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§1. Introduction

In the theory of special functions a frequently occuring theme is that of deformation

of parameters. For example, the Jacobi polynomial P
(α,β)
n of degree n with param-

eters (α, β) occurs as a zonal spherical harmonic on the projective spaces Pk(R),

Pk(C), Pk(H) and P2(O) for (α, β) = ( 1
2
m1+

1
2
m2−

1
2
, 1

2
m2−

1
2
) with (m1, m2) =

(k−1, 0), (2k−2, 1), (4k−4, 3) and (8,7) respectively. The restriction on the degree n

to be a nonnegative integer can be removed by going to the dual (in the sense of É.

Cartan) hyperbolic space, and the discrete parameter n gets replaced by a continu-

ous spectral parameter. However the restriction on the parameters (α, β) as above is

somewhat peculiar. Although slight extensions are possible one does get the feeling

that Jacobi functions appear “in nature” only for a restricted set of rational parameters

(α, β). Nevertheless general properties such as special values, growth behaviour and

the differential equation go through for complex parameters (α, β). Moreover the har-

monic analysis of the Jacobi functions as motivated by their interpretation of spherical

harmonics goes through for real parameters (α, β) with α, β > −1.

A similar phenomenon is going on for higher rank symmetric spaces. A large part of

spherical function theory on a Riemannian symmetric space can be generalized, after

restriction to a maximal split torus, to the case where the root multiplicities are allowed

to be arbitrary real or complex parameters [H0, H1, O1, O2, O3]. We refer to these more

general functions as hypergeometric functions associated with a root system. Having

no longer the structure theory of symmetric spaces as a powerful tool available one has

to look for more elementary methods, mainly from topology, algebraic geometry and

complex analysis in several variables.

In [H1] a construction of these hypergeometric functions was given (at least for generic

parameters) based on Deligne’s solution of the Riemann monodromy problem in several

variables [D]. This construction reduces to the construction of certain representations of

the fundamental group of the complement of the global discriminant. This fundamental

group has a presentation, due to van der Lek-Looijenga [vdL1, vdL2], which is called

the extended Artin group. However it turns out that the monodromy representations

of this extended Artin group all come from representations of the associated affine

Hecke algebra. In Section 2 we explain this connection, and point out the analogy

between the van der Lek-Looijenga presentation of the extended Artin group and the

Bernstein-Zelevinskii basis for the affine Hecke algebra. In Section 3 we develop some

(elementary) representation theory of affine Hecke algebras from which the required

monodromy representations of the extended Artin group (for generic parameters) are
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obtained. Originally the existence of the monodromy representations of the extended

Artin group was a consequence of rank two reduction and case by case differential

algebraic calculations partly done on a computer [01]. As an application of the results

of Section 3 we give in Section 4 a solution to the Schwarz problem for which parameters

the hypergeometric function is an algebraic function of its variables. For root systems

of type ADE we work out the explicit parameter values in Section 5.

After this paper was written I received the preprint “Affine Hecke algebras and their

graded version” by G. Lusztig, which has some overlap with Sections 2 and 3 of this

paper.

I would like to thank the referee for useful comments.
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§2. The Bernstein-Zelevinskii basis for the affine Hecke algebra versus the

van der Lek-Looijenga presentation of the extended Artin group

Let R ⊂ a∗ be a reduced irreducible root system of rank n with a∗ = Hom(a,R) the

real dual of a Euclidean vector space a of dimension n. Let α∨ ∈ a be the coroot of

α ∈ R characterized by λ(α∨) = 2(λ, α) · (α, α)−1 ∀λ ∈ a∗, and R∨ = {α∨; α ∈ R}

the dual root system in a. Let W ⊂ GL(a) be the Weyl group generated by the

reflections rα(x) = x−α(x)α∨, α ∈ R. Fix a basis of simple roots {α1, . . . αn} for

R, and let R+ be the corresponding set of positive roots. Now W has a presentation

with generators the simple reflections r1, . . . , rn (we write ri for rαi
) and relations

(rirj)
mij = 1, 1 ≤ i, j ≤ n. Here mij ∈ N = {1, 2, 3, . . .} are the Coxeter integers

defined by 4 cos2(πm−1
ij ) = αi(α

∨

j )αj(α
∨

i ).

Let Q∨ = Z.R∨ ⊂ a be the root lattice of R∨. The affine Weyl group W̃ is the

group generated by W and the translations tx over x ∈ Q∨. It has a presentation

with generators r1, . . . , rn, t1, . . . , tn (we write ti for tα∨

i
) and relations (rirj)

mij = 1,

titj = tjti, ritj = tjt
−nij

i ri, 1 ≤ i, j ≤ n. Here nij ∈ Z are the Cartan integers defined

by nij = αi(α
∨

j ).

The affine Weyl group W̃ has also a presentation as a Coxeter group with (n+1) genera-

tors (with Coxeter diagram derived from the extended Dynkin diagram of R): Let α0 be

the lowest root in R (with respect to the partial ordering µ ≤ λ ⇐⇒ λ−µ =
n
∑

1
kiαi,

ki ∈ Z+ = {0, 1, 2, . . .} on a∗), and put r0 = rα0
tα∨

0
for the affine reflection in the

hyperplane α0(x)+1 = 0. Then W̃ has a presentation with generators r0, r1, . . . , rn

and relations (rirj)
mij , 0 ≤ i, j ≤ n (the numbers moi = mio are defined by the same

formula as before). Let l(w) denote the length of w ∈ W̃ relative to this presentation.

For the definition of the Hecke algebra of a Coxeter group the standard reference is the

exercises of Bourbaki [B,p.55].

Definition 2.1. Let ci ∈ C∗, i = 0, 1, . . . , n be non zero complex parameters with

ci = cj if ri and rj are conjugated inside W̃ (if and only if the ith and jth node of the

Coxeter diagram are connected by a chain of branches with odd marks). The affine

Hecke algebra H̃(c) of W̃ is a C-vector space with basis Tw, w ∈ W̃ and multiplication

rule

(2.1)
Trj

Tw = Trjw if l(rjw) = l(w)+1,

Trj
Tw = (1+cj)Tw − cjTrjw if l(rjw) = l(w)−1.

One can show that H̃(c) as an algebra has a presentation with generators Trj
,
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j = 0, 1, . . . , n and relations

(Trj
−1)(Trj

−cj) = 0 , j = 0, 1, . . . n,(2.2)

Tri
Trj

Tri
. . . = Trj

Tri
Trj

. . . , 0 ≤ i 6= j ≤ n, and mij factors(2.3)

on both sides.

The Hecke algebra H̃(c) is a deformation of the group algebra CW̃ of W̃ corresponding

to the case cj = −1, j = 0, 1, . . . , n. It is false that l(txty) = l(tx) + l(ty) for all

x, y ∈ Q∨. However l(txty) = l(tx) + l(ty) does hold for all x, y ∈ P∨

+ ∩ Q∨ where

P∨

+ = {x ∈ a : αj(x) ∈ Z+, j = 1, . . . , n} is the set of dominant coweights. Indeed this

is clear from the relation

(2.4) l(tx) = 2ht(x), x ∈ P∨

+ ∩ Q∨.

Here ht : Q∨ → Z is the homomorphism defined by ht(α∨

j ) = 1, j = 1, . . . , n (or

equivalently ht(x) = ρ(x), ρ = 1
2

∑

α>0
α). Hence Ttx

Tty
= Tty

Ttx
for all x, y ∈ P∨

+ ∩ Q∨.

Now any x ∈ Q∨ can be written in the form x = y−z with y, z ∈ P∨

+ ∩ Q∨, and the

element

(2.5) Tx = Tty
T−1

tz
∈ H̃(c)

is well defined independent of the choice of y, z ∈ P∨

+ ∩ Q∨.

From the above it is clear that

(2.6) TxTy = TyTx = Tx+y for all x, y ∈ Q∨.

We use the notation CQ∨ for the subalgebra of H̃(c) generated by Tx, x ∈ Q∨. Indeed

CQ∨ is just the group algebra of Q∨. The following result goes back to Bernstein and

Zelevinskii.

Theorem 2.2. Besides (2.6) the relations

Trj
Tx = TxTrj

if αj(x) = 0,(2.7)

Trj
Trj(x) = TxT−1

rj
if αj(x) = 1(2.8)

hold in the affine Hecke algebra H̃(c).

For a proof of this theorem (in case all cj are the same, but this is not a serious

restriction) we refer to [L1, p.643] and [KL, p.169].
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Remark 2.3. We write H(c) = H(c1, . . . , cn) for the subalgebra of H̃(c) =

H̃(c0, c1, . . . , cn) generated by Trj
, j = 1, . . . , n. Clearly H(c) is the Hecke algebra

of (W, {r1, . . . , rn}). We have

(2.9) H̃(c)
∼
=H(c) ⊗C CQ∨

as vector spaces, and the algebra structure on H̃(c) can be recovered from the algebra

structures on H(c) and CQ∨ using (2.7), (2.8) and

(2.10) (Tr0
−1)(Tr0

−c0) = 0,

where T−α∨

0
= Tr0

Trα0
with T−α∨

0
= Tm1

α∨

1

. . . Tmn

α∨

n
if α∨

0 + m1α
∨

1 + . . .mnα∨

n = 0 and

Trα0
= Tri1

. . . Trip
if rα0

= ri1ri2 . . . rip
is a reduced expression.

Let P = {λ ∈ a∗; λ(α∨) ∈ Z ∀α∨ ∈ R∨} be the weight lattice of R, and write H

for the complex torus with (rational) character lattice P . If h = C ⊗R a denotes the

complexification of a then we have a short exact sequence

(2.11) 0 −→ 2πiQ∨ −→ h
exp
−→H −→ 1

For λ ∈ P we write hλ for the corresponding character on H (observe that hλ = eλ(log h)).

We denote by Z[H] the ring of Fourier polynomials on H with integral coefficients.

There is a natural action of W on Z[H] and the invariants Z[H]W are isomorphic to a

polynomial algebra Z[z1, . . . , zn] where

(2.12) zj =
∑

µ∈Wλj

hµ, j = 1, . . . , n.

Here {λ1, . . . , λn} are the fundamental weights in P+.

Hence the quotient space W̃\h = W\H = Cn. The Weyl denominator

(2.13) ∆ = h−ρ
∏

α>0

(1−hα)

transforms under W according to the sign character. Hence ∆2 = D(z1, . . . , zn) for some

D ∈ Z[z1, . . . , zn] which is called the (global) discriminant of R. The complement in Cn

of the discriminant locus D = 0 is the regular orbit space for W on H, or equivalently

for W̃ on h.

Definition 2.4. The Artin group G̃ belonging to (W̃ , {r0, . . . , rn}) is a group with

generators g0, g1, . . . , gn and relations

(2.14) gigjgi . . . = gjgigj . . . 0 ≤ i 6= j ≤ n, mij factors on both sides
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Theorem 2.5. The fundamental group of the complement in Cn of the discriminant

locus D = 0 has a presentation as the Artin group G̃ belonging to W̃ .

This result is due to Nguyên Viêt Dung [N]. The corresponding result with W̃ replaced

by W was proved by Brieskorn [B], and the generalization to arbitrary Coxeter groups

was given by van der Lek [vdL1, vdL2]. The following result was conjectured by

Looijenga for type ADE, and proved by van der Lek in full generality.

Theorem 2.6. The Artin group G̃ belonging to W̃ has another presentation with

generators g1, . . . , gn, l1, . . . , ln and relations

(2.15) gigjgi . . . = gjgigj . . . 1 ≤ i 6= j ≤ n, mij factors on both sides ,

(2.16) lilj = ljli 1 ≤ i, j ≤ n,

(2.17) gilj = ljl
k
i gil

−k
i 1 ≤ i 6= j ≤ n, nij = −2k even,

(2.18) gilj = ljl
k+1
i g−1

i l−k
i 1 ≤ i 6= j ≤ n, nij = −(2k+1) odd,

and the element g0 is given by lm1

1 lm2

2 . . . lmn
n = g0gi1 . . . gip

with the same notation as

in Remark 2.3. This presentation of G̃ is called the extended Artin group.

For an explicit description of the loops corresponding to the above generators we refer

to [vdL1, vdL2]. We just remark that for the description given in Definition 2.4 one

should take the base point in a fundamental alcove (for W̃ ) in 2πia. For the description

given in Theorem 2.6 one should take the base point in a fundamental chamber (for W )

in a. The loops l1, . . . ln generate the fundamental group of the torus H.

Remark 2.7. For x ∈ Q∨ of the form x = k1α
∨

1 + . . .+knα∨

n we write lx = lk1

1 . . . lkn
n ∈

G̃. Then it is easy to see that

(2.19) lxly = lylx = lx+y for all x, y ∈ Q∨,

(2.20) gjlx = lxgj if αj(x) = 0,

(2.21) gjlrj(x) = lxg−1
j if αj(x) = 1.

Observe that these relations are the analogues of the relations (2.6), (2.7), (2.8) in the

affine Hecke algebra H̃(c).

Proposition 2.8. If αj(Q
∨) = Z then ljg

−1
j and gj are conjugate inside G̃. If αj is a

long simple root then ljg
−1
j and g0 are conjugate inside G̃.

Proof: Suppose αj(x) = 1 for some x ∈ Q∨. Using (2.21) we get lxgjl−x = lxl−rj(x)g
−1
j

= ljg
−1
j and the first statement follows. For the second statement observe that we can
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choose a sequence j1 = j, j2, . . . , jp ∈ {1, . . . , n} with

β∨

k = α∨

j1
+ . . . + α∨

jk
,

αjk+1
(β∨

k ) = −1
(

⇐⇒ rjk+1
(β∨

k ) = β∨

k+1

)

,

β∨

p = −α∨

0 .

Now rβk+1
= rjk+1

rβk
rjk+1

and l(rβk+1
) = l(rβk

)+2. Hence a reduced expression for

rα0
= rjp

rjp−1
. . . rj2rj1rj2 . . . rjp

and using (2.21) it is easily seen that

g0 = lβ∨

p
g−1

jp
. . . g−1

j1
. . . g−1

jp
= (gjp

. . . gj2)ljg
−1
j (gjp

. . . gj2)
−1.

Q.E.D.

Remark 2.9. We conclude that relation (2.10) is superfluous except for R of type Cn

(C1 = A1, C2 = B2), n ≥ 1.

Proof: Indeed, if R is not of type Cn then each long simple root αj satisfies αj(Q
∨) = Z.

Hence using Proposition 2.8 relation (2.10) is a consequence of the relations (2.6), (2.7),

(2.8) and the quadratic relation (Trj
−1)(Trj

−cj) = 0. Q.E.D.

The system of hypergeometric differential equations is a system of differential equations

on Cn with regular singularities along the discriminant locus D = 0 and at infinity [HO,

H1, O1, O2]. Using (2.20) the monodromy representation could be computed explicitly

by a rank one reduction.

Corollary 2.10. The monodromy representation of the hypergeometric differential

equations, which is a priori a representation of the Artin group G̃, comes in fact from a

representation of the affine Hecke algebra H̃(c) for suitable c = (c0, c1, . . . , cn).

Proof: By a rank one reduction it is clear that the generators g1, . . . , gn and l1g
−1
1 , . . . ,

lng−1
n all satisfy quadratic relations in the monodromy representation. Hence the corol-

lary follows from the second statement of Proposition 2.8. Q.E.D.
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§3. Representation theory of affine Hecke algebras

Let dj ∈ C∗, j = 0, 1, . . . , n be complex parameters with di = dj if ri and rj are

conjugated inside W̃ , and assume that

(3.1) d2
j = −cj

In this section we write SH̃(d) for the affine Hecke algebra with generators Srj
, j =

0, 1, . . . , n and quadratic relations

(3.2) (Srj
−dj)(Srj

+d−1
j ) = 0 ⇐⇒ Srj

= S−1
rj

+(dj− d−1
j )

together with the usual braid relations (2.3) with T replaced by S. Observe that the

correspondence Srj
= −d−1

j Trj
defines an isomorphism H̃(c)

≃
→ SH̃(d) of algebras. For

x ∈ Q∨ of the form x = y−z with y, z ∈ P∨

+ ∩ Q∨ we keep the notation

(3.3) Sx = Sty
S−1

tz
∈ SH̃(d)

as in the precious section.

Proposition 3.1. Let x ∈ Q∨. For αj ∈ R+ a simple root with αj(Q
∨) = Z we have

(3.4) SxSrj
= Srj

Srj(x) + (dj−d−1
j )

Sx−Srj(x)

1−S−α∨

j

and with αj(Q
∨) = 2Z we have

(3.5) SxSrj
= Srj

Srj(x) + {(dj−d−1
j )Sα∨

j
+(d0−d−1

0 )}
Sx − Srj(x)

Sα∨

j
−S−α∨

j

Proof: Observe that the proof given by Lusztig of (2.7), (2.8) does not use the quadratic

relations (2.2), and hence (2.7), (2.8) also hold in SH̃(d). In case αj(x) = −1, 0, 1

relation (3.4) follows immediately from (2.7), (2.8), and (3.4) holds for all αj(x) ∈ Z by

an easy induction on |αj(x)|.

Now suppose αj(Q
∨) = 2Z. By Proposition 2.8 we know that Sα∨

j
S−1

rj
and Sr0

are

conjugate inside SH̃(d). Hence by (3.2)

Sα∨

j
Srj

= Srj
S−α∨

j
+ (dj−d−1

j )Sα∨

j
+ (d0−d−1

0 ),

and for x ∈ Q∨ with αj(x) = 2 we get from (2.7)

SxSrj
= Srj

Srj(x) + (dj−d−1
j )Sx + (d0−d−1

0 )Sx−α∨

j
.
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Again (3.5) follows by induction on |αj(x)|. Q.E.D.

Remark 3.2. If d0 = dj then (3.5) becomes (3.4). As before we write SH(d) =

SH(d1, . . . dn) for the subalgebra of SH̃(d) generated by Srj
, j = 1, . . . , n and CQ∨ for

the (abelian) subalgebra of SH̃(d) generated by Sx, x ∈ Q∨. From Proposition 3.1 it is

obvious that (cf. Remark 2.3) multiplication in SH̃(d) gives

(3.6) SH̃(d)
∼
= SH(d) ⊗C CQ∨

as vector spaces, and the algebra structure on SH̃(d) can be recovered from the algebra

structures on SH(d) and CQ∨ using (3.4) and (3.5).

Corollary 3.3. For w=ri1 . . . rip
∈ W a reduced expression we write Sw=Sri1

. . . Srip
∈

SH(d). Then we have for x ∈ Q∨

(3.7) SxSw − SwSw−1(x) ∈
∑

u<w

SuCQ∨,

where < denotes the Bruhat ordering on W .

Suppose V is a finite dimensional C-vector space equipped with the structure of a left

H̃(d)-module. By the Jordan decomposition we can write

(3.8) V =
⊕

s∈Hom(Q∨,C∗)

Vs

with

(3.9) Vs = {v ∈ V ; (Sx−s(x))pv = 0 for p >> 0}

the generalized eigenspace. The set of all s ∈ Hom(Q∨,C∗) with Vs 6= 0 are called the

weights of V .

Definition 3.4. The left SH̃(d)-module V (s, d) defined by

(3.10) V (s, d) = SH̃(d)/
∑

x∈Q∨

SH̃(d)(Sx−s(x))

is called the induced SH̃(d)-module with cyclic weight s ∈ Hom(Q∨,C∗).

Remark 3.5. Clearly V (s, d) is the universal left SH̃(d)-module generated by a vector

of weight s. Using the isomorphism (3.6) it is clear that V (s, d) as a vector space can

be identified with SH(d). In particular dim(V (s, d)) = |W | and the vectors Ew =
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Swmod(
∑

x

SH̃(d)(Sx−s(x)) ∈ V (s, d), w ∈ W are a basis for V (s, d). By Corollary 3.3

it is clear that the weights of V (s, d) are of the form w(s), w ∈ W . Indeed relative to

the basis Ew, w ∈ W of V (s, d), partially ordered by the Bruhat ordering, the matrices

of Sx, x ∈ Q∨ are upper triangular with w(s)(x) on the diagonal.

The following result of Bernstein is now easily obtained (see [KL, p.170]).

Proposition 3.6. The center Z̃(d) of the generic (i.e. view dj as indeterminates rather

than complex numbers) affine Hecke algebra SH̃(d) is equal to the algebra (CQ∨)W .

Proof: Write z ∈ Z̃(d) in the form z =
∑

z′jz
′′

j with z′j ∈ SH(d) and z′′j ∈ CQ∨.

Applying z to the cyclic vector E1 ∈ V (s, d) and varying s ∈ Hom(Q∨,C∗) shows that

z′j is a scalar. Hence z ∈ CQ∨ and by Proposition 3.1 it is clear that {z ∈ CQ∨;

Srj
z = zSrj

, j = 1, . . . , n} = (CQ∨)W for generic dj . Q.E.D.

Proposition 3.7. For j = 1, . . . , n with αj(Q
∨) = Z the 2-dimensional representation

generated by the matrix

(3.11) Srj
=

(

0 1
1 (dj−d−1

j )

)

and the matrices

(3.12) Sx =

(

s(x) (dj−d−1
j ) ·

s(x)−rjs(x)
1−s(−α∨

j
)

0 rjs(x)

)

, x ∈ Q∨

is irreducible if and only if

(3.13) (s(α∨

j )−d2
j)(s(−α∨

j )−d2
j) 6= 0.

For j = 1, . . . , n with αj(Q
∨) = 2Z the 2-dimensional representation generated by the

matrix (3.11) and the matrices

(3.14) Sx =

(

s(x) {(dj− d−1
j )s(α∨

j )+(d0−d−1
0 )} ·

s(x)−rjs(x)
s(α∨

j
)−s(−α∨

j
)

0 rjs(x)

)

, x ∈ Q∨

is irreducible if and only if

(3.15) (s(α∨

j )−d0dj)(s(−α∨

j )−d0dj)(s(α
∨

j )+d0d
−1
j )(s(−α∨

j )+d0d
−1
j ) 6= 0.

Proof: If we write E+ = E1 + djErj
and E− = E1 − d−1

j Erj
then E+ and E− are the

up to a constant unique eigenvectors of Srj
with eigenvalues dj and −d−1

j respectively.
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By a straightforward calculation we have for αj(Q
∨) = Z

SxE+ = rjs(x)E+ +
s(x)−rjs(x)

1−s(−α∨

j )
(d2

j−s(−α∨

j ))E1

SxE− = rjs(x)E− +
s(x)−rjs(x)

1−s(−α∨

j )
(d−2

j −s(−α∨

j ))E1

and for αj(Q
∨) = 2Z we have

SxE+ = rjs(x)E+ +
s(x)−rjs(x)

s(α∨

j )−s(−α∨

j )
· {d2

js(α
∨

j )−s(−α∨

j )+d0dj−d−1
0 dj}E1

SxE− = rjs(x)E− +
s(x)−rjs(x)

s(α∨

j )−s(−α∨

j )
· {d−2

j s(α∨

j )−s(−α∨

j )+d0d
−1
j −d−1

0 d−1
j }E1

from which the proposition easily follows. Q.E.D.

Corollary 3.8. Let Rnr = {λ ∈ P ; λ ∈ R or 2λ ∈ R} be the possibly non reduced

root system associated with R (clearly Rnr = R for R of type A (n ≥ 2), B (n ≥ 3),

D (n ≥ 4), E, F , G and Rnr is of type BCn if R is of type Cn (n ≥ 1)). For α ∈ R

with rα conjugate in W to rj we write dα = dj if α ∈ R, α(Q∨) = Z, and dα = (d0dj)
1
2

if α ∈ R, α(Q∨) = 2Z, and d 1
2
α = (−d−1

0 dj)
1
2 if 1

2
α ∈ Rnr\R. If s ∈ Hom(Q∨,C∗) is

regular (i.e. w1(s) 6= w2(s) for all w1, w2 ∈ W with w1 6= w2) and

(3.16)
∏

α∈Rnr

(s(α∨)−d2
α) 6= 0,

then V (s, d) is an irreducible left SH̃(d)-module.

Proof: The fact that s ∈ Hom(Q∨,C∗) is regular together with Remark 3.5 implies the

existence of a basis of simultaneous eigenvectors Fw, w ∈ W in V (s, d) for the operators

Sx, x ∈ Q∨ such that the change of basis from Ew to Fw is given by a unipotent

matrix (relative to the Bruhat ordering). Suppose w ∈ W with l(rjw) = l(w)+1. By

Proposition 3.1 it follows that spanC<Fw, Frjw> is invariant under Srj
and Sx, x ∈ Q∨.

The corollary now follows from the previous proposition. Q.E.D.

Theorem 3.9. Suppose the system of hypergeometric partial differential equations (cf.

[HO, Definition 2.13] and [O2, Theorem 3.6]) is put in standard Schrödinger form by

conjugation with the weight function δ(k; a)
1
2 (cf. [HO, Proposition 2.2]). Then the

corresponding monodromy representation of the Artin group G̃ coincides for generic pa-

rameters with the induced SH̃(d)-module V (s, d) with cyclic weight s ∈ Hom(Q∨,C∗).

The explicit correspondence between the parameters (λ, k) and (s, d) is given by

(3.17) s = e2πiλ

12



and

(3.18) dα = e
πi(k 1

2
α
+kα)

, α ∈ Rnr

with the convention that k 1
2
α = 0 if 1

2α /∈ Rnr.

Proof: This is clear from Corollary 2.10, Remark 3.5, Corollary 3.8 and the formulas

in Section 6 of [HO]. More precisely we find d0 = eπikα0 and dj = e
πi(k 1

2
αj

+kαj
)

for

j = 1, . . . , n and with the convention of Corollary 3.8 this yields (3.18). Q.E.D.

Remark 3.10. Observe that for the application of the existence of hypergeometric

functions and their shift operators the restriction in the above theorem to the case

of generic parameters is irrelevant. Indeed, as shown by Opdam using a variation

of Hartog’s extension theorem the hypergeometric function F (λ, k; a) has an analytic

continuation in the parameters λ ∈ h∗ and k ∈ K with Re(kα) ≥ 0 ∀α ∈ Rnr. In

turn this fact yields a proof of the commuting algebra of hypergeometric differential

operators and their shift operators (see [O2, Section 2 and Section 3]). The essential

point of the above theorem (although its proof is trivial) is therefore that it replaces

the rather laborous calculations (partly done on a computer) in rank 2 as done in [O1].

13



§4. The Schwarz problem

In the notation of the previous section let

(4.1) π(s, d): G̃ → GL(V (s, d))

be the representation of the Artin group G̃ associated with the left SH̃(d)-module

structure on V (s, d). The Schwarz problem is the determination of those parameters

(λ, k) for which the hypergeometric function F (λ, k; z) is an algebraic function of its

variables z = (z1, . . . , zn). Under the assumption that the monodromy representation is

irreducible this problem is equivalent with the determination of those parameters (s, d)

for which the image of G̃ under the representation (4.1) is a finite group.

The method of solution of this question presented here is essentially the same as given

in [BH] for the higher hypergeometric function nFn−1.

Proposition 4.1. Relative to the basis Ew, w ∈ W for V (s, d) the representation (4.1)

is defined over the ring

(4.2) Z[dα, d−1
α , s(α∨); α ∈ Rnr]

Proof: This is immediate from Proposition 3.1. Q.E.D.

Theorem 4.2. If the parameters (s, d) satisfy (3.16) and the “hermitian condition”

(4.3) s = s−1, dα = d
−1

α ∀α ∈ Rnr

(or equivalently (λ, k) are real parameters), then there exists a non degenerate hermitian

form F = F (s, d) on V (s, d) such that

(4.4) F (π(s, d)(g)v1, π(s, d)(g)v2) = F (v1, v2)

for all g ∈ G̃, and all v1, v2 ∈ V (s, d).

Remark 4.3. Suppose V is a finite dimensional vector space over C, and π : G →

GL(V ) a representation of a group G. The existence of a bijective intertwining operator

between (π, V ) and π∗, V
∗

) is equivalent with the existence of a G-invariant non degen-

erate sesquilinear pairing S : V × V → C. Here (π∗, V
∗

) is the anti dual representation

defined by π∗(g) = π(g−1)∗. Clearly

F ′(v, w) =
1

2
(S(v, w) + S(w, v)) and F ′′(v, w) =

1

2i
(S(v, w)− S(w, v))

14



are both G-invariant hermitian forms with Ker(F ′) ∩ Ker(F ′′) = 0. Hence for λ, µ ∈ R

generic the hermitian form F = λF ′ + µF ′′ is G-invariant and non degenerate.

Proposition 4.4. We have the equivalence of representations

(4.5) π(s, d)∗
∼
= π(w0s−1, d

−1
).

In particular, if s and d are unitary then

(4.6) π(s, d)∗
∼
= π(w0s, d).

Here w0 ∈ W is the longest element.

Proof: If we write Ew = Ew(s, d), w ∈ W for the basis of V (s, d) as described in

Remark 3.5 then it is easy to check using Proposition 3.7 that the equivalence (4.5)

comes from

Ew(w0s−1, d
−1

) = Eww0
(s, d)

∗

,

where E
∗

w, w ∈ W is the basis of V (s, d)
∗

dual to Ew, w ∈ W . Q.E.D.

Definition 4.5. Using Proposition 3.7 it is easy to check that the vector

(4.7) −(dj−d−1
j )E1(rjs, d) + (1−rjs(−α∨

j ))Erj
(rjs, d)

in case αj(Q
∨) = Z, and the vector

(4.8) −{(dj−d−1
j )rjs(α

∨

j ) + (d0−d−1
0 )}E1(rjs, d)+{rjs(α

∨

j )−rjs(−α∨

j )}Erj
(rjs, d)

in case αj(Q
∨) = 2Z is a simultaneous eigenvector in V (rjs, d) of weight s for the

operators Sx, x ∈ Q∨.

Hence there exists a unique intertwining operator of left H̃(d)-modules

(4.9) Ij : V (s, d) → V (rjs, d)

sending the cyclic vector E1(s, d) to the vector (4.7) and (4.8) respectively.

Proposition 4.6. The composition

V (s, d)
Ij

−→V (rjs, d)
Ij

−→V (s, d)

is given by multiplication with a scalar which is non zero if and only if the conditions

(3.13) and (3.15) respectively are satisfied. In particular under conditions (3.13) and

(3.15) respectively the operator Ij : V (s, d) → V (rjs, d) is a bijection.
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Proof: A straightforward computation. Q.E.D.

Proposition 4.7. For w ∈ W with w = rj1 . . . rjp
a reduced expression the intertwining

operator

(4.10) Iw = Ij1 . . . Ijp
: V (s, d) → V (ws, d)

is well defined independent of the choice of the reduced expression.

Proof: It is easily seen that with respect to the basis Ev(ws, d), v ∈ W of V (ws, d) the

coefficient of Ew(ws, d) in the vector Iw(E1(s, d)) is given by

∏

β∈R+∩w−1R−

β(Q∨)=Z

(1 − s(β∨)) ·
∏

β∈R+∩w−1R−

β(Q∨)=2Z

(s(−β∨)−s(β∨)).

Hence for regular s ∈ Hom(Q∨,C∗) the intertwining operator Iw depends only on w,

and not on the choice of the reduced expression. The proposition now follows because

Iw depends polynomially on s. Q.E.D.

Corollary 4.8. For (s, d) parameters satisfying (3.16) the intertwining operator

(4.11) Iw0
: V (s, d) → V (w0s, d)

is a bijection.

The proof of Theorem 4.2 now follows from Remark 4.3, Proposition 4.4 and Corollary

4.8.

Theorem 4.9. Suppose the parameters (s, d) satisfy (3.16). Then the image under

the representation (4.1) of the Artin group G̃ is a finite group if the parameters (s, d)

satisfy the condition

(4.12) sN = 1, dN
α = 1 ∀α ∈ Rnr, some N ∈ N

(or equivalently (λ, k) are rational parameters), and for each σ ∈ Gal(K(s, d) : Q) where

(4.13) K(s, d) = Q(s(α∨), dα; α ∈ Rnr)

the hermitian form F (sσ, dσ) on V (sσ, dσ) is definite.

Proof: By Proposition 4.1. the representation (4.1) is defined over the ring of integers

(4.2) in the cyclotomic field K(s, d). Now the diagonal embedding

π(s, d)(G̃) −→
∏

σ∈Gal(K(s,d):Q)

π(sσ, dσ)(G̃)
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is defined over Z, and leaves invariant a positive definite hermitian form. Hence the

image is a finite group. Q.E.D.

Corollary 4.10. The function F (λ, k; z) is an algebraic function of its variables

z = (z1, . . . , zn) if the parameters (λ, k) ∈ h∗ × K are rational and all rank one re-

ductions of F (λ, k; z) (which are Gaussian hypergeometric functions) appear in the list

of H.A. Schwarz.

Proof: In case the representation (4.1) is irreducible the invariant hermitian form on

V (s, d) is definite if and only if all rank one reductions of the hermitian form are definite.

Indeed, for s ∈ Hom(Q∨,C∗) regular for W this is immediate, and the statement

depends continuously on s as long as (4.1) remains irreducible. The corollary now

follows because the criterium of Theorem 4.9 holds as soon as it holds for all rank one

reductions. Q.E.D.
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§5. The classification of algebraic hypergeometric functions for root systems

of type ADE

Definition 5.1. Two triples (λ, µ, ν) and (λ′, µ′, ν′) in R3 are called contiguous if one

is obtained from the other by applying finitely many operations of the form

(λ, µ, ν) 7→ (−λ, µ, ν) or (λ,−µ, ν) or (λ, µ,−ν),(5.1)

(λ, µ, ν) 7→ (λ+2, µ, ν) or (λ, µ+2, ν) or (λ, µ, ν+2),(5.2)

(λ, µ, ν) 7→ (λ, 1−µ, 1−ν) or (1−λ, µ, 1−ν) or (1−λ, 1−µ, ν).(5.3)

Definition 5.2. A triple (λ, µ, ν) ∈ R3 is called reduced if and only if 0 ≤ λ, µ, ν and

λ+µ, λ+ν, µ+ν ≤ 1.

Proposition 5.3. Any class of contiguous triples in R3 contains a unique reduced

triple.

Proof: If we enlarge the group generated by the transformations (5.1), (5.2), (5.3)

with the symmetric group S3 of permutations of λ, µ, ν then the statement is that the

fundamental alcove {0 ≤ λ ≤ µ ≤ ν, µ+ν ≤ 1} is a fundamental domain for the action

of the affine Weyl group of type B3. Q.E.D.

The Gaussian hypergeometric function F (α, β, γ; z) has exponent differences λ = 1−γ,

µ = γ−α−β, ν = α−β around z = 0, 1,∞ respectively. The following result is due to

H.A. Schwarz [S].

Theorem 5.4. (H.A. Schwarz). The hypergeometric function F (α, β, γ; z) has an

irreducible monodromy group and is an algebraic function of its variable z if and only

if the contiguity class of exponent differences

(5.4) λ = 1−γ, µ = γ−α−β, ν = α−β

contains as reduced triple and up to permutation one of the following 15 triples:
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No λ µ ν

1 1
2

1
2 p.q−1 (1 ≤ p ≤ 1

2q)

2 1
2

1
3

1
3

3 2
3

1
3

1
3

4 1
2

1
3

1
4

5 2
3

1
4

1
4

6 1
2

1
3

1
5

7 2
5

1
3

1
3

8 2
3

1
5

1
5

9 1
2

2
5

1
5

10 3
5

1
3

1
5

11 2
5

2
5

2
5

12 2
3

1
3

1
5

13 4
5

1
5

1
5

14 1
2

2
5

1
3

15 3
5

2
5

1
3

Theorem 5.5. Suppose R is an irreducible reduced root system with corresponding

possibly non reduced root system

(5.5) Rnr = {α ∈ P ; α ∈ R or 2α ∈ R}.

For λ ∈ h∗ and k ∈ K a multiplicity function on Rnr the hypergeometric function

F (λ, k; z) associated with Rnr is an algebraic function of its variables z = (z1, . . . , zn)

if the reduced triples in the contiguity classes of

(5.6) λα = 2(λ, α∨), µα =
1

2
−k 1

2
α−kα, να =

1

2
+k 1

2
α+kα−2(ρ, α∨)
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appear in the Schwarz list for all α ∈ R+.

Proof: This is just a reformulation of Corollary 4.10 taking into account Theorem 5.4

and formulas (4.5) of [HO]. Q.E.D.

Remark 5.6. For any root system R we get algebraic hypergeometric function by

taking kα = 0 ∀α ∈ Rnr and λ ∈ h∗ rational with respect to the weight lattice P .

The corresponding monodromy group is a semidirect product of W and a finite factor

group of Q∨ (namely Q∨ modulo {z ∈ Q∨; wλ(x) ∈ Z ∀w ∈ W}). This case is the

higher dimensional analogue of No 1 in the Schwarz list.

Example 5.7. Suppose R is of type A2. We write kα = k ∀α ∈ R, and λ = n1λ1+n2λ2.

Then the condition of Theorem 5.5 implies that the three triples

{2n1,
1

2
−k,

1

2
−k}(5.7)

{2n2,
1

2
−k,

1

2
−k}(5.8)

{2n1+2n2,
1

2
−k,

1

2
−3k}(5.9)

up to contiguity and order should appear in the Schwarz list. An easy verification using

Theorem 5.4. yields the following possibilities besides the ones mentioned in Remark

5.6: {2n1 = 2n2 = 2
3 , k = ±1

4}, {2n1 = 2n2 = 2
3 , k = ± 3

10}.

Corollary 5.8. For R an irreducible root system of type ADE and rank n ≥ 3 there

are no other algebraic hypergeometric functions than the ones described in Remark 5.6.

Proof: By rank reduction it is sufficient to verify this statement for type A3, and the

easy verification is left to the reader. Q.E.D.
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