roots. For ξ ∈ E we write

(2.5) Dξ = Dξ(k) = ∂ξ +
1

2

∑

α∈R+

kα(α, ξ)∆α : R[P ] → R[P ].

Clearly the map ξ 7−→ Dξ is linear, and wDξw
−1 = Dwξ for ξ ∈ E, w ∈ W (note that

Dξ is independent of the choice of R+ ⊂ R).

Remark 2.3. The operator (2.5) is the global analogue of the Dunkl differential-

difference operators [Du, He 3]. However in the infinitesimal case the operators Dξ, ξ ∈

E commute, whereas in the global case

(2.6) [Dξ, Dη] = −
1

4

∑

α,β∈R+

kαkβ{(α, ξ)(β, η)− (α, η)(β, ξ)}rαrβ .

This formula can be derived along the same lines as in [Du, He 3]. We skip the proof

since we do not need this result. Operators of the form (2.3) appeared in the work

of Demazure on Schubert varieties [De 1,2], and their infinitesimal analogues were

introduced by Berstein, Gel’fand and Gel’fand [BGG].
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Definition 2.4. A function k = {kα; α ∈ R} as in Definition 2.2 is called a multiplicity

function on R. We say that k is a non-negative integral multiplicity function on R if

(2.7) δ
1
2

k :=
∏

α∈R+

(e
1
2
α − e−

1
2
α)kα ∈ R[P ].

Clearly the set of all non-negative integral multiplicity functions on R is closed under

addition. Moreover if kα ∈ 2Z+ ∀α ∈ R then k is certainly a non-negative integral

multiplicity function on R.

For f =
∑

fλeλ ∈ R[P ] with fλ ∈ R and fλ 6= 0 for only finitely many λ ∈ P we write

(2.8) f =
∑

f−λeλ

(2.9) CT (f) = f0.

Here CT denotes the constant term.

Definition 2.5. For k a non-negative integral multiplicity function on R we put

(2.10) (f, g)k = CT (fgδ
1
2

k δ
1
2

k ) f, g ∈ R[P ].

Proposition 2.6. For k a non-negative integral multiplicity funtion on R the formula

(2.10) defines a positive definite symmetric bilinear form on R[P ].

Proof: Clearly the formula (2.10) defines a symmetric bilinear form on R[P ].

Clearly the standard bilinear form (f, g) = CT (fg) on R[P ] is positive definite. Hence

the form (2.10) is positive definite since R[P ] has no zero divisors. Q.E.D.

It is easy to see that the inner product (2.10) has a (real) analytic continuation for

kα ≥ 0, ∀α ∈ R. The following theorem is one of the crucial ingredients for the main

result of this paper.

Theorem 2.7. For all ξ ∈ E the operator Dξ : R[P ] → R[P ] given by (2.5) is self

adjoint with respect to the inner product (2.10) on R[P ], i.e.

(2.11) (Dξf, g)k = (f, Dξg)k ∀f, g ∈ R[P ].

Proof: Observe that for (f, g) = CT (fg) we have (∂ξf, g) = (f, ∂ξg) ∀f, g ∈ R[P ].

Indeed this follows from CT (∂ξ(fg)) = 0 and the fact that ∂ξ is a derivation of R[P ].

Hence the adjoint D∗
ξ of Dξ with respect to the inner product (2.10) is given by

D∗
ξ = (δ

1
2

k δ
1
2

k )−1 ◦ {∂ξ +
1

2

∑

α∈R+

kα(α, ξ)(1− rα) ◦
1 + eα

1 − eα
} ◦ (δ

1
2

k δ
1
2

k ).
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First observe that

1

2

∑

α∈R+

kα(α, ξ)(1− rα) ◦
1 + eα

1 − eα
=

1

2

∑

α∈R+

kα(α, ξ)
1 + e−α

1 − e−α
◦ (−1 − rα)

= −
∑

α∈R+

kα(α, ξ)
1 + e−α

1 − e−α
+

1

2

∑

α∈R+

kα(α, ξ)∆α.

If we write R[P ]W for the space of W -invariants in R[P ] then it is clear that

(2.12) ∆α ◦ f = f ◦ ∆α ∀f ∈ R[P ]W , ∀α ∈ R

as endomorphisms of R[P ].

Since

δ
1
2

k δ
1
2

k =
∏

α∈R

(e
1
2
α − e−

1
2
α)kα ∈ R[P ]W

and

(δ
1
2

k δ
1
2

k )−1 ◦ ∂ξ ◦ (δ
1
2

k δ
1
2

k ) = ∂ξ +
∑

α∈R

kα(
1

2
α, ξ)

e
1
2
α + e−

1
2
α

e
1
2
α − e−

1
2
α

= ∂ξ +
∑

α∈R+

kα(α, ξ)
1 + e−α

1 − e−α

we find D∗
ξ = Dξ. Q.E.D.

Remark 2.8. If we write the bracket [·, ·] for the commutator of endomorphisms of

R[P ] then it is clear from (2.12) that for f ∈ R[P ]W , ξ ∈ E

(2.13) [Dξ, f ] = [∂ξ, f ] = ∂ξ(f).

This will be used in the next section to prove that certain endomorphism of R[P ]W

are in fact differential operators.

§3. Applications

With R+ ⊂ R a fixed set of positive roots we write

(3.1) P+ = {λ ∈ P ; (λ, αν) ≥ 0 ∀α ∈ R+}

for the dominant weights, and

(3.2) Q+ = {λ ∈ Q; (λ, µ) ≥ 0 ∀µ ∈ P+}

5



for the dual octant in the root lattice Q of R.

We define a partial ordering on P by

(3.3) λ ≥ µ if and only if λ − µ ∈ Q+.

Since each W -orbit in P meets P+ in exactly one point, it follows that the monomial

symmetric functions

(3.4) m(λ) =
∑

µ∈Wλ

eµ

form an R-basis of R[P ]W as λ varies over P+.

Definition 3.1. The Jacobi polynomials p(λ) = p(λ, k) ∈ R[P ]W are defined by

(3.5) p(λ) =
∑

µ∈P+,µ≤λ

cλµm(µ) , cλλ = 1

and

(3.6) (p(λ), m(µ))k = 0 ∀ µ ∈ P+ , µ < λ.

The existence of the Jacobi polynomials with the two properties (3.4) and (3.5) is

clear since p(λ) is equal to m(λ) minus the orthogonal projection of m(λ) onto span

<m(µ); µ < λ>. Clearly the Jacobi polynomials p(λ), λ ∈ P+ also form an R-basis of

R[P ]W .

In case kα = 0 ∀α ∈ R the Jacobi polynomials specialize to the monomial symmetric

functions, and in case R is reduced and kα = 1 ∀α ∈ R the Jacobi polynomials become

the Weyl characters.

Definition 3.2. A linear operator L : R[P ]W → R[P ]W is called triangular if

(3.7) Lm(λ) =
∑

µ∈P+,µ≤λ

aλµm(µ).

Proposition 3.3. If L : R[P ]W → R[P ]W is triangular and self adjoint (with respect

to the inner product (2.10)) then the p(λ) are eigenfunctions of L.
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Proof: Since L is triangular we have using (3.5)

Lp(λ) =
∑

µ∈P+,µ≤λ

cλµLm(µ)

=
∑

µ,ν∈P+,ν≤µ≤λ

cλµaµνm(ν)

=
∑

ν∈P+,ν≤λ

bλνm(ν)

with coefficients bλν given by bλν =
∑

µ∈P+,ν≤µ≤λ

cλµaµν .

Using that L is self adjoint we get

(Lp(λ), m(µ)) = (p(λ), Lm(µ))

=
∑

ν∈P+,ν≤µ

aµν(p(λ), m(ν)) = 0

if µ < λ. Hence Lp(λ) = aλλp(λ). Q.E.D.

Corollary 3.4. All self adjoint triangular linear operators on R[P ]W are simultane-

ously diagonalized by the Jacobi polynomials p(λ), and therefore commute with each

other.

For λ ∈ P+ we write

C(λ) = {µ ∈ P ; wµ ≤ λ ∀w ∈ W}

for the integral convex hull of Wλ.

Proposition 3.5. For λ ∈ P+ fixed the linear space

(3.8) {f =
∑

fµeµ ∈ R[P ]; fµ = 0 unless µ ∈ C(λ)}

is invariant under the operators Dξ, ξ ∈ E.

Proof: This is clear since the space (3.8) is easily seen to be invariant under both

∂ξ, ξ ∈ E and ∆α, α ∈ R. Q.E.D.

Notation 3.6. For ξ ∈ E and d ∈ Z+ we write

(3.9) Dξ,d =
∑

η∈Wξ

Dd
η : R[P ] → R[P ].

Clearly wDξ,dw
−1 = Dξ,d ∀w ∈ W, ξ ∈ E, d ∈ Z+ and we write

(3.10) Res(Dξ,d) : R[P ]W → R[P ]W
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for the restriction of Dξ,d to R[P ]W .

Theorem 3.7. The operators (3.10) are self adjoint triangular linear operators on

R[P ]W , and therefore commute with each other.

Proof: Using Theorem 2.7 it is clear that the operators (3.9) are self adjoint on R[P ].

In particular their restriction (3.10) to R[P ]W is self adjoint on R[P ]W . The fact that

the operators (3.10) are triangular is clear from Proposition 3.5. The theorem now

follows from Corollary 3.4. Q.E.D.

Remark 3.8. If λ1, . . . , λn are the fundamental weights in P+ (say rank (R) =

dim(E) = n), then it is well known that

R[P ]W = R[z1, . . . , zn]

with zj = m(λj) the fundamental monomial symmetric functions. By Remark 2.8 it

is clear that for f ∈ R[P ]W

ad(f)d(Res(Dξ,d) = ad(f)d(Res(
∑

η∈Wξ

∂d
η))

and therefore

Res(Dξ,d) ∈ R[z1, . . . , zn,
∂

∂z1

, . . . ,
∂

∂zn

]

is a differential operator of order d in the Weyl algebra with leading symbol

Res(
∑

η∈Wξ

∂d
η) independent of k.

Writing

(3.11) Res(Dξ,d)(p(λ)) = γ(Res(Dξ,d))(λ + ̺)p(λ)

with

(3.12) ρ = ̺(k) =
1

2

∑

α∈R+

kαα ∈ P+

it is clear that λ 7−→ γ(Res(Dξ,d))(λ) is the restriction to P+ of a polynomial on E of

degree d, whose homogeneous part of degree d equals

(3.13)
∑

η∈Wξ

(η, λ)d.
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Example 3.9. If ξ1, . . . , ξn is an orthonormal basis for E then by a straight forward

calculation one finds that

n∑

j=1

D2
ξj

=
n∑

j=1

∂2
ξj

+
∑

α∈R+

kα

1 + e−α

1 − e−α
∂α −

∑

α∈R+

kα

(α, α)

eα − e−α
∆α+

+
1

4

∑

α,β∈R+

kαkβ(α, β)∆α∆β

is independent of the choice of the basis ξ1, . . . , ξn. In particular
n∑
1

D2
ξj

commutes

with the action of W and hence

(3.14) Res(

n∑

1

D2
ξj

) =

n∑

1

∂2
ξj

+
∑

α∈R+

kα

1 + e−α

1 − e−α
∂α

is a well defined self adjoint triangular operator on R[P ]W . By Corollary 3.4 and

Theorem 3.7 it commutes with the operators (3.10). Observe also that (3.14) is a

second order differential operator (as it should be) with

γ( Res(
n∑

1

D2
ξj

))(λ) = (λ, λ) − (̺, ̺).

Proposition 3.10. If R[E]W denotes the algebra of W -invariant polynomials on E

then we have

γ(Res(Dξ,d)) ∈ R[E]W .

Proof: This was proved in [HO, Proposition 2.9] by an elementary algebraic argument.

Q.E.D.

Theorem 3.11. For each p ∈ R[E]W there exists a differential operator Dp = Dp(k) ∈

R[k, z1, . . . , zn, ∂
∂z1

, . . . , ∂
∂zn

] whose action on the Jacobi polynomials p(λ, k) is given

by

(3.15) Dp(k)p(λ, k) = p(λ + ̺(k))p(λ, k) , λ ∈ P+.

If we write D = D(k) = {Dp(k); p ∈ R[E]W} then the generalized Harish-Chandra

homomorphism

(3.16) γ = γ(k) : D → R[E]W
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defined by γ(Dp) = p is an isomorphism of R-algebras.

Proof: Only the first statement needs a proof. But this is proved by a standard

argument with induction on the degree using the fact that the polynomials (3.13) as

ξ ranges over E and d over Z+ generate the algebra of invariants R[E]W . Q.E.D.

An immediate consequence of this theorem is the orthogonality of the Jacobi polyno-

mials originally obtained by transcendental methods [He 1].

Corollary 3.12. The Jacobi polynomials satisfy the orthogonality relations

(3.17) (p(λ, k), p(µ, k))k = 0 ∀λ, µ ∈ P+, λ 6= µ.

Proof: Given λ, µ ∈ P+ with λ 6= µ there exists by Theorem 3.11 an operator

D ∈ D with γ(D)(λ + ̺) 6= γ(D)(µ + ̺). Since D is self adjoint and Dp(ν) =

γ(D)(ν + ̺)p(ν) ∀ν ∈ P+ the result follows from elementary linear algebra. Q.E.D.

We now describe how the Opdam shift operators can be obtained in an elementary way.

For S ⊂ R a W -orbit with 2S not contained in R we will construct the corresponding

raising operator. If we put S+ = R+ ∩ S then it is easily verified that

(3.18) ∆S =
∏

α∈S+

(e
1
2
α − e−

1
2
α) ∈ R[P ].

The Weyl denominator ∆S associated with S transforms under W according to a one

dimensional character εS , and every f ∈ R[P ] which transforms under W according

to εS is divisible in R[P ] by ∆S .

Notation 3.13. Let r be the cardinality of S+. For ξ ∈ E we write

(3.19) ES,ξ,r =
∑

w∈W

εS(w)Dr
wξ : R[P ] → R[P ].

Clearly wES,ξ,rw
−1 = εS(w)ES,ξ,r ∀w ∈ W, ∀ξ ∈ E and therefore

(3.20) GS,ξ = Res(∆−1

S ES,ξ,r) : R[P ]W → R[P ]W

is a well defined endomorphism of R[P ]W .

Remark 3.14. As before we see that

GS,ξ = GS,ξ(k) ∈ R[k, z1, . . . , zn,
∂

∂z1

, . . . ,
∂

∂zn

]
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is a differential operator of order ≤ r in the Weyl algebra with leading symbol of order

r ∆−1

S Res(
∑

w∈W

εS(w)∂r
wξ) independent of k. Using this it is easy to see that GS,ξ 6≡ 0

for ξ ∈ E regular for W (S).

Theorem 3.15. The operator GS,ξ given by (3.20) satisfies the shift relation

(3.21) GS,ξ(k)D(k) = D(k + 1S)GS,ξ(k) ∀D(k) ∈ D(k).

Here 1S is the multiplicity function on R defined by (1S)α = 1 ∀α ∈ S and (1S)α =

0 ∀α ∈ R\S.

Proof: For λ, µ ∈ P+ we have

(GS,ξ(k)p(λ, k), p(µ, k + 1S))k+1S
=

(ES,ξ,r(k)p(λ, k), ∆Sp(µ, k + 1S))k =

(p(λ, k), ES,ξ,r(∆Sp(µ, k + 1S)))k = 0

if µ + ̺(1S) < λ or equivalently µ < λ − ̺(1S). We conclude that GS,ξ(k)p(λ, k) is a

multiple of p(λ− ̺(1S), k + 1S), from which relation (3.21) is easily obtained. Q.E.D.

It remains to construct the shift operator corresponding to a W -orbit S ⊂ R with

2S ⊂ R. As observed by Opdam in his thesis this operator can be obtained from the

raising operator corresponding to 2S [O 4, Bijgevoegde Stelling 2].

Proposition 3.16. Suppose the root system R of type BCn decomposes under the

action of W as R = S1∪S2∪S3 with S2 = 2S3 and write k1, k2, k3 for the multiplicities

of roots in S1, S2, S3 respectively. With ∆S3
given by (3.17) the operator

(3.22) GS3
(k) = ∆3−2k2−2k3

S3
◦ GS2

(k1, k2, 1 − 2k2 − k3) ◦ ∆−1+2k2+2k3

S3

satisfies the shift relation

(3.23) GS3
(k)D(k) = D(k1, k2 + 1, k3 − 2)GS3

(k) ∀D(k) ∈ D(k).

Remark 3.17. Using formal algebraic properties of adjoints the complete family of

shift operators can be obtained as in [O 1].

Remark 3.18. Combining the work of Opdam [O 1,3] with the simple results of this

paper brings the solution of the constant term conjectures of Macdonald back to the

elementary level which their formulation requires.
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§4. Final remarks.

We start by making some historical comments. In the case that kα equals half the

root multiplicity of the restricted root system of a Riemannian symmetric space G/K

Theorem 3.11 is a consequence of the Harish-Chandra homomorphism for G/K and

the theory of the radial part [Ha, Hel 1,2]. The possibility of generalizing spherical

function theory to the case of arbitrary positive root multiplicities amounts in the rank

one case to the theory of the classical hypergeometric function F (α, β, γ; z). The fact

that higher rank spaces admit a similar generalization seems to have been observed

for the first time by Koornwinder, who did explicit calculations for root systems of

type A2 and BC2 [K]. Subsequently particular cases were dealt with by several people:

commuting differential operators for type An [Se, D, Ma 3], and shift operators for

type BC2 [K, Spr], type A2 [V], type A3 [B]. A complete discussion of the rank two

case was given by Opdam [O 1]. All methods were rather computational. Finally

Theorem 3.11 and Theorem 3.15 were obtained in full generality by Opdam [O 2, He

1].

The commuting family of differential operators, as described by Theorem 3.11, is

transformed by conjugation with the function (2.7) into a commuting family of differ-

ential operators of which the second order one becomes the Schrödinger operator of

the generalized Calogero-Moser system [HO, Prop. 2.2]. From this perspective Theo-

rem 3.11 can be reformulated as the quantum complete integrability of the generalized

Calogero-Moser system. Now the classical complete integrability follows from a clas-

sical limit [O2, Section 4]. Originally the classical complete integrability was obtained

by Moser for type An by realizing the system as a Lax pair [Mo]. This method was

generalized by Olshanetsky and Perelomov for the classical root systems An, BCn

[OP1]. For an explanation of this point of view of dynamical systems we refer to the

survey papers [OP2, OP3, R].

It is quite likely that large parts of the harmonic analysis of spherical functions can

be generalized to the context of this paper (say for kα ≥ 0 ∀α ∈ R). For the compact

case this now being established the next results to look for are the generalizations of

the Paley-Wiener theorem and the Plancherel formula in the non compact case. One

of the main ingredients for this seems to be an “explicit” generalization of the Abel

transformation of Harish-Chandra.

I believe that ultimately this work will lead to a simpler and more complete un-

derstanding of the harmonic analysis of spherical functions on Riemannian symmetric

spaces.
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[De 1] M. Demazure, Désingularisation des variétés de Schubert généralisés, Ann. Sc.
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